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Abstract: The objective of this study was to investigate the osteogenic and antimicrobial effect of
bioactive glass S53P4 incorporated into β-tricalcium phosphate (β-TCP) scaffolds in vitro and the
bone neoformation in vivo. β-TCP and β-TCP/S53P4 scaffolds were prepared by the gel casting
method. Samples were morphologically and physically characterized through X-ray diffraction (XRD)
and scanning electron microscope (SEM). In vitro tests were performed using MG63 cells. American
Type Culture Collection reference strains were used to determine the scaffold’s antimicrobial potential.
Defects were created in the tibia of New Zealand rabbits and filled with experimental scaffolds. The
incorporation of S53P4 bioglass promotes significant changes in the crystalline phases formed and in
the morphology of the surface of the scaffolds. The β-TCP/S53P4 scaffolds did not demonstrate an
in vitro cytotoxic effect, presented similar alkaline phosphatase activity, and induced a significantly
higher protein amount when compared to β-TCP. The expression of Itg β1 in the β-TCP scaffold
was higher than in the β-TCP/S53P4, and there was higher expression of Col-1 in the β-TCP/S53P4
group. Higher bone formation and antimicrobial activity were observed in the β-TCP/S53P4 group.
The results confirm the osteogenic capacity of β-TCP ceramics and suggest that, after bioactive glass
S53P4 incorporation, it can prevent microbial infections, demonstrating to be an excellent biomaterial
for application in bone tissue engineering.

Keywords: bioceramic scaffolds; β-TCP; bioactive glass S53P4; sol–gel; osteogenesis; bone neoformation

1. Introduction

Calcium phosphate ceramics are the most used and effective synthetic biomaterial bone
substitutes [1]. β-TCP is a ceramic biomaterial used both in dentistry and medicine [2,3].
As bone substitutes, β-TCP scaffolds are attractive because they have biocompatibility,
adequate absorption, and bone neoformation [4,5]. Moreover, β-TCP is considered os-
teoconductive and osteoinductive [6]. Previous studies have reported successful in vivo
surgical implantation of biomaterials produced with β-TCP ceramic [7,8].

In 1969, another ceramic biomaterial was developed by Larry Hench, 45S5 bioglass
(Bioglass®), considered a promising material due to its chemical bonding to bone tissue [9].
The osteoinductive property of bioglass has been described since it presents the ability to
dissolve into soluble silica and calcium ions, which promotes the stimulation of osteogenic
cells to produce bone matrix [10]. However, other formulations have been investigated
to assure the osteogenic and antimicrobial properties of bioglasses [11,12]. Bioactive glass
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S53P4 (53% SiO2, 23% Na2O, 20% CaO, and 4% P2O5, wt%) is considered a biocompatible
and osteoconductive bone substitute. Furthermore, it has antibacterial, osteo-stimulating,
and angiogenic properties [13].

Studies suggest that the incorporation of bioactive glass into β-TCP scaffolds increases
its mechanical strength and bioactivity [14,15], as well as the osteo-stimulating and osteo-
conductive capacity of bioglass [16,17], positively interfering in the performance of the
β-TCP scaffold. Thus, combining the β-TCP and bioactive glass S53P4 is ideal to produce
scaffolds for bone tissue engineering, as bone substitutes, in the repair and replacement of
damaged tissue [8].

Waselau et al. [18] evaluated the effect of S53P4 and β-TCP on osteogenic differen-
tiation of human adipose stem cells (hASCs), separately, presenting a granular shape.
ALP staining indicated osteogenic differentiation of hASCs in bioglass and β-TCP groups.
Alves et al. [19] produced and characterized 3D-printed β-TCP/S53P4 scaffolds. According
to the authors, the scaffolds were effective in terms of antibacterial activity and cell viability.

Scaffolds are expected to provide support for cell proliferation and differentiation,
diffusion of cellular nutrients, and exert mechanical and biological influences on cells [20].
To provide an adequate structure in scaffolds, porosity, pore size, and interconnected
pores are important characteristics for adequate osteogenesis [21,22]. The optimization of
these parameters can be achieved in the fabrication of porous ceramic scaffolds using the
gel-casting method [23].

In this study, β-TCP scaffolds were incorporated with bioactive glass S53P4 to investi-
gate in vitro osteoblastic activity, differentiation, and gene expression, related to osteogen-
esis, through Real-Time Quantitative Reverse Transcription Polymerase Chain Reaction
(RT-PCR), as well as to evaluate in vivo bone neoformation. The antibacterial activity
of these scaffolds was also verified against ATCC strains of P. aeruginosa, S. aureus, and
C. albicans.

2. Materials and Methods
2.1. Fabrication of β-TCP Scaffolds by Gel Casting Method and Incorporation of Bioactive Glass
S53P4 by Sol–Gel

The β-TCP powder was obtained by solid-state reaction of anhydrous bibasic calcium
phosphate CaHPO4 and calcium carbonate CaCO3 (both from Synth—Diadema, Brazil)
according to a procedure described previously [15]. The powder was characterized by
X-ray diffraction (XRD) (Rigaku-Ultima IV, Tokyo, Japan, 10–60◦, 0.02◦, 10 mm/s) to verify
the crystalline phases formed in the β-TCP. β-TCP scaffolds were obtained using the gel
casting method. Briefly, a ceramic suspension of 30% in weight of β-TCP was prepared
with an aqueous solution including 15% of organic monomers hydroxymethylacrylamide,
methacrylamide, and methylenebisacrylamide in a 3:3:1 M ratio. The production of ce-
ramic foam occurred by adding a foaming agent (Lutensol ON-110, BASF, Ludwigshafen,
Germany), followed by mechanical agitation in a ball mill for 20 min. The foam was
conditioned into cylindrical molds of polyvinyl chloride (7 × 2 mm). The molds were
maintained 24 h at room temperature (23 ◦C) and 24 h at 70 ◦C. The scaffolds were kept
in an oven at 100 ◦C for 24 h. The gelled foams were then demolded and then sintered at
1200 ◦C/2 h.

The synthesis of bioglass sol was carried out by adding the precursors NaNO3 (0.098%
mol), Ca(NO3)2·4H2O (0.110% mol), and (NH4)H2PO4 (0.010% mol) in a beaker containing
a solution of silicic acid (H4SiO4 0.185% mol). At the end of the additions, a transparent
bioglass sol was obtained, which was used to impregnate the β-TCP scaffolds.

The bioactive glass incorporation procedure was performed by immersion of the
scaffold in 200 mL of the sol–gel bioglass solution in a vacuum chamber at −1 Bar pressure.
After 30 min under vacuum, the scaffolds were removed from the solution and dried for
24 h at 100 ◦C. A detailed procedure for the manufacture of scaffolds by the gel casting
method and incorporation of bioactive glass into β-TCP scaffolds has been previously
described [15].



Bioengineering 2023, 10, 597 3 of 19

2.2. Characterization of β-TCP and β-TCP/S53P4 Scaffolds
2.2.1. X-ray Diffraction (XRD) Analysis

The determination of the crystalline phases present in the scaffolds was carried out
in the macerated β-TCP and β-TCP/S53P4 scaffolds. For this purpose, a model X’pert
Powder diffractometer (X’Pert PRO MPD 3060 PANalytical, Almelo, The Netherlands) was
used. Standards from 20◦ to 40◦ on the 2θ axis were collected, with a scan step of 10.1600 s,
step size of 0.0170◦, and CuKα radiation.

2.2.2. Morphological and Physical Characterization of β-TCP and β-TCP/S53P4 Scaffolds

Morphological analysis of the surface of the scaffolds produced by the gel casting
method was performed using images obtained by low-vacuum scanning electron micro-
scope using thermal emission electron optics SEM (FEI, Inspect S50 model, Brno, Czech
Republic). SEM images and Image J software bundled with 64-bit Java 8. (National Institutes
of Health, Bethesda, MD, USA) were used to determine average pore sizes.

The geometric porosity of the β-TCP and β-TCP/S53P4 scaffolds was determined
according to Equations (1) and (2). Where “d” is the scaffold geometric density and
“dTheoretical” corresponds to the theoretical density of β-TCP (3.07 g/cm3), “mScaffold” is the
measured mass in (g) and “VScaffold” is the calculated volume in (cm3) of the scaffolds.

P(%) =

[
1−

(dSca f f olds

dteoric

)]
× 100 (1)

dsca f f olds =

(
mSca f f olds

VSca f f olds

)
(2)

2.3. Biological Characterization of β-TCP and β-TCP/S53P4 Scaffolds
2.3.1. In Vitro Cell Culture

Cellular studies were conducted using human MG63 cells (APABCAM, Rio de Janeiro,
Brazil), a human osteoblast cell line. Cells were grown in Dulbecco’s Modified Eagle
Medium (DMEM, Cultilab, São Paulo, Brazil), supplemented with 10% fetal bovine serum
(FBS, Cultilab, São Paulo, Brazil) and gentamicin (10 mg/mL) (Gibco™, Paisly, UK). In-
cubated at a temperature of 37 ◦C in a humid atmosphere containing 5% CO2, when
confluence was reached by occupying more than 80%, the cells were ready for seeding.
Cells were separated by trypsinization (0.25% Trypsin-EDTA Gibco™, Paisly, UK) and
centrifuged (Labnet Centrifuge—HERMLE Z 300K, Winooski, VT, USA), then resuspended
with culture medium. Before seeding, scaffolds were placed in Petri dishes and sterilized
under UV irradiation for 30 min. Cells were calculated using a hemocytometer (Prolab, São
Paulo, Brazil) and were pipetted into each scaffold in 48-well plates (Sarstedt®, Numbrecht,
Germany) at a cell density of 15 × 104 cells for the tests described below, except for the
test of gene expression. Replicates were performed according to ISO 10993-5, with three
repetitions of the experiments and five scaffolds for each test in each repetition.

Cell Morphology

After 5 days of culture, two scaffolds of each material were fixed with Karnovisky’s
solution (4% paraformaldehyde (Neon, Suzano, Brazil), 2.5% glutaraldehyde, and 0.1 M
sodium cacodylate buffer (both Dinâmica São Paulo, Brazil, pH 7.4) for 2 h; then, the
scaffolds were dehydrated with ethanol. The scaffolds were coated with a thin layer of
gold in a sputter-coating system (Q150R ES, Quorum London, UK) for scanning electron
microscope (SEM) analysis (EVO MA10 Zeiss, Jena, Germany).

Other two scaffolds were fixed with 4% paraformaldehyde in 0.1M Dulbecco phos-
phate buffer (PBS Gibco, New York, NY, USA), pH 7.2, and washed with PBS. Then, the
cells were processed by direct fluorescence to verify their cytoskeleton using 0.5% Triton
X-100 (Sigma-Aldrich, St. Louis, MO, USA), followed by blocking unspecific background
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with 5% skimmed milk in PBS. A solution of Alexa Fluor 488 phalloidin (1:200, Molecular
Probes Invitrogen, Waltham, MA, USA) in PBS was incubated in a humidified environment
at room temperature. Finally, the cell nuclei were stained with 300nM 4′,6-diamidino-
2-phenylindole dihydrochloride (FluorshielTM with Dapi Sigma-Aldrich, St. Louis, MO,
USA). Next, samples were examined under epifluorescence using a Leica DMLB light
microscope (Leica, Bensheim, Germany) fitted with a Leica DC 300F digital camera.

Cell Viability

After 3 and 7 days, the culture medium was removed from each well. MTT solution
(0.05% of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide— M5655 Sigma-
Aldrich, St. Louis, MO, USA) in culture medium was added to the cultured samples and
incubated for 4 h to form formazan crystals that were dissolved by DMSO (Dimethylsulfox-
ide, Neon, Suzano, Brazil). The absorbance at 570 nm was measured in a microplate reader
(EL808IU Biotek Instruments, Winooski, VT, USA). The optical densities obtained were
converted into percentages in relation to the number of live cells in the β-TCP, representing
100% of cell viability.

Total Protein Content

The total protein content was determined through Lowry’s modified method [24]. At
7 and 14 days of culture, proteins were extracted with 0.1% sodium dodecyl sulfate (Sigma-
Aldrich, St. Louis, MO, USA). Cell lysates were added to Lowry solution (Sigma-Aldrich,
St. Louis, MO, USA) and Folin–Ciocalteau (Sigma-Aldrich, St. Louis, MO, USA) reagents.
The absorbance corresponding to the proteins was measured at 690 nm in a microplate
reader (EL808IU Biotek Instruments, Winooski, VT, USA).

Alkaline Phosphatase (ALP) Assay

After 7 and 14 days of cell culture, the same cell lysates above were incubated following
the instructions of the commercial kit manufacturer (Labtest Diagnostica, Lagoa Santa,
Brazil) for ALP activity determination. In ALP assay, thymophthalein is released by
hydrolysis of the substrate thymophthalein monophosphate. Absorbance was measured in
a microplate reader (EL808IU Biotek Instruments, Winooski, VT, USA) at 590 nm.

Alizarin Red Staining

The staining of mineralization nodules was evaluated after 14 days of cell culture
using 2% alizarin red (Sigma-Aldrich, St. Louis, MO, USA), which stains calcium-rich areas.
The cultures received Hank’s solution (H6136 Sigma-Aldrich, St. Louis, MO, USA) and 2%
alizarin S red dye. The formation of mineralization nodules was observed under an optical
microscope (Axio Observer A1, Carl Zeiss, Germany).

RNA Extraction and Real-Time Quantitative Reverse Transcription PCR (qRT-PCR)

Further, 1 × 105 MG63 cells were seeded in scaffolds, and the qRT-PCR test was used
to assess the expression of specific osteogenic genes, COL-1, TGF-B1, ITG-β1, M-CSF, OSN,
BGLAP, OSP, PGE2, RUNX2, and housekeeping gene β-actin (Table 1). After 7 days in
culture, the total RNA was extracted using Trizol (Ambion®, Life Technologies Corporation,
Van Allen Way, Carlsbad, CA, USA) according to the manufacturer’s instructions. Further,
cDNA was synthesized by reverse transcription reactions following the manufacturer’s in-
structions of the commercial SuperScript III kit, First-Strand Synthesis Supermix (Invitrogen
Life Technologies Corporation-Van Allen Way, Carlsbad, CA, USA), and cDNA was used for
qRT-PCR with the Step One Plus Time PCR thermocycler detection system (Thermofisher
Scientfic Inc., Waltham, MA, USA) using the Platinum SYBR Green qPCR SuperMix-UDG
system (Invitrogen Life Technologies Corporation-Van Allen Way, Carlsbad, CA, USA) and
specific primers according to the manufacturer’s instructions. The relative quantification
was calculated for each gene by the comparative method of ∆∆Ct [25].
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Table 1. Sequence of sense and antisense primers, size of the product in base pairs, and PubMed reference.

Gene PubMed Reference Forward Primer Reverse Primer Product
Length (pb)

Col-1 NM_000088.3 ACAGCCGCTTCACCTACAGC GTTTTGTATTCAATCACTGTCTTGC 85

Tgf-β1 NM_000660.4 TTTGATGTCACCGGAGTTGTG GCGAAAGCCCTCAATTTCC 63

Itg β1 NM_002211.3 TTCTTCCTGGACTATTGAAAT AGAAACTCTCATCATGCTCATT 100

M-csf NM_172211.3 GAGCTGCTTCACCAAGGATTAT TCTTGACCTTCTCCAGCAACTG 92

Osn NM_003118.3 ACTGGCTCAAGAACGTCCTGGT TCATGGATCTTCTTCACCCGC 97

Bglap NM_001199662.1 AGCAGAGCGACACCCTAGAC GGCAGCGAGGTAGTGAAGAG 194

Osp NM_001251830.1 AGACACATATGATGGCCGAGG GGCCTTGTATGCACCATTCAA 154

PgE2 NM_004878.4 GAAGAAGGCCTTTGCCAA GGAAGACCAGGAAGTGC 200

Runx2 NM_001015051 GAACTGGGCCCTTTTTCAGA CACTCTGGCTTTGGGAAGAG 208

β-actin NM_001101.3 AAACTGGAACGGTGAAGGTG GTGGACTTGGGAGAGGACTG 206

2.3.2. Metabolic Activity of Microorganisms to Assess the Antimicrobial Effect of Scaffolds

Reference strains (ATCC—American Type Culture Collection) of C. albicans (ATCC
18804), P. aeruginosa (ATCC 15442), and S. aureus (ATCC 6538) from the Laboratory of
Microbiology and Immunology of the Institute of Science and Technology of UNESP, São
José dos Campos Campus, Brazil, which were stored in a freezer at −80 ◦C, were used for
this study. The colonies were diluted in sterile saline solution (0.9% NaCl) and standardized
to 107 cells/mL in a spectrophotometer (B582, Micronal, São Paulo, Brazil) according to the
wavelength and optical density of each microorganism.

The scaffolds were distributed in each well of the 48-well plate (Kasvi, Paraná, Brazil),
with n = 05 per experimental group. For microbial growth, the specific standardized
cells’ suspensions were added over to the scaffold on the culture plate and fed with BHI
broth. The culture medium was renewed within 24 h. A growth control group of each
microorganism was carried out without the presence of the scaffolds.

The plates were incubated in an oven at 37 ◦C for 48 h. Subsequently, 0.5 mg/mL
MTT solution (Sigma-Aldrich, St. Louis, MO, USA) was added to the broth. After 1h of
incubation, under protection from light, this solution was removed and DMSO (Sigma-
Aldrich, St. Louis, MO, USA) was added, followed by absorbance reading (Biotek, model
ELx808cse Winooski, VT, USA) at 570 nm.

2.3.3. Animals and Implantation Procedure

Five male albino New Zealand white rabbits were used, weighing about 4.0 kg, at
5 months of age. They were purchased from the central vivarium of São Paulo State
University. The animals were placed in individual cages and received standard commercial
food and distilled water ad libitum. They were acclimatized to the housing conditions over
four weeks at 20–24 ◦C and 50–70% relative humidity with a 12 h light/dark cycle.

Each animal received two scaffolds in each tibia, divided according to the manufactur-
ing material: (a) β-TCP and (b) β-TCP/S53P4 scaffolds.

All experiments were performed following the Animal Ethics Committee (CEUA,
Protocol 02/2020) of the Institute of Science and Technology of the Campus of São José
dos Campos/UNESP and were carried out under the ethical principles adopted by the
Brazilian National Animal Care Ethical Council (CONCEA). All surgical procedures were
performed under general anesthesia in a pain-free state. The research followed all the
recommendations of the “Animal Research: Reporting in vivo Experiments” (ARRIVE)
guidelines [26].

The animals were weighed and anesthetized with a 2% xylazine hydrochloride solution
(2 mg/100 mL)—(Anasedan®—Vetbrands, Jacareí, Brazil) and 1.16 g/10 mL ketamine
hydrochloride (Dopalen®—Vetbrands, Jacareí, Brazil). After anesthesia, shaving, and
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antisepsis, with iodinated alcohol solution, the surgery was started in the medial region
of the rabbit’s tibia. The cortical bone of the tibia was exposed, and surgical pockets were
formed. Two perforations of 4 mm in diameter were performed in each tibia, totaling 4
perforations per animal, with the left tibias receiving β-TCP scaffolds and the right tibias
receiving β-TCP/S53P4 scaffolds. They received one oral dose of 5mg/kg of tramadol
hydrochloride (Eurofarma, São Paulo, Brazil) to prevent post-operative pain.

The animals were inspected daily for clinical signs of complications or adverse reac-
tions to arrest any suffering to animals. They were monitored until the euthanasia period.
The animals were euthanized with an overdose of deep general anesthesia at 21 days of
implantation. For histological observations, implanted scaffolds were fixed in buffered
formalin and decalcified using 20% formic acid.

Histological Procedure

After demineralization, specimens were submitted to routine histological processing,
embedding paraffin, and sectioned in 5 µm slices. Sections were stained with hema-
toxylin and eosin (HE) and observed in a light microscope Zeiss Axiophot 2 (Carl Zeiss,
Oberköchen, Germany).

Bone Tissue Formation Evaluation by Area Measurement

The bone tissue formation area was measured below the pre-existing cortical bone in
the region of the bone defect. Digital images were obtained at an original magnification
of 5X using a light microscope Zeiss Axiophot 2 associated with Axiocam MRC 5 (Zeiss
Oberköchen, Germany). Thereafter, 100 areas of each material were analyzed using Image J
software bundled with 64-bit Java 8. (National Institutes of Health, Bethesda, MD, USA).

2.4. Statistical Analysis

Obtained data were tested by the Kolmogorov–Smirnov test and passed the normality
test. Independent samples t-test was used for cell viability, total protein content, alka-
line phosphatase assay, qRT-PCR, and bone tissue formation evaluation. The microbial
metabolic activity was analyzed through the one-way analysis of variance (ANOVA) and
Tukey multiple comparisons analysis. A p-value < 0.05 was considered statistically signifi-
cant. All data are presented as mean and standard deviation. Graphs and statistics were
performed through GraphPad Prism® software version 8.

3. Results and Discussion

Figure 1 shows the XRD diffractograms of β-TCP and β-TCP/S53P4 scaffolds. Only
the β-TCP crystalline phase (β-Ca3(PO4)2, JCPDS 00-09-0169) was verified in the β-TCP
scaffold. The β-TCP/S53P4 scaffold presented, in addition to the β-TCP phase, the crystalline
phases α-TCP (α-Ca3(PO4)2, JCPDS 00-09-0348), combeite (Na2Ca2Si3O9, JCPDS 00-022-1455),
and wollastonite (CaSiO3, JCPDS 00-027-0088). The formation of the α-TCP phase has been
observed in Si-doped β-TCP [27–29]. This has been attributed to the action of incorporated
silicon: the Si4+ enters the network occupying positions of the tetrahedral P5+ in the β-TCP
structure and stabilizes the α-TCP phase at temperatures below theoretical [27–29]. On the
other hand, calcium and sodium–calcium silicates are phases commonly obtained in the
crystallization of bioglasses in the system SiO2-Na2O-CaO-P2O5 [30–32]. The crystallization of
these phases favors the bioactivity of the composite since, while β-TCP has a low capacity for
apatite mineralization in vivo and in vitro, the α-TCP phase and silicates are highly bioactive
phases capable of inducing rapid mineralization in vivo [30,33–35].
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Figure 1. XRD patterns of β-TCP and β-TCP/S53P4 scaffolds. β: β-TCP; α: α-TCP; c: Na2Ca2Si3O9;
w: CaSiO3.

Figure 2a–h shows SEM micrographs of β-TCP (Figure 2a–d) and β-TCP/S53P4
(Figure 2e–h) scaffolds. The scaffolds presented morphology characteristic of the foam
gel casting method, with a cellular structure consisting of macropores interconnected
by several openings, as indicated by the arrows in Figure 2a–c, and micropores with
smaller sizes at 1 µm on the struts, indicated by the arrows in Figure 2d. After bioactive
glass incorporation, β-TCP/S53P4 scaffolds showed a significant change in strut surface
morphology. The formation of several structures having the form of plates with several
microns in length was observed, as indicated by the arrows in Figure 2f,g. These structures
have a typical morphology of combeites [36,37] and were associated with sodium–calcium
silicate formed by the crystallization of the incorporated bioglass, observed in XRD analysis.
The observation of β-TCP/S53P4 scaffold struts under higher magnifications (5000×) also
showed regions covered with layers of the formed silicates, as illustrated by the dashed
region in the micrograph of Figure 2h. Similar results were found by Spirandeli et al. [15]
when bioactive glass 45S5 was incorporated into β-TCP scaffolds by sol–gel.

The β-TCP scaffold presented a porosity of 76%, and β-TCP/S53P4 scaffolds showed a
porosity of 79%, both ±1.0%, and mean pore sizes of 195 µm and 148 µm, respectively. The
incorporation of S53P4 on the scaffolds did not significantly affect the porosity and pore
size, which are important parameters for osteogenesis; they are related to cell recruitment,
adhesion, cell proliferation, as well as nutrient permeability [32]. As human cancellous
bone exhibits a total porosity ranging from 30% to 90%, a scaffold presenting porosity
within this range is suitable for bone regeneration [21].

There are three levels of porosity in bone, which are inserted hierarchically one inside
another, associated with the vascular, lacunar–canalicular, and collagen–apatite porosities.
Their typical dimensions are described as 50 µm, 100 nm, and 1 nm, respectively [38]. Both
scaffolds presented mean pore sizes compatible with vascular bone porosity, and those
pores being interconnected is crucial to osteogenesis inside the scaffolds.
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Figure 2. SEM micrographs of β-TCP and β-TCP/S53P4 scaffolds. β-TCP: (a) 100×, (b) 1000×,
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yellow arrows indicate micropores); β-TCP/S53P4: (e) 100×, (f) 1000×, (g) 2000× (f,g, yellow arrows
indicate plates with several microns, (h) 5000× (dashed circle highlights formed silicate).

Hoover et al. [39] developed highly porous silver-doped β-TCP scaffolds (77% and
79%) and concluded that porosity increased osteoconduction. Seidenstuecker et al., 2017 [40]
characterized pure β-TCP scaffolds combined with bioactive glass, produced through 3D
printing, with porosity between 63% and 71%. They concluded that the biomaterial of
BG/β-TCP with greater porosity promoted a high concentration of MG63 living cells.
There are conflicting reports in the literature regarding the ideal pore size. Roy et al.,
2003 [41] demonstrated adequate osseointegration in rabbit calvaria defects with poly
(L-lactic acid-co-glycolic acid) and β-TCP scaffold in pores with a mean diameter between
125 and 150 µm. Karageorgiou and Kaplan, 2005 [21] reported that pores > 300 µm are rec-
ommended as they promote the adequate formation of new bone and capillaries. However,
for Murphy and O’Brien, 2010 [42], the ideal pore size for bone formation is between 85
and 120 µm.

Figure 3 shows SEM micrographs of adherent cells on the β-TCP and β-TCP/S53P4
scaffolds’ surfaces in Figure 3a,b and direct fluorescence of cells in Figure 3c,d. The cells that
adhered to the scaffolds exhibited elongated morphology, evidencing the interaction with
scaffolds independent of material. In both fluorescence figures, cell nuclei are shown in
blue, stained by DAPI, while cytoskeletons are shown in green, stained by Alexa Fluor 488.

The cell viability of MG63 cells in β-TCP and β-TCP/S53P4 scaffolds was measured
by MTT test. Figure 4a shows that the β-TCP/S53P4 scaffolds did not induce a toxic
effect on the MG63 osteoblast cell line compared to β-TCP independently of the period.
An increase in cell viability was observed in the group incorporated with bioactive glass.
At 3 days, the viability was 139%, and, at 7 days, it was 112% but without a significant
difference when compared to β-TCP (p > 0.05). Tao et al., 2020 [43] demonstrated that
scaffolds constituted of calcium phosphate did not exhibit cell toxicity. In this research,
after the manufacture of β-TCP scaffolds, bioglass was incorporated into the scaffolds via
immersion in a sol–gel solution. There is not yet a consensus in the literature regarding
the mechanism of dissociation of bioglass ions in a conditioned medium. It is described
that, on the surface of the bioglass, the microenvironment is transformed through the
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liberation of ions that cause an increase in pH in the culture medium, which, according to
the authors, can be harmful to cells [44]. In this study, bioglass incorporation did not change
cell viability, suggesting the absence of cytotoxicity on osteoblasts. Previous results support
that structures functionalized with Ca2+ ions promote the adhesion, proliferation, and
differentiation of MG63 cells [45]. Bioactive glass S53P4 is composed of ions that provide
beneficial biological properties that stimulate osteogenesis [16]. Waselau et al., 2012 [18]
analyzed the cell proliferation of human adipose stem cells at periods of 1, 7, and 14 days,
measuring the amount of DNA in the samples. They observed a higher cell proliferation
rate in S53P4 bioglass granules compared to β-TCP.
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Figure 3. Cell morphology: SEM micrographs of cells adhered to the surface (540×magnifications).
(a) The yellow arrow points to a cell on the surface of the β-TCP scaffold. The cell presents a smooth
surface, and the cytoplasmic boundaries show the formation of processes (pseudopodia). (b) The
yellow arrow points to a cell on the surface of the β-TCP/S53P4 scaffold. The cell adhered to the
entrance of a pore and sends out web-like projections. (c) Direct fluorescence of cells adhered to
the surface of β-TCP scaffolds, and (d) β-TCP/S53P4 scaffold showing adherent cells with a stellate
polygonal morphology and multidirectional spreading.
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Figure 4. Graph of the mean (± standard deviation) of values obtained in the (a) cell viability of
β-TCP and β-TCP/S53P4 scaffolds after 3 and 7 days (p > 0.05). (b) Total protein test (PT) and (c) ALP
graph showing alkaline phosphatase activity at 7 and 14 days of cell culture. Different letters indicate
statistical differences (p < 0.05).

The incorporation of S53P4 into β-TCP scaffolds had a favorable impact on cell cultures,
improved cell viability, increased the total protein content, and did not induce a reduction in
alkaline phosphatase activity. ALP is an essential marker in osteoblast differentiation [46,47].
The phosphatase concentration increases as osteoblast differentiation occurs, resulting
in bone matrix formation and its calcification [48]. Figure 4b shows that β-TCP/S53P4
scaffolds expressed higher total protein production compared to β-TCP scaffolds in both
periods but with a statistical difference at 7 days (p < 0.05).
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It appears that, once the difference in cell viability between the two groups decays
with time (illustrated by the MTT assay values at 3 and 7 days), the difference in total
protein content between these groups also decays.

Contact with bioactive glass scaffolds for longer periods induces greater differentiation
in bone cells (reflected by the increasing value of alkaline phosphatase activity levels at
14 days when compared to 7 days). Cells committed to differentiation have less proliferative
activity. The protein-synthesizing activity, exhibited by the total intracellular protein content
of the osteoblasts, could reflect the proliferation ability of the osteoblasts to some extent [49],
justifying the absence of significant difference, at 14 days between the two groups, in the
protein levels.

The results of the ALP assay (Figure 4c) show no significant difference (p > 0.05)
between β-TCP and β-TCP/S53P4 scaffolds regardless of the period of 7 or 14 days of
culture. There was an increase in the expression of total protein content and ALP activity
because of culture time. These results are similar to those described by Pandey et al.,
2013 [50], in which ceramic materials, based on zirconia and alumina, were exposed to
MG63 cells during 8 and 16 days of culture. Zhang et al., 2003 [51] also observed higher
ALP activity in the later cell culture period in the group containing calcium phosphate
glass in chitosan composite scaffolds.

The formation of mineralized nodules was observed in both scaffolds. Figure 5a,b
illustrates the formation of mineralization nodules after 14 days of cell culture. In Figure 5b,
a larger mineralization nodule is observed in the β-TCP/S53P4 scaffold when compared to
the β-TCP, suggesting that the incorporation of bioactive glass S53P4 to β-TCP scaffolds
may favor the mineralization of the matrix produced by MG63 cells. Previous studies
have shown increased mineralization in bioglass materials, such as bioglass scaffolds
containing PCL-based graphene nanopowder [52]. Gong et al., 2017 [53] demonstrated
greater formation of mineralization nodules by MG63 cells cultivated in 58S nanometric
bioglass when compared to 45S5. Paramita et al., 2021 [54] reported the formation of
mineralization nodules by rats’ mesenchymal stem cells in contact with nano-bioglass
ceramics with zinc (Zn–nBGC), cultivated with and without the osteogenic medium.
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Figure 6 summarizes the molecular results. Cells cultivated in contact with β-TCP and
β-TCP/S53P4 scaffolds presented no significant differences (p > 0.05) in the expression of
M-CSF, BGLAP, OSP, PGE2, and RUNX2 genes.
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Figure 6. M-CSF, Osp, Bglap, Osn, Tgf- β1, Runx2, Col-1, PgE2, and Itg β 1 expression at day 7. Values
are normalized by the β-Actin housekeeping gene. The Student’s t-test demonstrated differences in
the expression levels of Col-1 and Itg β1. P-values are observed in the figure. β-TCP promoted lower
expression of collagen I and higher expression of integrin β1 than β-TPC/S53P4 scaffolds. Different
letters indicate statistical differences (p < 0.05).

M-CSF is a cytokine that regulates the proliferation and differentiation of osteoclast,
monocyte, and macrophage precursors [55,56] and also acts as an anti-inflammatory and im-
munosuppressive agent for implantable biomaterials [47]. The M-CSF gene was expressed
in β-TCP and β-TCP/S53P4 scaffolds without significant difference (p > 0.05). Regard-
ing non-collagenous proteins, Osp is a multifunctional adhesive glycoprotein containing
arginine–glycine–aspartate acid (RGD), which acts as an integrin ligand [57]. Furthermore,
it is an adhesion molecule, which can bind to multiple cell surface receptors involved in
cell–cell and cell–matrix interactions [58]. Bglap is synthesized only by osteoblasts; it is the
most abundant non-collagen protein in the bone extracellular matrix that binds to calcium
ions. Increased Bglap expression is related to osteoblast differentiation; it is a late marker
of mineralization [59,60]. Osn is a protein expressed in mineralized and non-mineralized
tissue, secreted by osteoblasts during bone formation. It is also responsible for cellular
interactions and cell binding to calcium and Col-1 [61] and can induce angiogenesis and
neovascularization [62]. Although without significant difference (p > 0.05), β-TCP/S53P4
scaffold induced greater expression of the Osn gene than the β-TCP scaffold. Additionally,
the growth factors of Tgf-β can regulate Osn [63]. Our results demonstrate the same pat-
tern of Osn and Tgf-β1 expression on scaffolds. Although without significant difference
(p > 0.05), the β-TCP/S53P4 scaffold induced greater expression of Tgf-β1 genes than the
β-TCP scaffold.

Runx2 is a transcription factor expressed by osteoblasts that is fundamental in os-
teoblast differentiation [64]. It is a very common marker in osteoblast differentiation
protocols; it is expressed during the initial phase by pre-osteoblasts of the cell cycle until the
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beginning of matrix maturation [65]. Ke et al., 2019 [66] analyzed, in vitro, the expression
of the Runx2 gene in a pre-osteoblast cell line in contact with pure β-TCP disc and β-TCP
associated with strontium oxide, silica, magnesia, and zinc oxide. They observed Runx2
upregulation in the β-TCP scaffold on the third day, and, on the ninth day, its downregu-
lation occurred. Thus, they concluded that the downregulation of Runx2 demonstrated
its inhibitory role at the end of the osteoblastic differentiation stage. In this research, the
evaluation was at 7 days and the Runx2 gene presented higher mean expression in scaffolds
containing bioactive bioglass but without a significant difference between scaffolds.

Col-1 is the most abundant protein in the bone matrix, and its main function is struc-
tural [67]. It has been shown that the Osterix gene (a Runx2 modulate gene) can upregulate
Col1a1 expression [68]. Initially, in bone formation, osteoblasts produce osteoid matrix
through collagen deposition, and, during the final stage, the rate of collagen synthesis
decreases [69]. In this study, there was higher expression of Col-1 in β-TCP/S53P4 when
compared to the β-TCP scaffold. This result suggests the positive influence of β-TCP/S53P4
in osteoblastic activity due to the higher expression of Col-1.

Prostaglandins are multifunctional regulators of bone resorption and formation re-
lated to skeletal metabolism, bone inflammation, and consolidation. They are abundantly
expressed in bone tissue because of COX-2 stimulation [70]. In this study, the PgE2 was
more highly expressed in the β-TCP group when compared with β-TCP/S53P4 scaffolds
but without significant difference (p > 0.05).

Itg β1 is a cell surface molecule involved in many different biological processes:
migration, growth, differentiation, and apoptosis [71]. Itg β1 is essential for osteoclast
bone resorption and osteoblast function [72]. Itg β1 expression was upregulated in cells in
contact with β-TCP scaffolds (p < 0.05).

According to the results (Figure 7), bioactive glass S53P4 incorporated into β-TCP
scaffolds had an inhibitory effect on all tested pathogens. After 48 h of incubation, there
was a significant reduction in C. albicans and P. aeruginosa metabolic activity in contact with
the β-TCP/S53P4 scaffold when compared to the other groups (p < 0.05) (Figure 7a), the
results from the β-TCP scaffold also being lower than (p > 0.05) the control (Figure 7a).

The β-TCP/S53P4 scaffold demonstrated antimicrobial activity against the tested
strain of S. aureus, with a significant difference (p < 0.05) between the β-TCP scaffolds and
the control group (Figure 7c).

The antimicrobial effect of bioactive glass S53P4 occurs due to the increase in pH, cre-
ating an alkaline environment through the release of ions from the bioglass, simultaneously
increasing the osmotic pressure and causing damage to the bacterial wall [13], and then the
effectiveness of the treatment does not depend on combinations with antibiotics [17,73]. The
evaluation of the antimicrobial activity of bioactive glass S53P4 granules against different
microorganisms was recently demonstrated [74] in bioglass granules (500–800 µm) and
powder (<45 µm). An isothermal microcalorimetry test and CFU were performed to test
the antimicrobial effect against S. aureus, S. epidermidis, Enterococcus faecalis, Escherichia coli,
and C. albicans. Bioactive glass S53P4 presented an inhibitory effect on all the pathogens
tested [74].

Grønseth et al., 2020 [75] also demonstrated the antimicrobial effect on S. aureus of
S53P4 granules (<45 µm) in direct contact with the bacterial biofilm. Kirchhoff et al.,
2020 [76] observed, through SEM, a change in the morphology of the bacterial biofilm of
P. aeruginosa, suggesting that this change was a result of the action of the bioglass, which
induced a reduction in the density of the extracellular matrix. All these previous studies
are in accordance with the results of the present study since they also demonstrated the
antimicrobial activity of bioactive glass S53P4.
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This work evaluated the bone neoformation in contact with experimental scaffolds
implanted in bone defects in rabbit tibias. There was no tissue infection and no clinical
reaction after the surgical implantation of scaffolds in experimental animals. New bone
formation was demonstrated by bone trabeculae in the bone defect regardless of the filling
material (Figure 8). The bone repair was observed around and inside the pores present in
the β-TCP and β-TCP/S53P4 scaffolds (Figure 8a,b). In Figure 8a, in the internal region
of the β-TCP scaffold, the osteoid matrix deposit and areas containing scaffold residues
were observed. Likewise, in the β-TCP/S53P4 scaffold in Figure 8b, in addition to these
aspects, many bone trabeculae were observed. Figure 8a′,b′) shows the direct contact of
the scaffolds with the newly formed bone. It is possible to observe close contact between
the spaces previously occupied by the scaffold that was degraded and the cells. Inside the
newly formed bone trabeculae, there are osteocytes within the lacunae, and osteoblasts are
found on the bone surface. Gunn et al., 2013 [77] also identified the formation of trabeculae
bone and S53P4 bioglass granule residues within 3 weeks after implantation in rabbits.
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The results of the histomorphometric analysis are shown in Figure 9. At 21 days, the
β-TCP/S53P4 scaffolds induced greater bone formation in the defect area, presenting a
significant difference (p < 0.05) when compared to β-TCP. Previous studies have proven
the osteoconductive properties of this bioglass [78,79].
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Signs of bone remodeling in defects filled with β-TCP scaffolds were observed in this
study and agree with previous studies [7,8]. Recently, Titsinides et al., 2020 [8] compared
several grafts, including β-TCP, derived from human bone, and a bovine xenograft, that
were grafted into porcine calvaria. Bone formation was more evident in β-TCP at both 8
and 12 weeks by histomorphometric analysis. However, the results were more relevant at
12 weeks during bone maturation and consolidation.

4. Conclusions

The incorporation of sol–gel-produced bioactive glass S53P4 into β-TCP scaffolds
promoted significant changes in the morphology and crystalline phases of β-TCP scaffolds.
It induced the partial transformation of the β-TCP phase into α-TCP and the crystallization
of highly bioactive phases as calcium and sodium–calcium silicates. β-TCP/S53P4 scaffolds
did not impair human osteoblasts metabolism or viability; instead, they induced osteogenic
markers expression and decreased metabolic activity of P. aeruginosa, S. aureus, and C.
albicans. The β-TCP/S53P4 scaffold promoted greater bone neoformation after implantation.
Therefore, the β-TCP/S53P4 scaffold proved to be a promising biomaterial for application
in the treatment of bone defects and infections.
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