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Abstract: Tracking vital signs accurately is critical for triaging a patient and ensuring timely ther-
apeutic intervention. The patient’s status is often clouded by compensatory mechanisms that can
mask injury severity. The compensatory reserve measurement (CRM) is a triaging tool derived
from an arterial waveform that has been shown to allow for earlier detection of hemorrhagic shock.
However, the deep-learning artificial neural networks developed for its estimation do not explain
how specific arterial waveform elements lead to predicting CRM due to the large number of param-
eters needed to tune these models. Alternatively, we investigate how classical machine-learning
models driven by specific features extracted from the arterial waveform can be used to estimate
CRM. More than 50 features were extracted from human arterial blood pressure data sets collected
during simulated hypovolemic shock resulting from exposure to progressive levels of lower body
negative pressure. A bagged decision tree design using the ten most significant features was selected
as optimal for CRM estimation. This resulted in an average root mean squared error in all test data of
0.171, similar to the error for a deep-learning CRM algorithm at 0.159. By separating the dataset into
sub-groups based on the severity of simulated hypovolemic shock withstood, large subject variability
was observed, and the key features identified for these sub-groups differed. This methodology
could allow for the identification of unique features and machine-learning models to differentiate
individuals with good compensatory mechanisms against hypovolemia from those that might be
poor compensators, leading to improved triage of trauma patients and ultimately enhancing military
and emergency medicine.

Keywords: compensatory mechanisms; machine learning; feature extraction; signal processing;
personalized medicine; lower body negative pressure

1. Introduction

Monitoring vital signs, often via means of physiological sensors, is critical throughout
patient care, but there remain shortcomings with triage decision support. Accurate patient
status assessment can only begin after sensor placement, which for invasive line placement
can preclude data collection in the pre-hospital setting. This challenge extends particularly
to military settings, where remote, austere environments with less skilled medical personnel
can further compromise efficacious sensor placement [1,2]. An ongoing research and
development goal is to develop wearable healthcare devices capable of improving these
shortcomings by allowing watches, adhesive e-tattoos, or ingestible sensors to record data
at the point of injury and continue through higher echelons of care [3–5].

Another shortcoming of current physiological monitors is the inability to provide the
caregiver with the most complete picture of a patient’s clinical status which, in turn, can
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lead to inadequate, inappropriate, or ineffective medical intervention. This problem can
extend to wearable healthcare devices as some physiological parameters can be influenced
by fear or pain, as well as the high variability of other factors, such as degrees of injury
severity and choice of interventions. The complexity of physiology of a trauma patient
is further complicated by the high inter- and intra-patient variability with compensatory
mechanisms that can mask shock symptoms until life-saving interventions are less effec-
tive [6]. Physiological compensation mechanisms protect oxygen delivery to vital organs,
primarily by redistributing blood flow to the brain and heart via sympathetic vasocon-
striction and increased extraction of oxygen from blood [7]. To address the development
of monitoring capabilities for accurate assessment of the complex nature of physiological
compensation, recent efforts have focused on the application of artificial intelligence (AI)
or machine-learning (ML) algorithms to better interpret sensor data. This has been demon-
strated for estimating core body temperature [8], blood pressure [9–12], and compensatory
reserve [6,13,14]. While these methods allow for tracking and estimating metrics and values
that are otherwise not possible from raw data streams, oftentimes decisions and methods
employed specifically via AI models cannot be easily explained due to the large number
of parameters (sometimes millions) that are required by these algorithms [15,16]. This
is a critical challenge from a regulatory perspective but also for medical adoption of the
technology, as recent studies have shown that explainable AI models can improve trust and
reliance on AI by medical personnel [17].

In an effort to avoid the creation of a “black box” AI algorithm, we assessed extracting
measurable features of arterial waveforms to calculate a triaging metric known as the
Compensatory Reserve Measurement (CRM), which aims to represent the biophysics that
underly cardiac and peripheral vascular mechanisms of compensation for clinical condi-
tions of central hypovolemia. Signal processing with the extraction of specific waveform
characteristics has been used to identify individual parameters, such as traditional systolic
and diastolic pressure, as well as millions of complex combinatorial features [18]. The fea-
ture extraction approach used in this present study allows for a more explainable algorithm,
as the key waveform features that are responsible for tracking CRM can be specifically
identified. Therefore, through extracting waveform features from arterial waveform data
sets, we hypothesized that the compensatory reserve measurement can be tracked via a
classical machine-learning model just as well as more complex “black box” AI models.
Furthermore, feature extraction methods have the potential to reveal sub-populations as
determined by heterogeneity in the identified waveform features needed to predict CRM.

1.1. Overview of Feature Extraction

Feature extraction is the process of identifying specific repeated characteristics or
patterns that are observed in a signal. Features can be absolute magnitudes, relative time,
or percentage differences between features, algebraic combinations of multiple features,
as well as many other approaches. Extracted features can lessen the data input into an
algorithm as a single feature can represent thousands of raw waveform data points of the
original signal [19]. These techniques have been used extensively to develop machine-
learning algorithms capable of analyzing a variety of biomedical signals. For example, a
previous study used wavelet-based feature extraction methods in developing algorithms
that can differentiate between a subject’s “resting” and “thinking” status from electroen-
cephalography signals with 98% accuracy [20]. In another study, researchers extracted
3022 individual features from arterial waveform data and employed combinatory tech-
niques to produce more than 2 million features to successfully develop an ML model for
detecting hypotension during intensive care and surgical procedures [18]. Finally, a previ-
ous study developed linear regression models using nine features extracted from arterial
waveform data to estimate CRM. In that study, all of these features were not required, as
ultimately, a single feature was able to linearly correlate to CRM [21]. However, this study
used a limited dataset of 13 human subjects exposed to low levels of lower body negative
pressure, resulting in less subject variability in the data set.
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1.2. Compensatory Reserve Measurement

The Compensatory Reserve Measurement is a triaging metric previously developed
at the US Army Institute of Surgical Research that estimates the level of physiological
decompensation in an individual experiencing hypovolemia [22]. This compensatory index
provides a value on a scale of 0 to 1 (or 0% to 100%) that reflects the overall physiological
compensation status, where 0 represents the threshold of decompensated shock. The idea
behind this measurement is to provide a capability for a clinical caregiver to predict with
sufficient time the imminent onset of overt shock in a patient who might not otherwise
show signs of hemodynamic decompensation based on standard vital signs. The CRM was
previously defined by Moulton et al. as follows [13]:

CRM = 1 − BLV
BLVHDD

, (1)

where BLV is the volume of blood a patient has lost, and BLVHDD is the volume of blood loss
required for the same patient to reach hemodynamic decompensation (HDD), i.e., to exhaust
the body’s compensatory reserve. Since neither of these volumes can be known with
certainty in real-world scenarios, mathematical algorithms have been developed instead to
estimate a CRM value from features found in the patient’s arterial waveform [13,22].

The development of these algorithms requires physiological data obtained during
hemorrhage to the point of HDD. Since experimenting on a human subject by hemorrhaging
them to HDD would be dangerous and unethical, a more practical method has been used
since the 1960s to safely simulate the experience of hemorrhaging large volumes of blood.
In this model, the lower section of the body of a healthy research subject is placed inside
a negative pressure chamber sealed around the waist. By applying increasing levels of
lower-body negative pressure (LBNP) to the subject, their blood volume is progressively
redistributed to the lower portions of the body, which results in central hypovolemia, thus
simulating the physiological effects of hemorrhage. Using this technique, the subject can be
brought to the point of hemodynamic instability safely and in a controlled fashion [23].

Using LBNP as a model for simulated blood loss, the CRM can then be estimated by
the following formula [13]:

CRM = 1 − LBNP
LBNPHDD

, (2)

where LBNP is the level of negative pressure a subject is experiencing at any given time,
and LBNPHDD is the level of negative pressure at which the same subject reaches HDD.

Algorithms developed to estimate a CRM value from LBNP data attempt to match
features found on a relevant physiological waveform, such as pulse oximetry and/or
arterial pressure, to a subject’s level of HDD [13,14]. In this technique, a reference CRM
of 1.0 is assigned to the baseline LBNP level (i.e., zero negative pressure), and a CRM of
0.0 is assigned to the LBNP level at which a subject experiences HDD. A machine-learning
model is then trained to match patterns and features found in the physiological waveform
to each LBNP level found between those two reference points. The goal is for the resulting
algorithm to be able to predict the instantaneous relative LBNP level of an individual
and thus estimate their level of HDD on a scale from 0.0 to 1.0 based on a sample of a
relevant physiological waveform, without any additional knowledge of that individual’s
physiological status.

2. Materials and Methods
2.1. Retrospective Analysis of Lower Body Negative Pressure Datasets

LBNP datasets were previously generated during human research studies performed
at the US Army Institute of Surgical Research [13]. These prior studies were approved by
the required Institutional Review Board committees and followed the guidelines of the
Declaration of Helsinki.
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Briefly, during an LBNP experimental session, the lower portion of the body of a subject
laying in the supine position was placed inside a sealed vacuum chamber. During the
protocol, negative pressure was safely and progressively applied to the subject’s lower body
from baseline pressure of 0 mmHg down to a minimum of −100 mmHg, in 9 incremental
steps that lasted 5 min each (Figure 1A). Each experiment ended when the pressure reached
the aforementioned minimum limit, or when the subject reached their own individual
LBNPHDD, at which point the chamber’s pressure was returned to baseline.
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Figure 1. (A) The Lower Body Negative Pressure (LBNP) step profile and subject distribution. A
maximum of nine negative steps were used, including the initial baseline starting pressure. Sub-
jects were removed from LBNP at hemodynamic decompensation or after the final pressure step
(B) Sample distribution (N = 218 subjects) for the LBNP pressure where hemodynamic decompensa-
tion was reached.

Throughout the LBNP experiments photoplethysmography (PPG) waveform data
sampled at 500 Hz were recorded using a Finometer PRO blood pressure monitor (Finapres
Medical Systems, Amsterdam, The Netherlands) from 218 subjects. The data were further
processed and analyzed to develop new machine-learning models to estimate CRM; these
models will be referred to as CRM-ML throughout.

2.2. Pre-Processing Datasets

De-identified data from the LBNP subjects were used for analysis in this study and
were the foundation for creating an ML algorithm for the prediction of CRM at different
hypovolemic states. Subjects reached varying final pressure levels of LBNP exposure, so
each dataset was classified by its maximum LBNP step reached prior to HDD to determine
the sample distribution (Figure 1B). Due to these varying levels of LBNP steps reached,
data were equally sampled from each LBNPHDD step to equally account for differences
between each LBNPHDD sub-group in the CRM-ML algorithm. However, due to limited
subject data in the distribution extremes, datasets for LBNPHDD at steps 2, 3, and 9 were
removed from consideration. Equal number of randomly sampled 4, 5, 6, 7, and 8 LBNPHDD
step subjects were then used. While a total of 218 subjects were available in the dataset,
step group 4 had only 12 subjects available, limiting the number of subjects for all other
steps to maintain an 8:4 training-to-blind testing ratio. Of these selected subjects, 62%
were male and 38% were female, with heights ranging between 152 and 193 cm, weights
ranging between 44 and 117 kg, and ages ranging between 18 and 54 years of age. A total
of 8 subjects were selected from each LBNPHDD step group for the training of the CRM-ML
algorithm (40 total subjects), and 4 subjects for each LBNPHDD were held out for blind
testing (20 total subjects).
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2.3. Feature Extraction Methodology

Features were extracted from the arterial pressure vs. time LBNP datasets using
MATLAB (v2022b) MathWorks, Natick, MA, USA). First, the wavelength was filtered using
a finite impulse response (FIR) window lowpass filter [24]. The filtered data were then
analyzed to calculate the first and second derivatives, which were then used to identify the
peaks and troughs of the waveform that could assist in locating important landmarks in the
signal (Figure 2). For simplicity, the start of the systolic phase of the waveform, or pulse foot,
was identified as point “A” and the systolic peak as point “C”. A halfway point between
“A” and “C” was identified as “B” to represent the “half-rise” [25]. Lastly, the inflection
point after the systolic peak was labeled as point “D”. Inflection points were not always
identified in some segments of the arterial waveforms. For consistency, if inflection points
were not identified, these arterial waveform segments were excluded from the analysis. In
other waveform segments, two or more inflection points were identified after the systolic
peak. In these situations, only the first inflection point was tracked for consistency.
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Figure 2. Representative arterial waveform segment from LBNP dataset with key landmarks identi-
fied. Landmarks include the pulse foot (“A”), systolic peak (“C”), half-rise between pulse foot and
systolic peak (“B”), and the post-systolic inflection point (“D”).

These points were then used to calculate additional waveform features selected from
previous research efforts by Gupta et al. [21] and Hatib et al. [18]. A total of 54 features
were extracted from each waveform as summarized in Table 1. More detailed definitions
for these features, including their equations are detailed in Supplementary Table S1. These
features were collected from each subject dataset for training an ML model and for blind
test data to later assess model performance.

Table 1. Summary of the 54 distinct features extracted from each LBNP waveform. Supplemen-
tary Table S1 contains additional descriptions for each individual feature. Features calculated by
subtracting the pressure value at the inflection point are referred to as “NODIA”.

Feature Types Description Number of Features

Individual Features
Features from the arterial waveform consist of standard

waveform measurements (such as pulse pressure [PP] and
peak-to-peak interval [PPI]).

7
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Table 1. Cont.

Feature Types Description Number of Features

Time Duration Features
Duration of certain phases of the arterial waveform (such

as time from half-rise to inflection point [HRIP] and
duration of the systolic phase [t_sys]).

6

Average Pressure Features Average pressures of different arterial waveform phases. 5

Area Under the Curve Features Area under the curve of different waveform phases. 5

Normalized Features Area features normalized by the number of samples in the
waveform and phases. 10

NODIA Features Area under the curve and normalized features subtracted
by the waveform value of the inflection point. 18

Slope Features Average slope of different phases of the arterial waveform. 3

2.4. Machine-Learning Models

The Regression Learner Toolbox in MATLAB was used for evaluating a wide range of
machine-learning models for estimating CRM. Training was performed on 40 total LBNP
subjects (n = 8 for each LBNPHDD step). For feature selection, features were ranked using
the minimal-redundancy–maximal-relevance (MRMR) criterion, which balances selection
of a feature between maximum correlation to the signal and least correlation to other
features [26]. To evaluate different ML models, Linear Regression, Fine Tree, Medium Tree,
Coarse Tree, Ensemble Bagged Trees, and Ensemble Boosted Trees models were constructed
using MATLAB’s Regression Learner Toolbox. The two ensemble models have an eight-leaf
size with 30 learners. To find the optimal feature selection, all models were trained with the
top 15, 10, 5, and 1 feature(s). Blind testing was conducted using 4 subjects, separate from
the training subjects, from each LBNP step group (20 subjects total). To identify differences
among subject subpopulations, a second approach to model training was used, in which
only data from each single LBNP step group were used to train a single CRM-ML model,
i.e., one model per step group. For these individual models, the same methods for training
the general model were used, except only the 8 subjects for that specific LBNPHDD step
group were used during training. Testing was still conducted using all the datasets.

In order to compare and down-select the optimal machine-learning model and number
of features, the training and testing root-mean-squared error (RMSE) and coefficient of
determination (R2) values were computed. It is important to note that the R2 and RMSE
values were collected from the Regression Learner Toolbox. The methodology for calcu-
lating R2 and RMSE values in this toolbox was conducted via fitting CRM predictions
vs. CRM calculated (Equation (2)) values to a perfect regression (y = x), as opposed to
the more conventional linear regression (y = mx + b). Thus, throughout, these values
obtained from the toolbox will be referred to as perfect R2 (or P-R2) and perfect RMSE (or
P-RMSE) to differentiate them from the traditional regression (R2) and RMSE values for the
two-parameter regression fit.

2.5. Deep-Learning Model

To compare the performance of the new machine-learning models developed in this
study to more complex algorithms, we estimated CRM values on the same LBNP datasets
using a deep-learning model (CRM-DL) with a one-dimensional Convolutional Neural
Network [14]. For its development, arterial waveform data sampled at 100 Hz was nor-
malized to a 0–1 range and then segmented into 20 s long samples for model regression
learning. The model then learned to perform a linear regression on each data segment to
estimate a corresponding CRM.

To evaluate the CRM-DL model, we again used the same LBNP subject datasets used
for testing the CRM-ML models (n = 4 per each LBNPHDD step group). The result of this
process was a series of CRM values sampled at 10 s intervals that spanned the full length
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of the LBNP sessions for each experimental subject. Both conventional and perfect linear
regression methods were used to calculate RMSE and R2 to evaluate the performance of
CRM-DL in predicting CRM against the calculated CRM value (Equation (2)).

The likelihood that during our evaluation of its performance the CRM-DL may have
processed instances already learned is noteworthy given that the model was originally
trained on the same LBNP datasets. This would give the CRM-DL model an unfair ad-
vantage when comparing its performance against that of our new classical ML models.
However, the exact number of records that overlap the DL training set and our evaluation,
if any, is unknown.

3. Results
3.1. Machine-Learning Model and Number of Features Selection

Different machine-learning model types were trained to predict CRM using different
numbers of extracted arterial waveform features (Table 2). The ensemble bagged trees
model performed the best, with lower P-RMSE and highest P-R2 in training, regardless of
the number of features used, while linear regression was consistently one of the lowest-
performing models for both P-RMSE and P-R2. During blind testing, the simpler decision
trees performed worse than other ML models, likely indicating an overfitting of training
data. Training performance was worsened when only a single feature was considered
by the model, but blind testing performance remained similar for most CRM-ML models.
During blind testing, the ensemble bagged tree and boosted tree ML model performed
well. In general, P-RMSE and P-R2 results showed that a higher number of features in ML
models were associated with better model performance, especially for training performance.
However, the improvement in performance between 15 and 10 features was relatively small,
so it was decided to continue testing with the ensemble bagged trees ML model using
10 features.

Table 2. Training and testing results for different classical machine-learning models trained using the
top 1, 5, 10, or 15 extracted features. Performance results are shown for perfect RMSE and R2 values
for each model. Green heat map overlay is set between the minimum and maximum value to indicate
better performance.

15 Features
Training Testing

Model P-RMSE P-R2 P-RMSE P-R2

Linear
Regression 0.17865 0.74 0.17766 0.73

Fine Tree 0.10133 0.92 0.23274 0.54
Medium Tree 0.10176 0.92 0.21663 0.6
Coarse Tree 0.10957 0.9 0.20097 0.66
Boosted Tree 0.14322 0.83 0.15966 0.78
Bagged Tree 0.07762 0.95 0.17133 0.75

10 Features
Training Testing

Model P-RMSE P-R2 P-RMSE P-R2

Linear
Regression 0.17865 0.74 0.18431 0.71

Fine Tree 0.10133 0.92 0.22312 0.58
Medium Tree 0.10306 0.91 0.20833 0.63
Coarse Tree 0.11149 0.9 0.19978 0.66
Boosted Tree 0.14582 0.83 0.16202 0.78
Bagged Tree 0.079094 0.95 0.17442 0.74
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Table 2. Cont.

5 Features
Training Testing

Model P-RMSE P-R2 P-RMSE P-R2

Linear
Regression 0.1948 0.69 0.17942 0.73

Fine Tree 0.12501 0.87 0.2225 0.58
Medium Tree 0.12229 0.88 0.20916 0.63
Coarse Tree 0.12754 0.87 0.1925 0.68
Boosted Tree 0.15704 0.8 0.16573 0.77
Bagged Tree 0.1035 0.91 0.17708 0.73

1 Feature
Training Testing

Model P-RMSE P-R2 P-RMSE P-R2

Linear
Regression 0.19957 0.68 0.18441 0.71

Fine Tree 0.20607 0.66 0.19594 0.67
Medium Tree 0.18954 0.71 0.17926 0.73
Coarse Tree 0.18142 0.73 0.16995 0.75
Boosted Tree 0.17921 0.74 0.17351 0.74
Bagged Tree 0.18796 0.71 0.1774 0.73

3.2. Effect of LBNP Final Step Reached on Model Performance

Using the 10-feature ensemble bagged-tree ML model, we examined the effect of
subjects’ LBNP performances (i.e., tolerance) on model accuracy. Representative plots
of theoretical CRM (Equation (2)) compared to the predicted CRM-ML are displayed in
Figure 3 for the different LBNPHDD step groups. Both perfect and conventional linear
regression are highlighted for each. Predictions of CRM at specific central blood volume
levels (i.e., LBNP levels) tracked the general theoretical CRM trend but demonstrated a bias
toward certain steps in the LBNP process and subgroups. In general, CRM-ML predictions
were more accurate for conventional regression approaches compared to perfect regression.
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To highlight the difference in model performance for the different subgroups, R2 and
RMSE were calculated for both regression methods for the blind testing at each step for
the all-step training model (n = 4 subjects each). The average results are summarized
in Table 3. Overall, the testing on the 6-step subgroup resulted in higher coefficients of
determination and lower root mean square errors, using both perfect and standard linear
regression methodologies, while the tests on the 4-step subgroup resulted in worse scores
on both accounts.

Table 3. Coefficients of determination and root mean squared error performance metrics using
the CRM-ML model to predict CRM for each LBNPHDD sub-group. Results are shown for perfect
regression (P-R2 and P-RMSE) and traditional linear regression (R2 and RMSE).

Step Subgroup P-R2 P-RMSE R2 RMSE

4 0.52 0.20 0.83 0.20

5 0.69 0.19 0.84 0.19

6 0.84 0.13 0.89 0.13

7 0.71 0.17 0.83 0.17

8 0.74 0.16 0.85 0.15

3.3. Differences in Features for Separate Models

To further highlight differences in subject subgroups based on pressure step at LBNPHDD,
five additional CRM-ML models were developed, each one trained on a single sub-group,
i.e., one model for each of the 4, 5, 6, 7, and 8 LBNPHDD subjects. This training approach
resulted in ML models with different extracted features being selected as “top 10”. This
is detailed in Table 4, where the top ten features, ranked using MRMR, are shown for the
different CRM-ML models. The movement of key features in ranking for each single-step
trained ML model is evident compared to the all-step CRM-ML model. Certain features,
such as HRIP, remained among the top 5 for all individual models, while others traveled
significantly, such as sys_rise_area_norm, compared to the model trained with all steps.
We postulate that features that persistently ranked among the top ten used in training the
models hold significant weight in the prediction of a CRM, while some features that only
appear at certain step models could be used as a differentiator or predictor of the level of
LBNP exposure at which an individual may decompensate.

Table 4. Summary of ten highest ranked features for an ML model trained with all data or exclusively
the 8, 7, 6, 5, or 4 final LBNP step subgroup. Superscript values for each feature indicate how
much higher (positive/green), lower (negative/red), or no change (equal sign) the specific extracted
feature’s importance in ranking shifted relative to the all-steps CRM-ML model. More information
on how each of the features was calculated is described in Supplementary Table S1.

All Steps 8 Steps 7 Steps 6 Steps 5 Steps 4 Steps

Rank Feature Feature Feature Feature Feature Feature

1 HRIP sys_rise_area_norm+52 sys_rise_area_norm+52 HRIP= sys_rise_area_norm+52 HRIP=

2 dec_area_nor SI+16 sys_rise_area_nodia+18 avg_sys_rise+35 slope_desc_sys+5 avg_dia+33

3 t_sys_rise t_sys_rise= t_sys_rise= avg_sys_rise_nodia+10 avg_sys_nodia+11 avg_sys_dec_nodia+1

4 avg_sys_dec_nodia avg_sys_dec_nodia= HRIP−3 PP+6 dec_area_nodia+2 sys_rise_area_norm+49

5 avg_dia_nodia HRIP−4 PP+5 t_sys_rise−2 HRIP−4 slope_sys+12

6 dec_area_nodia dia_area_nodia+9 dec_area_nodia= sys_area_norm+16 avg_sys_dec_nodia−2 t_sys_rise−3

7 slope_desc_sys slope_dia+1 sys_area+2 sys_dec_area+16 t_sys_rise−4 t_sys+23

8 slope_dia slope_desc_sys−1 avg_sys_dec_nodia−4 slope_dia= slope_dia= slope_desc_sys−1

9 sys_area sys_area_nodia+11 slope_sys+8 pp_area_nodia+10 PP+1 sys_area=

10 PP pp_area_nodia+9 slope_desc_sys−3 avg_sys_nodia+4 PPI+1 dec_area_nodia−4
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Each single-step trained ML model was blind tested against subjects from within its
own LBNP group as well as from other step subgroups. For example, the 4-step training
model (i.e., the ML model trained only on 4-step subjects) was blind tested on the 4-, 5-, 6-,
7-, and 8-step test data. This was repeated for all models. P-RMSE and P-R2 results were
plotted in a heat map for comparison purposes, as shown in Figure 4.
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The training model with the highest average P-R2 (0.81) and the lowest average P-
RMSE value (0.13) was the model trained on the 5-step LBNPHDD datasets. The blind
test data that had the highest average P-R2 (value range = 0.83–0.92) and the lowest
average P-RMSE (value range = 0.09 to 0.13) was the test data at step 6. In general, all the
individualized models performed better against their specific datasets at that step.

3.4. Deep-Learning Results

CRM-ML model results were compared against the CRM-DL model; the all-step
trained CRM-ML model was used for comparison as opposed to the subject-specific models.
Calculated “true” CRM values and the predictions via both the CRM-DL and the CRM-
ML models were plotted against each other to visually assess the differences in their
performances. In general, the CRM-ML model had higher accuracy for higher CRM values
than the CRM-DL model, while both reach similar values of CRM in the lower bound. The
ML model also tended to overshoot the theoretical CRM, while the DL model tended to
undershoot it. The plots in Figure 5 show representative blind testing at different steps of
both the DL and ML models.

Both the perfect regression and conventional linear regression were compared using
both R2 and RMSE metrics, as shown in Figure 6. Overall, the CRM-ML model had an aver-
age P-R2 value higher than CRM-DL (CRM-ML = 0.70 vs. CRM-DL = 0.50), but relatively
same P-RMSE values (CRM-ML = 0.171 vs. CRM-DL = 0.165). With conventional linear
regression, both the CRM-ML model and CRM-DL had similar average R2 (CRM-ML = 0.85
vs. CRM-DL = 0.88) and RMSE values (CRM-ML = 0.168 vs. CRM-DL = 0.165). Performance
differences for the different LBNPHDD steps varied with the 4-step data having the worse
P-R2 metrics and the 6-step having the strongest.
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4. Discussion

Advanced monitoring is critical for conducting accurate triage of a patient presenting
with significant hemorrhage, especially in scenarios where invasive sensor placement may
not be possible, such as in pre-hospital and military settings. To simplify regulatory hurdles
and improve medical adoption, algorithms for this purpose should be as simple as possible
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to meet the needs of emergency medical personnel. In this study, we focused on compen-
satory reserve measurement, a metric derived from arterial waveform data for accurately
tracking physiological decompensation and early detection of hemorrhagic shock. To
develop a simpler model as an alternative to the current deep-learning models employed
in CRM estimation, regression-based machine-learning models were developed using ex-
tracted features from the arterial waveform. Simpler ML methods such as this are more
explainable, as the individual waveform features critical to calculating CRM are identified
and may further understand the underlying physiological compensatory mechanisms.

Overall, the feature extraction methodology paired with classical ML models allowed
for accurately tracking CRM. This approach required extracting ten features from each
arterial waveform segment which was performed as a pre-processing setup prior to ML
model implementation. However, this feature extraction signal processing could be easily
performed during data collection with minimal computing requirements to enable real-
time reporting of CRM values. Compared to deep-learning models that require processing
millions of parameters, the CRM-ML models developed here should perform more com-
putationally efficiently, which may be critical in a resource-limited environment. Feature
extraction methodologies have been recently used by Gupta et al. to develop ML models
that estimate CRM [21]. They used a single parameter model, time from half-rise to dicrotic
notch (HRDN), which resulted in R2 values of approximately 0.67, lower than our aver-
age R2 value of 0.85. Different LBNP data sets were used by Gupta et al., with different
simulated hemorrhage magnitudes and a lower subject number of only n = 13 subjects.
The differences in data sets, reduced number of subjects, and the increase from a single
extracted feature to 10 features in CRM-ML likely account for our increased R2 performance
compared to Gupta. It is worth noting that the time from half-rise to inflection point (HRIP)
feature used in this study was the top correlative feature in the CRM-ML model and is
analogous to the top-performing feature (HRDN) identified by Gupta.

It is important to note that bagged decision tree models have advantages and disad-
vantages compared to other ML/DL approaches. The crucial advantage of bagged decision
tree models is that multiple models are bootstrapped so that not one model drives pre-
dictions, allowing for a more robust ensemble. This removes bias since there are multiple
models that can agree or disagree creating a more generalized predictive algorithm [27,28].
However, bagging multiple models into a more robust ensemble can lead to losing some
interpretability compared to a single model. This is exacerbated in training situations where
there are rare, underrepresented events that may be lost in an ensemble, generalized model
approach. However, we think this is less of a concern for a use case, such as measuring
compensatory status, which needs to be applicable to a large subject population. Another
possible disadvantage, depending on the size of the training data, is that training ensemble
bagged trees may require a high computational burden [27–29]. However, the computa-
tional time required to calculate a single prediction is much lower than that consumed for
model training and is still much less intense compared to most deep-learning models.

Next, CRM-ML performance was contrasted against the CRM-DL model for predicting
CRM [14]. Perfect and conventional regression RMSE results were very comparable between
the CRM-ML and CRM-DL models, highlighting that the simpler approach used here may
be sufficient for tracking CRM. However, larger differences were more evident between
the two models when evaluating P-R2 values (0.70 for CRM-ML vs. 0.50 for CRM-DL).
That said, the CRM-DL fit the data worse when subjects did not reach lower pressure
steps (LBNPHDD step 4 P-R2 = 0.37 vs. step 8 P-R2 = 0.56), just like CRM-ML struggled
in these same situations (LBNPHDD step 4 P-R2 = 0.52 vs. step 8 P-R2 = 0.74). Of note,
when the goodness of fit was evaluated via standard linear regression, the CRM-DL model
performed more comparable to CRM-ML (DL R2 = 0.88 vs. ML R2 = 0.85). This suggests
that the deep-learning model can be adjusted to better match calculated CRM, but it is not
predicting at a 1:1 correlation without a slope, intercept adjustment. One major limitation
of this part of this study, however, is that the CRM-DL model was trained previously [14]
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using all of the LBNP step data, meaning the test data used in this study was not completely
blind to the CRM-DL algorithm.

An unexpected trend was detected based on the maximum hemodynamic decompen-
sation threshold reached by the subject, presented as the final LBNP pressure step reached.
The generalized CRM-ML models struggled to perform accurately across each LBNP step
sub-population, so models were trained for each individual LBNP step sub-population.
In doing so, the top 10 features selected for each CRM-ML model differed greatly across
the individual LBNP step models. While features such as HRIP were prevalent in the
top features for all CRM-ML LBNPHDD models, others were specific to certain models, as
highlighted in Table 3. Subpopulations have been previously reported from these LBNP
datasets, referred to as high- and low-tolerant subjects based on exceeding a certain LBNP
exposure level [7,30]. We chose to not focus on these two sub-groups but instead break the
data into more granular subsets to highlight potential differences across subgroups. This
may suggest there are more subgroups in these datasets. Furthermore, the variations in
features extracted via the individualized models may identify physiologically pertinent
differences that can be used to understand variability in the patient’s compensatory reserve
capacity. For instance, if these different CRM-ML models are utilized to predict CRM in
real time, tracking which model best fits the patient may allow for the prediction of the
compensatory capacity before hemodynamic decompensation is reached. More analysis
and follow-up studies are needed for further teasing out these differences, including a more
thorough understanding of the underlying physiology behind the extracted features.

The next steps for this work will be three-fold. First, the existing CRM-ML models
will be used with additional data sets for measuring CRM compared to the CRM-DL
model to further assess model performance. This includes datasets for patients undergoing
surgery and animal data with deeper levels of hemorrhagic shock to evaluate performance
outside the scope of current CRM-DL training methodologies. Second, the CRM-ML model
will be further improved by evaluating additional extracted features, combinations of
features, and trends in features as inputs to the model. This may reveal additional, arterial
waveform characteristics distinctive of each subject population, and subgroups, and/or
further improve model accuracy. Lastly, this feature extraction methodology will be applied
to other medical applications, including tracking CRM with novel wearable sensors, and
identifying other metrics for tracking shock after decompensation and as inputs for guiding
hemorrhage fluid resuscitation.

5. Conclusions

In conclusion, algorithms for advanced monitoring have the potential to improve
medical care at the point of injury by enabling medical providers to have more information
to diagnose and provide treatment when it is more effective. Here, we focused on feature
extraction methodologies for tracking CRM using 10 waveform features as opposed to
millions of tuned AI model parameters. Overall, model performance was similar to a
more complex deep-learning model, and by tracking extracted features, differences were
identified in subgroups in the data sets. Overall, this machine-learning approach can create
a more explainable model, a critical step towards the adoption of advanced monitoring
technologies in emergency and military medicine.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bioengineering10050612/s1, Supplementary Table S1: Summary
of all 54 extracted features with their abbreviated name and description of their calculation. Features
calculations were based on [18,21].

https://www.mdpi.com/article/10.3390/bioengineering10050612/s1
https://www.mdpi.com/article/10.3390/bioengineering10050612/s1
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