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Abstract: Neurodegenerative diseases (NDDs), which are chronic and progressive diseases, are a
growing health concern. Among the therapeutic methods, stem-cell-based therapy is an attractive
approach to NDD treatment owing to stem cells’ characteristics such as their angiogenic ability,
anti-inflammatory, paracrine, and anti-apoptotic effects, and homing ability to the damaged brain
region. Human bone-marrow-derived mesenchymal stem cells (hBM-MSCs) are attractive NDD
therapeutic agents owing to their widespread availability, easy attainability and in vitro manipulation
and the lack of ethical issues. Ex vivo hBM-MSC expansion before transplantation is essential because
of the low cell numbers in bone marrow aspirates. However, hBM-MSC quality decreases over time
after detachment from culture dishes, and the ability of hBM-MSCs to differentiate after detachment
from culture dishes remains poorly understood. Conventional analysis of hBM-MSCs characteristics
before transplantation into the brain has several limitations. However, omics analyses provide more
comprehensive molecular profiling of multifactorial biological systems. Omics and machine learning
approaches can handle big data and provide more detailed characterization of hBM-MSCs. Here, we
provide a brief review on the application of hBM-MSCs in the treatment of NDDs and an overview
of integrated omics analysis of the quality and differentiation ability of hBM-MSCs detached from
culture dishes for successful stem cell therapy.

Keywords: neurodegenerative diseases; stem cell therapy; human bone-marrow-derived mesenchymal
stem cells; integrated omics; stemness

1. Introduction

Neurodegenerative diseases (NDDs) are caused by the progressive degeneration of
the structure and function of neurons and glial cells in the central and peripheral nervous
systems [1,2]. NDDs can be classified according to their causes and symptoms [3]. Alzheimer’s
disease (AD) and Parkinson’s disease (PD) are among the most common neurodegenerative
disorders. AD shows widespread degeneration of several types of neurons, whereas PD
shows selective loss of a specific cell population, such as dopaminergic neurons. Amyotrophic
lateral sclerosis (ALS), commonly called Lou Gehrig’s disease, shows selective degeneration
of the upper and lower motor neurons [4] and has been associated with genetic mutations in
the enzyme Cu/Zn superoxide dismutase 1 (SOD1) [5,6]. Huntington’s disease (HD) is a
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rare genetic disorder caused by a mutation in the huntingtin gene that causes movement
abnormalities and cognitive impairment [7]. As the human lifespan increases, the social
burden of NDDs also increases [8]. Due to the incurable and debilitating nature of these
conditions, there are several limitations in treating NDDs with conventional methods.
Therefore, there is a need for new treatment approaches.

Transplanted stem cells exert paracrine effects on damaged neuronal cells and replace
lost neurons or glial cells [9,10]. Thus, stem-cell-based approaches are potential therapies in
myocardial infarction [11], ischemic diseases [12], spinal cord injury [13], and NDDs, such
as AD (NCT01547689 and NCT02833792) [4], PD [14], and multiple system atrophy [15].
Furthermore, HD could be treated with genetically engineered mesenchymal stem cells
(MSCs) overexpressing brain-derived neurotrophic factor (BDNF) (NCT01937923) [16]. ALS
is another NDD that could be treated using stem cells [4]. There are several MSC types, such
as adipose-derived MSCs, umbilical-cord-derived MSCs, tonsil-derived MSCs [17], dental-
pulp-derived MSCs (DPSCs) [18], and bone-marrow-derived MSCs (BM-MSCs). Among
them, BM-MSCs, first identified in guinea pig bone marrow in 1970 [19], are attractive
therapeutic agents because of their widespread availability, easy attainability, and in vitro
manipulation and the absence of ethical concerns [20–22]. For these reasons, BM-MSCs
are extensively used in clinical applications and therefore the biological characteristics
and clinical effects of BM-MSCs are far more well established than MSCs obtained from
other sources [23]. In addition, the expression level of HLA class I or II is low in BM-
MSCs, avoiding activation of allogenic lymphocytes [24], and BM-MSCs are safe from
tumorigenicity after transplantation than other stem cells, including induced pluripotent stem
cells (iPSCs) and neural stem cells [25,26]. BM-MSCs exhibit homing to injured sites [27–30],
angiogenic ability [31,32], anti-inflammatory effects [33,34], differentiation capability [35,36],
anti-apoptotic properties [37,38], and trophic factor secretion [39–42]. Furthermore, BM-MSCs
have been engineered to express tropic factors, such as BDNF [33,41,43], glial-cell-line-derived
neurotrophic factor (GDNF) [44–46], and nerve growth factor (NGF) [47,48] to improve
therapeutic paracrine effects for NDD treatment. Thus, BM-MSC-based cell therapy is a
promising approach for treating NDDs [49,50].

Because MSCs can accelerate tissue regeneration, they are excellent candidates for
tissue engineering. Vacanti and Langer define tissue engineering as an interdisciplinary
field in which engineering and biological sciences are applied together to develop biological
substitutes that can restore, maintain, or enhance tissue function [51]. Tissue engineering
facilitates autologous MSCs’ transplantation by seeding the patient’s cells onto a biodegrad-
able scaffold that forms a specific tissue that can then be used to repair injuries [52]. Despite
all this, MSC-based tissue engineering faces some challenges, such as the low survival
rates of MSCs and the uncertainty of MSC differentiation after infusion. To address these
shortcomings, biomaterials are used together with MSCs to maintain their viability, serve
as a substrate for cell adhesion, induce differentiation into specific target cells, and as a
mechanical tool for tissue regeneration. Biomaterials have demonstrated excellent biocom-
patibility, provide a suitable cellular microenvironment for MSCs, and are effective and
easy to administer. As biomaterials are diverse in their physical, chemical, mechanical,
and biological properties, they can contribute to tissue regeneration in different types of
injuries [53]. Although several biomaterials have been developed, hydrogels, nanofibers,
carbon-based nanomaterials, and cell-free scaffolds have emerged as the frontrunners. For
example, the 3D structure of hydrogels supports the proliferation of cells while acting as
a barrier to harmful factors [54]. Yan et al. investigated collagen–chitosan scaffolds with
BM-MSCs as a therapeutic strategy for traumatic brain injury. Collagen scaffolds with
human MSCs have been shown to improve spatial learning and sensorimotor functions,
while chitosan serves as a neuroprotector. They reported that these scaffolds exhibited
low immunogenicity, good biocompatibility, and therapeutic effects such as neurological,
behavioural, and cognitive recovery [55].

In clinical applications, the quality of hBM-MSCs should be analyzed after cell de-
tachment from the culture dish [12,15,56], because cell quality is an essential factor for
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therapeutic effects. However, there are limitations to the traditional methods used to evalu-
ate the quality and freshness of cells prior to transplantation of hBM-MSCs into humans,
such as trypan blue staining or fluorescence-activated cell sorting (FACS) [56,57]. Regard-
less, it is possible to increase the treatment effect by determining the exact cell condition
using various big data analyses, including omics and bioinformatic analyses of the quality
and differentiation ability of hBM-MSCs over time after cell detachment from the culture
dish. In this review, the transcriptome and metabolome, analyzed using microarray and
gas chromatography-mass spectrometry (GC-MS), respectively, were integrated to evaluate
the condition of hBM-MSCs. Integrated omics analysis of hBM-MSCs showed increases in
reactive oxygen species (ROS) production, lipid peroxidation, and cell damage, leading
to the loss of cell quality and differentiation ability as the phosphate-buffered saline (PBS)
storage time increased (Figure 1).
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Figure 1. Effect of storage time on cell quality and differentiation potential. Before transplantation,
human bone-marrow-derived mesenchymal stem cells (hBM-MSCs), which were expanded ex vivo
and detached from the culture dish, were analyzed to evaluate their quality and differentiation
potential. The transcriptome [58] and metabolome [57] were analyzed using microarray and gas
chromatography-mass spectrometry (GC-MS), respectively. By integrating these datasets with in
silico prediction, it was found that as the quality and differentiation potential of hBM-MSCs decreased
and ROS production, lipid peroxidation, and cell damage increased in phosphate-buffered saline
(PBS) over time.

Omics-based approaches are actively applied and developed to reflect diverse and
complementary biological phenotypes and elucidate precise molecular mechanisms as the
availability of high-throughput data technologies increases in the biological and medical
fields [59]. These have been beneficial in identifying biomarkers for the diagnosis of
various diseases. Nevertheless, most omics analyses have been limited to a single dataset,
which is accompanied by difficulty in reflecting the actual phenotype [60]. In addition,
the datasets used for computational analysis have advanced from structured one to big



Bioengineering 2023, 10, 621 4 of 21

data with various unstructured and semi-structured characteristics, and the relationship
between omics data is expected to become more complex [61]. Artificial intelligence (AI) is
increasingly essential in big data mining, including the biological and medical fields [62,63].
Among AI, machine learning and deep learning approaches exert tremendous power in
processing and modelling vast and diverse omics data [64]. Integrated omics analysis aims
to utilize big data, machine learning, and systematic algorithms to obtain patterns between
data and make more accurate predictions [65,66]. Convergence with computational science
is necessary for this type of analysis [67].

The current review has two sections. In the first section, we provide an overview of
studies on the application of hBM-MSCs to the treatment of various NDDs, and in the
second section, we provide an integrated omics analysis of the quality and differentiation
ability of hBM-MSCs according to PBS storage time for successful stem cell therapy.

2. Application of hBM-MSCs for the Treatment of Various
Neurodegenerative Diseases

Neurodegenerative diseases are characterized by the selective dysfunction and pro-
gressive loss of neurons, glial cells, and neural networks in the brain and spinal cord.
Synaptic dysfunction, neuronal loss, proteasome dysfunction, and the aggregation of mis-
folded proteins are common NDD features. NDDs affect multiple facets of function in
humans, thereby limiting their ability to perform even the most basic tasks [4,68,69].

Stem cells are crucial for the development, growth, and repair of various tissues
and organs. In addition, stem cells have provided breakthroughs across all fields of
research and medicine owing to their multipotency and self-renewal properties. MSCs have
demonstrated numerous neuroprotective effects such as decreased apoptosis, reduced ROS
generation, and the promotion of neuronal growth. In particular, hBM-MSC transplantation
has been shown to improve clinical outcomes, decrease cerebral atrophy, and enhance
patient performance [4,70,71]. In this section, we briefly review the neuroprotective effects
of clinically applied hBM-MSCs on some common NDDs.

2.1. AD

AD is an NDD associated with a progressive decline in cognitive and memory func-
tions. The pathological features of AD include the aggregation of amyloid beta peptides
(Aβ), forming amyloid plaques, intracellular neurofibrillary tangles, and hyperphospho-
rylated tau and leading to neuronal death. Continual build-up of Aβ activates microglia,
thus accelerating neuronal loss, cognitive decline, tau pathology, and the secretion of
proinflammatory cytokines. These factors induce synaptic deficits in the hippocampus,
leading to cognitive impairment and memory decline [50,68,71,72]. Conventional AD
treatments consist of two types of pharmacological therapies. The first includes the use
of cholinesterase inhibitors to relieve physical symptoms by increasing the levels of the
neurotransmitter acetylcholine. The second type of therapy uses memantine, a drug that
improves symptoms by inhibiting N-methyl-D-aspartate (NMDA) receptors. Although
several drugs and natural compounds are available for the treatment of AD, drugs that can
prevent or delay the progression of AD are yet to be discovered [72].

Transplanted hBM-MSCs can differentiate into neurons, produce neurotrophic factors
such as BDNF and NGF, and inhibit Aβ- and tau-related cell death [71]. Numerous studies
have explored the neuroprotective effects of BM-MSCs in AD mouse models. Lee et al.
achieved a significant reduction in oxidative stress, improvement in cognitive function, and
mitigation of Aβ-induced neuronal injury both in vitro and in vivo after co-culturing BM-
MSCs with hippocampal neurons stimulated by Aβ [73]. In addition, hMB-MSC-derived
vesicles alleviated cognitive decline, reduced the number of intracellular plaques, decreased
chronic inflammation, and delayed AD pathogenesis in a preclinical mouse model [74].
BM-MSC-derived exosomes have also been shown to ameliorate cognitive damage by
secreting miRNAs capable of enhancing neuronal plasticity, promoting cell survival and
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synaptogenesis, and suppressing inflammation [75]. Collectively, these studies highlight
the multiple advantages of BM-MSCs as a therapeutic agent for AD.

2.2. PD

PD is the most common synucleinopathy characterized by the loss of dopaminergic
neurons in the substantia nigra pars compacta (SNpc) and the accumulation of α-synuclein
in Lewy bodies, causing tremors, bradykinesia, and cognitive dysfunction [76]. Dopamine
(DA) is a neurotransmitter that transmits information between the SNpc and other parts of
the brain, thereby controlling the body’s voluntary movements. Mitochondrial dysfunction,
excessive ROS generation, and impairment of the ubiquitin-proteasome system are involved
in DA neuronal degeneration [77]. A typical therapy for PD involves treatment with the DA
precursor L-3,4-dihydroxyphenylalanine (L-Dopa), which can produce adverse effects, such
as non-responsiveness and abnormal uncontrollable movements or dyskinesia, upon long-
term use. Furthermore, this form of therapy focuses only on alleviating symptoms instead of
resolving the primary cause of the disease, thereby permitting disease progression [78,79].

MSC-based cell therapies offer diverse options for the treatment of PD. One case in
point involves the implication of a defective autophagy system as a plausible cause of PD.
MSCs have been reported to display α-synuclein clearance, the regulation of autophagy
lysosomal activity, the activation of autophagy signalling and immunomodulatory effects,
such as penetrating injured sites, releasing numerous growth factors, and attenuating
inflammation [79]. Another study investigating neural-induced hBM-MSCs (NI-hBMSCs)
demonstrated increased cell survival, stabilization of α-synuclein monomers, and pro-
motion of neurogenesis after treatment with NI-hBMSCs [80]. Clinical trials in which
hBM-MSCs from healthy donors were intravenously administered to patients with PD have
shown promising results. The participants in the study exhibited post-infusion changes in
motor and non-motor symptoms that lasted until the end of the study period [81]. Based
on the results from these and several other studies on patients with PD and animal models,
the therapeutic benefits of hBM-MSCs over conventional treatments are evident.

2.3. ALS

ALS is a gradual, fatal, paralytic NDD characterized by the degeneration of the upper
and lower motor neurons. ALS causes weakness and atrophy of the muscles of the limbs,
chest, neck, and oropharyngeal area and eventually death due to respiratory failure. As
there are only two drugs currently approved for ALS treatment, there is an urgent need
for different treatment options [82,83]. MSCs are being explored as a treatment option
for ALS because they produce and release neurotrophins, which are proteins that induce
the survival, development, and function of neurons. Transplantation of hMSCs has also
been reported to mitigate neuroinflammation, improve motor execution, and enhance the
bioenergetics of recipient cells [84–86].

Clinical trials using hBM-MSCs as therapeutic agents for ALS have shown favourable
outcomes after hBM-MSC administration. In one open-label phase I trial, TGF-β and
IL-10 levels were elevated following hBM-MSCs administration. TGF-β, a growth factor
involved in various aspects of neuron development and function, has been found to be
reduced in ALS patients and inversely correlated to disease progression [87]. Another
open-label study conducted to evaluate the safety and efficacy of autologous hBM-MSCs
via intrathecal and intravenous routes in ALS patients demonstrated a temporary decline
in ALS progression after a single dose of hBM-MSCs [88]. To maximize the capability of
hBM-MSCs to treat ALS, additional studies are needed on the effective delivery of MSCs
to patients, the effectiveness of MSCs expressing diverse growth factors, and their clinical
significance [89].

2.4. HD

HD is an autosomal dominant neurodegenerative disease caused by the loss of gamma-
aminobutyric acidergic (GABAergic) medium spiny neurons in the striatum. This neuronal
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loss stems from the expansion of the cytosine–adenine–guanine (CAG) repeat within exon
1 of the huntingtin (htt) gene, which leads to the formation of a malfunctioning mutant
HTT protein [90]. The clinical manifestations of HD include chorea, psychiatric symptoms,
and cognitive impairment. The reduced availability of neurotrophic factors, such as NGF,
BDNF, and neurotrophin-3 (NT-3), contributes to neurodegeneration and therefore, these
are considered potential therapeutic agents for HD [91].

In a mouse model of HD using transplanted hBM-MSCs, intrastriatally transplanted
hBM-MSCs not only successfully survived and differentiated but also reduced motor
function impairment, increased neurogenesis, and boosted animal survival and cell differ-
entiation [92]. Given that levels of neurotrophic factors (NTFs) are reduced in patients with
HD, NTF-based therapies are potential strategies for the discovery of new treatment options
for HD. Since BDNF has a short half-life, which limits effective delivery strategies for NDDs,
genetically engineered hBM-MSCs that deliver BDNF (MSC/BDNF) have advantages of
delivering BDNF to the striate and MSC-secreted factor supplementation. Pollock et al.
reported a significant surge in neurogenesis, an increased lifespan, and decreased spinal
atrophy in mice transplanted with MSCs/BDNF [93]. Moreover, hBM-MSCs induced to
differentiate into NTF-secreting cells (NTF+) exhibit therapeutic properties and attenuate
neurotoxicity [94]. Although the therapeutic ability of hBM-MSCs in the treatment of HD
has been established, additional studies to accurately determine the administration time,
dose, and frequency of cells, as well as long-term toxicology studies, should be conducted.

3. Analysis of the Quality and Differentiation Ability of hBM-MSCs

To date, many studies on NDDs have shown different features of neurodegeneration,
such as cell viability reduction, genetic mutations, gene expression alterations, and cellular
function impairment [95–97]. To understand the different cellular processes in NDDs,
cell health has been evaluated using several methods, including morphological analysis,
viability assays, metabolic assays, and gene expression analysis [98–100], because cell
quality directly affects cell functionality [101,102].

Similarly, because the quality and differentiation potential of stem cells are crucial for
their use in NDD therapy, the condition and properties of stem cells should be assessed
prior to use [103]. Moreover, BM-MSCs show a loss of stemness when maintained under
certain conditions [104,105]. Stolzing et al. reported that the overall hBM-MSC fitness
decreased with age, showing an increase in ROS, p21, and p53 levels [104]. These dete-
riorating features were also observed during in vitro ageing. Geissler et al. showed that
progenitor characteristics were lost, and genes related to cell differentiation, focal adhe-
sion organisation, cytoskeleton turnover, and mitochondrial function were downregulated
during long-term in vitro expansion of MSCs [105].

Meanwhile, there are some studies suggesting that gender may affect the efficiency
of BM-MSC therapy [106,107]. Sammour et al. reported that female BM-MSCs have
more therapeutic effects than male BM-MSCs by showing greater pro-angiogenic and
anti-inflammatory effects in mice models [106]. In addition, Crisostomo et al. demonstrated
that female BM-MSCs showed lower apoptosis, TNF and IL-6 production, and higher
VEGF expression upon stress activation than males, due to their inherent resistance to
TNFR1 activation [107]. However, one study reported that in vitro mesodermal differential
capacity of hBM-MSCs is not highly related to the donor gender [108]. Although donor
gender seems to play a role in the therapeutic effects of BM-MSCs, this is still not clearly
elucidated and further studies are required to clarify the effect of gender on BM-MSCs.

Even though MSCs have several advantages, including self-regeneration ability, anti-
inflammatory and immunomodulatory effects, and multi-lineage differentiation ability [109,110],
keeping them fresh and healthy to maintain their beneficial properties should also be
considered.
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3.1. Optimizing hBM-MSCs While Preserving Cell Quality

As mentioned above, it is imperative to preserve the quality and properties of stem
cells, which significantly affect the achievement of many therapeutic cells during ex vivo
expansion [56]. Furthermore, before clinical use, MSCs should be isolated and expanded
in vitro until they reach the appropriate cell number, owing to the low frequency of
0.001–0.01% of the total mononucleated cells [111]. hBM-MSCs are detached from the
culture dish and kept in a largely different environment from the original one, which can di-
minish their valuable properties [112–114]. Hence, maintaining the quality of hBM-MSCs is
crucial when using in NDDs. In this section, we summarize several methods of improving
the efficiency of BM-MSC therapy while preserving cell stemness.

Donor age is a well-known factor that should be considered during the transplantation
process. Many studies have reported that donor age is closely related to negative effects on
MSC proliferation and multipotency [115–117]. Zaim et al. investigated the effects of donor
age and long-term culture on the morphology, characteristics, and capacity of hBM-MSCs
to proliferate and differentiate into adipogenic, chondrogenic, osteogenic, and neurogenic
lineages [118]. They found that hBM-MSCs gradually reduced their proliferation rate and
lost their typical morphology in an age- and passage-dependent manner. In another study,
the older donor group showed lower concentrations of colony forming unit fibroblasts
(CFU-Fs) and shorter telomere lengths during in vitro expansion than the young donor
group, indicating that the ageing of MSCs can reduce their therapeutic characteristics [119].

Moreover, avoiding oxidative stress is effective in maintaining cell freshness. For
example, Shin et al. reported that hBM-MSCs trypsinized and maintained in PBS showed
a significant loss of freshness and viability over time [57]. This reduction in freshness is
accompanied by several phenotypes, such as increased peroxidation of membranes and
intracellular vacuoles, in a PBS storage time-dependent manner [58]. In addition, transcrip-
tomic analysis of hBM-MSCs stored in PBS for 12 h predicted increased ROS generation and
lipid peroxidation and decreased cell viability [56]. Regarding ROS production, Lee et al.
suggested that treatment with N-acetyl-L-cysteine (NAC) and glutathione (GSH) main-
tained the quality of PBS-stored hBM-MSCs by reducing ROS and lipid peroxidation [56].
Indeed, one study showed that the pre-conditioning of BM-MSCs with NAC led to lower
apoptosis and higher survival against oxidative stress by increasing GSH levels and helped
bone regeneration after transplantation in rats [120].

Lastly, treatment with growth factors, such as fibroblast growth factor-2 (FGF-2), trans-
forming growth factor-beta (TGF-β), and insulin-like growth factor-1 (IGF-1), also improved
the multi-lineage differentiation ability of stem cells [121–123]. Nandy et al. reported that
FGF-2-treated hBM-MSCs showed the least cell death and the highest upregulation of tyro-
sine hydroxylase, a dopaminergic neuron marker, compared to other growth-factor-treated
cells [121]. Meanwhile, Longobardi et al. reported that the addition of TGF-β and IGF-1
exerted both proliferative and anti-apoptotic actions and even induced the differentiation
of BM-MSCs into chondrocytes, showing an increase in the expression of chondrogenic
markers in mice [122]. In addition, IGF-1 stimulates osteoblastic differentiation by acti-
vating the mTOR signalling pathway and helps maintain bone marrow mass in mice and
rats [123]. The effects of substances for improving the efficiency of BM-MSC therapy are
summarized in Table 1. Hence, not only the removal of harmful factors such as ROS but
also the addition of supplements can be helpful for maintaining hBM-MSC stemness.
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Table 1. Summary of the functions and effects of substances for improving the efficiency of BM-
MSC therapy.

Substances Differentiation
Direction Functions and Effects References

N-acetyl-L-cysteine (NAC) Osteoblast

Decreased apoptosis
Increased survival

Increased GSH level
Enhanced bone regeneration

[120]

Fibroblast growth factor-2 (FGF-2) Dopaminergic neurons

Decreased cell death
Increased upregulation of tyrosine

hydroxylase
Increased dopamine release

[121]

Transforming growth factor-beta (TGF-β) Chondrocyte

Decreased apoptosis
Increased cell proliferation

Increased chondrogenic condensation
and markers

[122]

Insulin-like growth factor-1 (IGF-1)
Chondrocyte

Decreased apoptosis
Increased cell proliferation

Increased chondrogenic condensation
and markers

[122]

Osteoblast Induction of osteoblastic differentiation [123]

3.2. PBS Storage Time Is a Critical Factor for the Differentiation of hBM-MSCs in Gene Expression
and Amino Acid Levels

For transplantation, MSCs should be suspended in PBS to prevent inflammatory
reactions caused by foreign proteins and serum [124]. To evaluate the effect of storage time
on hBM-MSCs before transplantation, transcriptome profiling data of hBM-MSCs stored
in PBS for 0, 6, and 12 h were acquired as described in our previous reports [57,58]. The
transcriptomic changes in the 6 h- and 12 h-stored groups were compared to the 0 h-stored
control groups using Ingenuity Pathway Analysis (IPA) web-based bioinformatics software
(Qiagen, CA, USA) and analyzed. Genes that showed >1.5- and <-1.5-fold changes in
expression levels were selected and used for transcriptomic analysis. In the 6 h-stored
groups, 1466 genes showed such changes in their gene expression levels (806 downregulated
and 660 upregulated), whereas in the 12 h-stored groups, 1817 genes showed such changes
in their gene expression levels (1145 downregulated and 672 upregulated).

Computational prediction of cellular functions showed that the quantity of ROS, per-
oxidation of lipid, and cell damage were increased, and that the differentiation of stem cells
was inhibited in both 6 h- and 12 h-stored hBM-MSCs compared to the control (Figure 2).
Moreover, these transcriptomic networks showed that ROS levels, lipid peroxidation, cellu-
lar damage, and differentiation abilities were related. Interestingly, predictions of all these
cellular functions were more robustly represented in the 12 h-storage groups than in the
6 h-storage groups (Figure 2B), suggesting that ROS production, lipid peroxidation, cell
damage, and stem cell differentiation were adversely affected by increasing the PBS storage
time in hBM-MSCs. Detailed fold-change information for each gene in the transcriptomic
networks is listed in Table 2 (6 h-stored groups) and Table 3 (12 h-stored groups). Further
experimental studies are required to elucidate the differentiation ability of hBM-MSCs.
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Figure 2. Transcriptomic networks with prediction using ingenuity pathway analysis. (A) Tran-
scriptomic network in PBS-stored hBM-MSCs for 6 h; (B) Transcriptomic network in PBS-stored
hBM-MSCs for 12 h. The fold change cut-off value used in the analysis for the networks is ±1.5 based
on a previous report [58]. Upregulated genes are represented in red while the downregulated genes
are in green. Orange and blue indicate the predicted activation and inhibition of cellular functions,
respectively. Solid and dotted lines show direct and indirect relationships, respectively.

Table 2. Ingenuity-pathway-analysis-based transcriptome profiles of the 6 h-stored hBM-MSCs.

Entrez Gene Name Symbol Entrez Gene ID a Location Fold Change b

ATP binding cassette subfamily B member 7 ABCB7 22 Cytoplasm 1.637
argonaute RISC component 1 AGO1 26,523 Cytoplasm −1.542

aldo-keto reductase family 1 member A1 AKR1A1 10,327 Cytoplasm 1.512
AKT serine/threonine kinase 3 AKT3 10,000 Cytoplasm −2.379

alkB homolog 1, histone H2A dioxygenase ALKBH1 8846 Cytoplasm −1.503
aryl hydrocarbon receptor nuclear translocator ARNT 405 Nucleus 1.715

activating transcription factor 3 ATF3 467 Nucleus 2.88
BCL2 associated X, apoptosis regulator BAX 581 Cytoplasm −1.946

BCL2 apoptosis regulator BCL2 596 Cytoplasm 1.534
BCL2 like 11 BCL2L11 10,018 Cytoplasm −1.579

3′(2′), 5′-bisphosphate nucleotidase 1 BPNT1 10,380 Nucleus 1.564
bromodomain containing 3 BRD3 8019 Nucleus 1.855

calpain 3 CAPN3 825 Cytoplasm −1.974
cyclin dependent kinase 12 CDK12 51,755 Nucleus 1.925

caseinolytic mitochondrial matrix peptidase
chaperone subunit B CLPB 81,570 Nucleus −1.785

Clusterin CLU 1191 Cytoplasm −1.768
cAMP responsive element binding protein 1 CREB1 1385 Nucleus −2.252

cathepsin D CTSD 1509 Cytoplasm 1.527
Cytoglobin CYGB 114,757 Cytoplasm 2.368

cytochrome P450 family 2 subfamily E member 1 CYP2E1 1571 Cytoplasm 2.095

Dystonin DST 667 Plasma
Membrane 2.126

early growth response 1 EGR1 1958 Nucleus 1.915
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Table 2. Cont.

Entrez Gene Name Symbol Entrez Gene ID a Location Fold Change b

elongation factor for RNA polymerase II 3 ELL3 80,237 Nucleus 1.749

coagulation factor II thrombin receptor like 2 F2RL2 2151 Plasma
Membrane −1.714

fibroblast growth factor receptor 2 FGFR2 2263 Plasma
Membrane −1.859

fragile X messenger ribonucleoprotein 1 FMR1 2332 Cytoplasm −1.569

fibronectin 1 FN1 2335 Extracellular
Space −1.951

hes family bHLH transcription factor 1 HES1 3280 Nucleus 8.134
high mobility group box 1 HMGB1 3146 Nucleus −1.903

interleukin 11 IL11 3589 Extracellular
Space 1.596

interleukin 6 IL6 3569 Extracellular
Space 1.784

insulin receptor INSR 3643 Plasma
Membrane 1.561

integrin subunit beta 1 ITGB1 3688 Plasma
Membrane −2.31

inositol 1,4,5-trisphosphate receptor type 1 ITPR1 3708 Cytoplasm 1.775
jade family PHD finger 1 JADE1 79,960 Nucleus −1.76

Jun proto-oncogene, AP-1 transcription factor
subunit JUN 3725 Nucleus 2.212

potassium calcium-activated channel subfamily
M alpha 1 KCNMA1 3778 Plasma

Membrane −1.726

lysine demethylase 6A KDM6A 7403 Nucleus −1.511
KLF transcription factor 2 KLF2 10,365 Nucleus 2.261
KLF transcription factor 9 KLF9 687 Nucleus 1.803

low density lipoprotein receptor LDLR 3949 Plasma
Membrane −1.783

leptin receptor LEPR 3953 Plasma
Membrane −1.575

lamin B1 LMNB1 4001 Nucleus −1.862

LDL receptor related protein associated protein 1 LRPAP1 4043 Plasma
Membrane −2.12

LYN proto-oncogene, Src family tyrosine kinase LYN 4067 Cytoplasm −1.541
MAPK activated protein kinase 2 MAPKAPK2 9261 Nucleus 1.848

matrix metallopeptidase 14 MMP14 4323 Extracellular
Space −1.874

N-acylethanolamine acid amidase NAAA 27,163 Cytoplasm −2.184
nuclear receptor coactivator 3 NCOA3 8202 Nucleus −1.572

NFE2 like bZIP transcription factor 2 NFE2L2 4780 Nucleus −1.823
nuclear receptor subfamily 3 group C member 1 NR3C1 2908 Nucleus 2.214
nuclear receptor subfamily 4 group A member 1 NR4A1 3164 Nucleus 1.808
nuclear receptor subfamily 4 group A member 2 NR4A2 4929 Nucleus 4.047

neuregulin 1 NRG1 3084 Plasma
Membrane −1.913

O-linked N-acetylglucosamine (GlcNAc)
transferase OGT 8473 Cytoplasm −2.058

programmed cell death 4 PDCD4 27,250 Nucleus 1.554

platelet and endothelial cell adhesion molecule 1 PECAM1 5175 Plasma
Membrane 1.602

phosphoinositide kinase, FYVE-type zinc finger
containing PIKFYVE 200,576 Cytoplasm −1.529

phospholipase A2 activating protein PLAA 9373 Cytoplasm −1.507
peroxisome proliferator activated receptor alpha PPARA 5465 Nucleus 1.646

peroxiredoxin 2 PRDX2 7001 Cytoplasm −2.276
perforin 1 PRF1 5551 Cytoplasm 1.668

protein kinase AMP-activated catalytic subunit
alpha 1 PRKAA1 5562 Cytoplasm −2.252
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Table 2. Cont.

Entrez Gene Name Symbol Entrez Gene ID a Location Fold Change b

prostaglandin E receptor 3 PTGER3 5733 Plasma
Membrane −1.539

protein tyrosine phosphatase receptor type B PTPRB 5787 Plasma
Membrane 2.444

RAB7A, member RAS oncogene family RAB7A 7879 Cytoplasm 1.801

Rac family small GTPase 1 RAC1 5879 Plasma
Membrane −2.019

RUNX family transcription factor 1 RUNX1 861 Nucleus −1.616

sphingosine-1-phosphate receptor 2 S1PR2 9294 Plasma
Membrane −1.73

Stratifin SFN 2810 Cytoplasm 1.7
SNF2 histone linker PHD RING helicase SHPRH 257,218 Nucleus −1.812

solute carrier family 37 member 4 SLC37A4 2542 Cytoplasm 3.046

solute carrier family 7 member 11 SLC7A11 23,657 Plasma
Membrane 1.721

SMAD family member 4 SMAD4 4089 Nucleus −2.153
sphingomyelin phosphodiesterase 1 SMPD1 6609 Cytoplasm −1.834
suppressor of cytokine signaling 3 SOCS3 9021 Cytoplasm 1.628

superoxide dismutase 2 SOD2 6648 Cytoplasm −2.242
striated muscle enriched protein kinase SPEG 10,290 Nucleus 1.771

Sarcospan SSPN 8082 Plasma
Membrane 1.575

signal transducer and activator of transcription 6 STAT6 6778 Nucleus −1.571

stanniocalcin 1 STC1 6781 Extracellular
Space −1.567

SUZ12 polycomb repressive complex 2 subunit SUZ12 23,512 Nucleus −2.001
T-box transcription factor 3 TBX3 6926 Nucleus −1.533

transcription factor 3 TCF3 6929 Nucleus 1.81

transforming growth factor beta receptor 2 TGFBR2 7048 Plasma
Membrane −1.822

TIA1 cytotoxic granule associated RNA binding
protein TIA1 7072 Nucleus −2.369

transient receptor potential cation channel
subfamily C member 1 TRPC1 7220 Plasma

Membrane −1.812

TSC22 domain family member 3 TSC22D3 1831 Nucleus 2.134
twist family bHLH transcription factor 2 TWIST2 117,581 Nucleus 1.652

twinkle mtDNA helicase TWNK 56,652 Cytoplasm −2.459
thioredoxin interacting protein TXNIP 10,628 Cytoplasm −1.567

TYRO3 protein tyrosine kinase TYRO3 7301 Plasma
Membrane 1.905

ubiquitin specific peptidase 16 USP16 10,600 Cytoplasm −1.764
zinc finger and BTB domain containing 14 ZBTB14 7541 Nucleus −1.55

ZFP36 ring finger protein ZFP36 7538 Nucleus 1.827
a The Entrez gene ID is the unique integer identifier for humans; b normalized signal fold change in the 6 h-stored
group to the corresponding signal of the control group.

Table 3. Ingenuity-pathway-analysis-based transcriptome profiles of the 12 h-stored hBM-MSCs.

Entrez Gene Name Symbol Entrez Gene ID a Location Fold Change b

ATP binding cassette subfamily C member 1 ABCC1 4363 Plasma
Membrane −1.984

ABL proto-oncogene 2, non-receptor tyrosine
kinase ABL2 27 Cytoplasm 1.744

argonaute RISC catalytic component 2 AGO2 27,161 Cytoplasm −1.588
AKT serine/threonine kinase 3 AKT3 10,000 Cytoplasm −2.393

alkB homolog 1, histone H2A dioxygenase ALKBH1 8846 Cytoplasm −1.83
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Table 3. Cont.

Entrez Gene Name Symbol Entrez Gene ID a Location Fold Change b

angiopoietin 1 ANGPT1 284 Extracellular
Space −1.869

amyloid beta precursor protein APP 351 Plasma
Membrane 1.506

aryl hydrocarbon receptor nuclear translocator ARNT 405 Nucleus 1.749
activating transcription factor 3 ATF3 467 Nucleus 2.535
activating transcription factor 6 ATF6 22,926 Cytoplasm 1.56
ATM serine/threonine kinase ATM 472 Nucleus −1.523

BCL2 associated X, apoptosis regulator BAX 581 Cytoplasm −2.51
BCL2 apoptosis regulator BCL2 596 Cytoplasm −1.646

BCL2 like 13 BCL2L13 23,786 Cytoplasm −2.078
BCL6 corepressor BCOR 54,880 Nucleus 1.656

basic helix-loop-helix ARNT like 1 BMAL1 406 Nucleus −1.562
3′(2′), 5′-bisphosphate nucleotidase 1 BPNT1 10,380 Nucleus 1.565

bromodomain containing 3 BRD3 8019 Nucleus 2.089
calmodulin regulated spectrin associated protein

family member 2 CAMSAP2 23,271 Cytoplasm −1.955

cell division cycle and apoptosis regulator 1 CCAR1 55,749 Nucleus −1.579

C-C motif chemokine ligand 2 CCL2 6347 Extracellular
Space −1.655

CD200 molecule CD200 4345 Plasma
Membrane 1.713

cyclin dependent kinase 12 CDK12 51,755 Nucleus 1.849
cyclin dependent kinase 13 CDK13 8621 Nucleus −1.555

cAMP responsive element binding protein 1 CREB1 1385 Nucleus −1.68
cAMP responsive element modulator CREM 1390 Nucleus 1.601

cathepsin V CTSV 1515 Cytoplasm 1.573
cytoglobin CYGB 114,757 Cytoplasm 2.378

disco interacting protein 2 homolog A DIP2A 23,181 Nucleus 1.549

dystonin DST 667 Plasma
Membrane 2.201

dystrobrevin alpha DTNA 1837 Plasma
Membrane 2.069

early growth response 1 EGR1 1958 Nucleus 1.786
eukaryotic translation initiation factor 2 alpha

kinase 4 EIF2AK4 440,275 Cytoplasm 1.576

elongator acetyltransferase complex subunit 1 ELP1 8518 Cytoplasm −2.024

endoglin ENG 2022 Plasma
Membrane −1.629

endothelial PAS domain protein 1 EPAS1 2034 Nucleus −3.025

EPH receptor B2 EPHB2 2048 Plasma
Membrane 1.591

erythropoietin receptor EPOR 2057 Plasma
Membrane 2.778

endoplasmic reticulum to nucleus signaling 1 ERN1 2081 Cytoplasm −1.588

Fas cell surface death receptor FAS 355 Plasma
Membrane 2.388

fibroblast growth factor receptor 2 FGFR2 2263 Plasma
Membrane −1.515

fibronectin 1 FN1 2335 Extracellular
Space −2.059

glial cell derived neurotrophic factor GDNF 2668 Extracellular
Space 1.512

glycerol-3-phosphate dehydrogenase 2 GPD2 2820 Cytoplasm −1.54
histone deacetylase 4 HDAC4 9759 Nucleus 1.563

hes family bHLH transcription factor 1 HES1 3280 Nucleus 5.645
heat shock protein 90 beta family member 1 HSP90B1 7184 Cytoplasm −1.51
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Table 3. Cont.

Entrez Gene Name Symbol Entrez Gene ID a Location Fold Change b

interferon gamma inducible protein 16 IFI16 3428 Nucleus −1.892

interleukin 1 receptor type 1 IL1R1 3554 Plasma
Membrane −2.05

interleukin 6 IL6 3569 Extracellular
Space 1.777

Jun proto-oncogene, AP-1 transcription factor
subunit JUN 3725 Nucleus 1.827

lysine demethylase 6A KDM6A 7403 Nucleus −2.947

KIT ligand KITLG 4254 Extracellular
Space −1.654

KLF transcription factor 2 KLF2 10,365 Nucleus 1.979

leptin receptor LEPR 3953 Plasma
Membrane −1.507

lamin B1 LMNB1 4001 Nucleus −2.167

LDL receptor related protein associated protein 1 LRPAP1 4043 Plasma
Membrane −1.845

LYN proto-oncogene, Src family tyrosine kinase LYN 4067 Cytoplasm −2.418
mitogen-activated protein kinase 1 MAPK1 5594 Cytoplasm −1.564
MAPK activated protein kinase 2 MAPKAPK2 9261 Nucleus 1.95

MET proto-oncogene, receptor tyrosine kinase MET 4233 Plasma
Membrane −2.447

mitofusin 2 MFN2 9927 Cytoplasm −1.554
MIA SH3 domain ER export factor 3 MIA3 375,056 Cytoplasm −1.621

matrix metallopeptidase 14 MMP14 4323 Extracellular
Space −1.7

nuclear receptor coactivator 3 NCOA3 8202 Nucleus −2.462

neuronal growth regulator 1 NEGR1 257,194 Plasma
Membrane −1.799

NFE2 like bZIP transcription factor 2 NFE2L2 4780 Nucleus −1.85
nuclear transcription factor Y subunit alpha NFYA 4800 Nucleus −1.914
nicotinamide nucleotide transhydrogenase NNT 23,530 Cytoplasm −1.592

notch receptor 2 NOTCH2 4853 Plasma
Membrane 1.741

nuclear receptor subfamily 3 group C member 1 NR3C1 2908 Nucleus 2.526
nuclear receptor subfamily 4 group A member 1 NR4A1 3164 Nucleus 2.282
nuclear receptor subfamily 4 group A member 2 NR4A2 4929 Nucleus 5.217

O-linked N-acetylglucosamine (GlcNAc)
transferase OGT 8473 Cytoplasm 1.511

programmed cell death 4 PDCD4 27,250 Nucleus 2.085
phosphatidylinositol 3-kinase catalytic subunit

type 3 PIK3C3 5289 Cytoplasm 1.887

phosphoinositide-3-kinase regulatory subunit 1 PIK3R1 5295 Cytoplasm 1.557
DNA polymerase kappa POLK 51,426 Nucleus 1.562

cytochrome p450 oxidoreductase POR 5447 Cytoplasm −2.999
peroxiredoxin 2 PRDX2 7001 Cytoplasm 1.62

perforin 1 PRF1 5551 Cytoplasm 1.888
protein kinase AMP-activated catalytic subunit

alpha 1 PRKAA1 5562 Cytoplasm −1.683

presenilin 2 PSEN2 5664 Cytoplasm −1.611

prostaglandin E receptor 2 PTGER2 5732 Plasma
Membrane 1.877

protein tyrosine phosphatase non-receptor
type 11 PTPN11 5781 Cytoplasm −1.714

protein tyrosine phosphatase receptor type B PTPRB 5787 Plasma
Membrane 1.544

peroxidasin PXDN 7837 Extracellular
Space 1.827

RB transcriptional corepressor like 1 RBL1 5933 Nucleus −1.614
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Table 3. Cont.

Entrez Gene Name Symbol Entrez Gene ID a Location Fold Change b

RAR related orphan receptor A RORA 6095 Nucleus −1.609
RUNX family transcription factor 1 RUNX1 861 Nucleus −1.563

sphingosine-1-phosphate receptor 2 S1PR2 9294 Plasma
Membrane −1.619

sarcoglycan beta SGCB 6443 Plasma
Membrane −2.825

SNF2 histone linker PHD RING helicase SHPRH 257,218 Nucleus −1.917

solute carrier family 1 member 1 SLC1A1 6505 Plasma
Membrane −1.692

solute carrier family 7 member 11 SLC7A11 23,657 Plasma
Membrane 1.719

striated muscle enriched protein kinase SPEG 10,290 Nucleus 1.96

secreted phosphoprotein 1 SPP1 6696 Extracellular
Space −1.573

signal transducer and activator of transcription 6 STAT6 6778 Nucleus −1.638

stanniocalcin 1 STC1 6781 Extracellular
Space −1.546

small VCP interacting protein SVIP 258,010 Cytoplasm −1.696

transforming growth factor beta 2 TGFB2 7042 Extracellular
Space −1.584

transforming growth factor beta receptor 2 TGFBR2 7048 Plasma
Membrane −1.801

thrombospondin 1 THBS1 7057 Extracellular
Space −1.66

TIA1 cytotoxic granule associated RNA binding
protein TIA1 7072 Nucleus −2.305

toll like receptor 4 TLR4 7099 Plasma
Membrane −2.167

tumor protein p53 TP53 7157 Nucleus −1.518
thioredoxin TXN 7295 Cytoplasm 1.692

thioredoxin interacting protein TXNIP 10,628 Cytoplasm −2.163
ubiquitination factor E4B UBE4B 10,277 Cytoplasm −1.591
WASH complex subunit 1 WASHC1 100,287,171 Cytoplasm −3.587
ZFP36 ring finger protein ZFP36 7538 Nucleus 1.942

a The Entrez gene ID is the unique integer identifier for humans; b normalized signal fold change in the 12 h-stored
group to the corresponding signal of the control group.

In the omics analysis approaches, each analysis of single omics has advantages and
disadvantages. For example, transcriptomics includes tremendous gene expression data,
but it is not able to reflect the exact phenotype of the organism [125]. Metabolomics
shows the “end products” of biological processes and reflects more exact phenotypes.
However, the metabolites that can be analyzed are limited by experimental methods [126].
Hence, an integrated omics approach can compensate for the shortcomings of each omics
and provides a more comprehensive vision of complex biological processes. Indeed,
using integrated omics approaches, the unexplained delicate toxicity of nanoparticles and
particulate matter [65,127–129] was analyzed, and the biological meaning of mitochondrial
diseases was found in various conditions [130].

Amino acid profiling omics data using GC-MS provided cellular information in hBM-
MSCs over time [57,131], and the amino acid levels at each time point were integrated with
transcriptomics to establish metabotranscriptomics which integrates transcriptomics and
metabolomics. Fold changes in the levels of amino acids > 1.2 and <−1.2 were used, and
nine and eight amino acids were integrated into the IPA networks of hBM-MSCs stored for
6 h and 12 h, respectively. In detail, in the 6 h-stored groups, GABA (2.289, fold change),
glycine (−1.624), glutamine (1.702), lysine (1.214), phenylalanine (1.297), proline (−2.255),
threonine (1.356), tyrosine (1.685), and pyrrolidonecarboxylic acid (−1.209) were used, and
in the 12 h-stored groups, GABA (3.848), glycine (1.458), aspartic acid (−1.438), glutamic
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acid (1.358), lysine (4.572), serine (1.302), threonine (−1.799), and tyrosine (2.368) were
used for analysis. The metabotranscriptomic networks showed a similar tendency to the
transcriptomics prediction, maintaining a more robust prediction of cellular functions in
the hBM-MSC group stored for 12 h (Figure 3). These transcriptomic and integrated omics
analyses suggest that the PBS storage time is a crucial factor for preserving the cell quality
and differentiation ability of hBM-MSCs.

Although our analyses have been reported previously [58], the data in the current
review were analyzed using a new, well-developed bioinformatic program. Notably, the
data-based program was curated by a data curator from previously published papers, and
the results obtained using artificial intelligence are considered more objective biological in-
formation rather than data collected by individuals. Our bioinformatic study showing that
the freshness of stem cells decreases over time is consistent with previous reports [56–58].
However, the differentiation ability of stem cells after cell detachment from culture dishes
is inconsistent with in silico prediction and the osteogenic and adipogenic potentials in the
previous report [57]. The discrepancies can be attributed to the experimental differences
between omics data analyzed directly at each storage time point and long-term cell culture
and frequent exchanges of culture medium for cell differentiation. In conclusion, the fresh-
ness and differentiation ability of stem cells in stem cell therapy are closely related to the
time after cell detachment from culture dishes. In this regard, this bioinformatic study will
be an essential factor to be considered in future stem cell therapies.
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Figure 3. Metabotranscriptomic networks with prediction using ingenuity pathway analysis.
(A) Metabotranscriptomic network in PBS-stored hBM-MSCs for 6 h; (B) metabotranscriptomic
network in PBS-stored hBM-MSCs for 12 h. The fold change cut-off values used in the analysis for
the networks are ±1.5 and ±1.2, respectively. Those used for transcriptome and amino acid analyses
are based on a previous report [57]. The figure information is described in the legends of Figure 2.

4. Conclusions

Herein, we review the application of hBM-MSCs to the treatment of various NDDs and
analyze the quality and differentiation ability of hBM-MSCs detached from culture dishes
using integrated omics analysis for successful stem cell therapy. Conventional analysis
methods have limitations in analyzing the quality and differentiation ability of dissociated
hBM-MSCs and cannot comprehensively elucidate the delicate relationships between the
cell condition of dissociated hBM-MSCs and therapeutic effects. Multidisciplinary omics
and integrated multi-omics approaches provide in-depth and comprehensive information
on the quality characteristics and differentiation ability of dissociated hBM-MSCs. Because
stemness is a complex process that combines proliferation and self-renewal to generate
differentiated cells with identical genotypes, a fragmentary approach is not sufficient to refer
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to biological changes in the cell. In the future, comprehensive and computational analyses
of dissociated hBM-MSCs at the genomic, transcriptomic, small RNAomic, proteomic,
phenomic, and metabolomic levels using advanced machine learning algorithms will
accelerate studies in the field of stem cell therapy. Thus, these approaches will be helpful
in analyzing the condition of dissociated hBM-MSCs and improving their quality and
differentiation ability for innovative and successful stem cell therapy.
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