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Abstract: The demand for electrically insulated microwires and microfibers in biomedical applica-
tions is rapidly increasing. Polymer protective coatings with high electrical resistivity, good chemical
resistance, and a long shelf-life are critical to ensure continuous device operation during chronic
applications. As soft and flexible electrodes can minimize mechanical mismatch between tissues and
electronics, designs based on flexible conductive microfibers, such as carbon nanotube (CNT) fibers,
and soft polymer insulation have been proposed. In this study, a continuous dip-coating approach
was adopted to insulate meters-long CNT fibers with hydrogenated nitrile butadiene rubber (HNBR),
a soft and rubbery insulating polymer. Using this method, 4.8 m long CNT fibers with diameters
of 25–66 µm were continuously coated with HNBR without defects or interruptions. The coated
CNT fibers were found to be uniform, pinhole free, and biocompatible. Furthermore, the HNBR
coating had better high-temperature tolerance than conventional insulating materials. Microelec-
trodes prepared using the HNBR-coated CNT fibers exhibited stable electrochemical properties,
with a specific impedance of 27.0 ± 9.4 MΩ µm2 at 1.0 kHz and a cathodal charge storage capacity
of 487.6 ± 49.8 mC cm−2. Thus, the developed electrodes express characteristics that made them
suitable for use in implantable medical devices for chronic in vivo applications.

Keywords: carbon nanotubes; flexible polymer coatings; pinhole free polymer coatings; hydrogenated
nitrile butadiene rubber

1. Introduction

Achieving stable electrode–tissue interfaces remains among the most challenging
tasks in the development of long-lasting implantable electrodes for chronic applications.
Implantable electrode devices such as neural electrodes can provide detailed information
about brain activity and disorders by recording real-time brain signals [1]. Implantable
neural electrodes can also be used to stimulate specific areas of neural tissues as a therapeu-
tic strategy to treat neurological disorders such as Parkinson’s disease, Alzheimer’s disease,
and epilepsy [2]. Owing to the chronic nature of many neurological disorders, it is critical
that implantable electrodes exhibit long-term performance stability to allow continuous
treatment and ensure signal accuracy [3,4]. Unfortunately, the life span of neural electrodes
is limited by various biotic and abiotic factors [4,5]. In particular, inflammatory host tissue
responses are a main contributor to the performance deterioration of neural electrodes
over time [6–8]. Stiff materials such as silicon and metals cause significant inflammatory
responses owing to their mechanical mismatch with soft tissues [7,9,10]. Among the ap-
proaches available for developing stable neural interfaces, fabricating subcellular sized
probes using flexible and soft materials is promising [11,12].

Although electrode miniaturization can minimize inflammatory responses, electro-
chemical properties such as impedance, charge storage capacity (CSC), and charge in-
jection limit (CIL) are negatively affected. As conductive nanomaterials, carbon nan-
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otubes (CNTs) have been used as coatings on metal electrodes to improve electrochemical
performance [13–15]. In addition, CNT-based neural electrodes have provided improved
mechanical compatibility with soft tissues and reduced inflammatory responses [9,10].
More recently, CNTs have been used independently to develop neural electrodes. CNTs can
be easily assembled into self-standing CNT fibers with diameters of less than 10 µm [10,16].
CNT fibers are softer and more flexible than rigid metal- and silicon-based neural electrodes
and have a bending stiffness that is orders of magnitude lower than those of silicon and
carbon fiber electrodes [17,18]. Owing to their unique properties, CNTs can facilitate the
generation of stable neural interfaces [8,13,19–21].

In addition to the conductive components of neural electrodes, insulating materials
play a significant role in establishing stable neural interfaces. Packaging materials isolate
internal electronics from surrounding fluids by preventing the permeation of water vapor
and ions [2,22,23]. To ensure performance stability, neural electrodes require coatings with
chemical and mechanical stability under physiological conditions. It has been hypothesized
that flexible polymer coatings on flexible CNT fibers would minimize the mechanical
mismatch between electrodes and soft tissues, thus suppressing inflammatory responses
and generating neural interfaces that are more compatible with brain tissues [22,24,25].

Among electrode-insulating polymers commonly employed in neural prostheses,
parylene C, polyimide, and polydimethylsiloxane (PDMS) are relatively soft coating ma-
terials [22,26–28]. In addition, liquid crystal polymers have received recent interest as
soft coating materials for neural electrodes [29,30]. However, thin PDMS coatings are not
favorable for insulating ultrasmall neural probes due to high permeability and delam-
ination issues [23,31,32]. Although parylene C itself exhibits excellent properties, such
as chemical inertness, high purity, low moisture absorption, conformal deposition, and
biocompatibility [33,34], most of the properties of parylene C films depend on the poly-
mer deposition method, i.e., chemical vapor deposition (CVD) [33]. Parylene C coatings
suffer poor integration with many substrates, which allows water vapor to accumulate
over time [35–37]. In addition, the brittleness of parylene C and its tendency to crack
upon bending are disadvantageous for insulating neural electrodes. Polyimide exhibits
high-temperature stability, low moisture absorption, and mechanical durability, but the
limited insulation lifetime of polyimide coatings in saline environments (2–7 years) may
restrict chronic implantation [23,28,31,38,39]. Therefore, there is a critical need for insu-
lating polymer coatings with chemical and mechanical stability as well as flexibility that
can be seamlessly integrated with substrates. Moreover, in terms of polymer fabrication
techniques, it is critical that conformal, uniform, and pinhole-free dense barriers can be
produced [23,40].

Hydrogenated nitrile butadiene rubber (HNBR) is a flexible polymer with excellent
mechanical properties and abrasion, temperature, and chemical resistance under extreme
conditions [41–43]. Due to its polyfunctionality, HNBR has been extensively used in
oilfield applications, where long-term stability is essential under extreme conditions [44].
Therefore, it has been hypothesized that HNBR is an excellent candidate for insulating
medical implants that require long-term stability. Recently, our lab showed that HNBR can
be used to insulate CNT fibers via a continuous dip-coating (CDC) approach to generate
electric microcables [43]. In the current study, the CDC technique was employed to fabricate
HNBR-coated CNT fibers for the development of flexible neural electrodes. Various CDC
parameters, including the solvent, polymer concentration, and withdrawal speed, were
evaluated to achieve pinhole-free and uniform HNBR coatings. The applicability of the
CDC technique to CNT fibers with a wide range of diameters (25–66 µm) and a length up
to 4.8 m was demonstrated. The morphology, chemical nature, and insulating properties
of the HNBR-coated CNT fibers were analyzed. The biocompatibility of HNBR was
evaluated in vitro using fibroblast and neuronal cultures as a prerequisite for in vivo
studies. Furthermore, the electrochemical properties of microelectrodes fabricated from the
HNBR-coated CNT fibers were evaluated. In addition, aging studies were conducted at
elevated temperatures to evaluate the polymer stability for chronic applications.
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2. Experimental Section
2.1. Reagents and Materials

Vertically aligned CNT (VA-CNT) arrays were provided by Professor Vesselin N.
Shanov (Nanoworld Laboratories, University of Cincinnati). HNBR (Zetpol 2000) was
purchased from Zeon Chemicals (Louisville, KY, USA). Acetone (C3H6O, 99.7%), copper(II)
sulfate (CuSO4·5H2O), 2,5-dimethyl-2,5-di(tert-butylperoxy)hexane (C16H34O4, 92%), Dul-
becco’s modified Eagle medium (DMEM, Gibco, Grand Island, NY, USA), Neurobasal
Plus medium, fetal bovine serum (FBS, Gibco), penicillin–streptomycin (pen/strep, Life
Technologies, Carlsbad, CA, USA), and sodium 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-
5-[(phenylamino)-carbonyl]-2H-tetrazolium (XTT) cell viability assays (Invitrogen) were
purchased from Thermo Fisher Scientific (Waltham, MA, USA). Anhydrous methylene
chloride (CH2Cl2, 99.8%) and phosphate-buffered saline (PBS) were purchased from Sigma
Aldrich (St. Louis, MO, USA). Silver paint was purchased from Electron Microscopy Sci-
ences (Hatfield, PA, USA). NIH/3T3 fibroblast cells were purchased from ATCC (Manassas,
VA, USA). Milli-Q water (18.2 MΩ cm) was used to prepare all reagent solutions.

2.2. CNT Fiber Synthesis and Densification

Spinnable VA-CNT arrays were utilized to fabricate CNT fibers. The synthesis of
VA-CNT arrays by CVD and the subsequent fabrication of CNT fibers by dry-spinning
have been reported by our group elsewhere [45,46]. Briefly, the dry-spinning process
was initiated by drawing CNTs from the edge of the VA-CNT array into a film while
simultaneously twisting to assemble a CNT fiber, as shown schematically in Figure 1A.
A homemade twisting apparatus was used to spin the fiber continuously. As the freshly
spun fiber was not densely packed, it was passed through acetone to increase the CNT
density within the fiber. This densification process was also performed continuously using
a homemade setup, where the CNT fiber on a bobbin was dipped into acetone and the CNT
fiber was then withdrawn at a speed of 1.6 mm s−1 (Figure 1B). Densified CNT fibers with
diameters of 25–66 µm were used in this study.
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fiber fabrication via dry-spinning of a VA-CNT array, (B) continuous densification of a CNT fiber using 
acetone, and (C) continuous coating of a CNT fiber with HNBR using a homemade CDC setup. 

Figure 1. Schematic illustrations of CNT fiber assembly, densification, and polymer coating. (A) CNT
fiber fabrication via dry-spinning of a VA-CNT array, (B) continuous densification of a CNT fiber
using acetone, and (C) continuous coating of a CNT fiber with HNBR using a homemade CDC setup.

2.3. Fabrication of HNBR-Coated CNT Fibers Using the CDC Approach

In this study, the polymer used to coat the CNT fibers was Zetpol 2000 HNBR (Zeon
Chemicals, Louisville, KY, USA). According to the manufacturer’s description, Zetpol
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2000 HNBR is a fully saturated copolymer of butadiene and acrylonitrile (ACN) with
36% bound ACN content. Dichloromethane was used to disperse HNBR. The critical CDC
parameters, such as HNBR concentration and withdrawal speed, were optimized to achieve
complete insulation of the CNT fiber. The optimized conditions are described here. HNBR
(1.7 g) was dispersed in 17 mL of dichloromethane by continuous stirring overnight to
give a final concentration of 0.1 g mL−1. As a cross-linking agent, 2,5-dimethyl-2,5-di(tert-
butylperoxy)hexane (170 mg) was added dropwise to the polymer solution and stirred for
5 min. Then, the polymer mixture was degassed under vacuum to remove air bubbles. A
homemade dip-coating apparatus was used to continuously coat CNT fibers with HNBR
(Figure 1C). The densified CNT fiber was initially collected on a spool that could also
be used as the delivering spool. From the delivering spool, the CNT fiber was drawn
horizontally through a bath containing HNBR, passed through a miniature cylindrical
furnace (160 ◦C) to ensure cross-linking of the HNBR coating, and then collected on a spool
(9 mm diameter) at a constant speed of 5 mm s−1.

2.4. Polymer Coating Evaluation

High-resolution scanning electron microscopy (SEM) images were obtained using
an FEI Apreo (Thermo Scientific, Waltham, MA, USA) or TM4000 (Hitachi, Santa Clara,
CA, USA) scanning electron microscope at an acceleration voltage of 5 kV to analyze the
polymer-coated CNT fibers and CNT fiber cross sections.

2.5. Spectroscopic Analyses
2.5.1. X-ray Photoelectron Spectroscopy (XPS)

The chemical composition of HNBR was determined using XPS. For the XPS samples,
glass slides (5 cm2) were used as the substrate instead of CNT fibers. The glass slides
were manually dip-coated with HNBR (0.1 g mL−1) and then cured at 160 ◦C for 10 min.
Glass slides without an HNBR coating were evaluated as a control. XPS measurements
were performed using a K-Alpha X-ray photoelectron spectrometer (Thermo Scientific,
Waltham, MA, USA) equipped with an Al Kα X-ray microfocused monochromator and
a multichannel detector. High-resolution XPS spectra were collected for the C 1s, O 1s,
N 1s, Cl 2p, and Si 2p core levels. An analyzer pass energy of 20 eV was used for all
core level scans, and the photoelectron take-off angle was 90◦ with respect to the sample
plane with a spot size of 400 µm. The XPS spectra were analyzed using Avantage surface
chemical analysis software, and the core level spectra were deconvoluted using Origin Pro
8.5 software.

2.5.2. Fourier Transform Infrared (FT-IR) and Raman Spectroscopy

HNBR-coated CNT fibers with an optimized coating thickness of 10 µm were analyzed
using FT-IR and Raman spectroscopy. FT-IR spectra were recorded using a Nicolet 6700
FT-IR spectrometer (Thermo Scientific, Waltham, MA, USA) equipped with a germanium
attenuated total reflectance (ATR) sampling module (Thermo Scientific, Waltham, MA,
USA). Raman measurements were carried out using a Renishaw inVia Raman microscope
(West Dundee, IL, USA) with an Ar-ion laser at an excitation wavelength of 633 nm. CNT
fibers with no coating were analyzed as a control.

2.6. Fabrication of HNBR-Coated CNT Fiber Microelectrodes

Using a sharp razor blade, the HNBR-coated CNT fiber was cut into 2 cm pieces, which
were used to make microelectrodes. Sectioning of the HNBR-coated CNT fiber exposed a
cross section of the CNT fibers encapsulated within the polymer. The exposed cross section
consisted of millions of individual CNTs within the CNT fiber, while the sidewalls of the
CNT fiber assembly were coated with 10 µm thick HNBR. Silver paint was applied on one
side of the polymer-coated CNT fiber cross section to electrically bridge the exposed CNTs
and make an electrical connection to a copper wire. The copper/silver electrical connection
was then sealed with an epoxy resin. The 2 cm long polymer-coated fiber was trimmed to
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1 cm using a sharp razor blade to give a microelectrode consisting of the exposed CNT fiber
cross section. A detailed schematic of the microelectrode fabrication process is shown in
Figure S1. The fabricated microelectrode surface consists of millions of individual carbon
nanotubes with exposed open ends (CNT tips).

2.7. Electrochemical Characterization

All electrochemical measurements were performed using a PalmSens4 electrochemical
workstation (Houten, The Netherlands) with a three-electrode setup. The HNBR-coated
CNT fiber microelectrode was used as the working electrode. A solid-state Ag/AgCl elec-
trode and a Pt wire were used as the reference and counter electrodes, respectively. For all
electrochemical experiments, five replicates were performed, unless otherwise mentioned.

2.7.1. Electrical Insulating Properties of HNBR Coating

Complete insulation of the CNT fibers was achieved by optimizing the CDC parame-
ters, specifically the HNBR polymer concentration and the withdrawal speed. The degree
of electrical insulation for HNBR-coated CNT fibers prepared under various conditions
was evaluated using SEM, electrochemical impedance spectroscopy (EIS), and electrodepo-
sition. Electrodeposition testing was performed using electrodes fabricated as described in
Section 2.6. Using the prepared electrode as the working electrode, chronoamperometric
electrodeposition was performed in a 50 mM CuSO4 aqueous solution at a potential of
−0.2 V for 10 s. The sidewalls of the HNBR-coated CNT fiber electrodes were then analyzed
using SEM, as insufficient polymer coverage around the CNT fiber is expected to result in
Cu particle deposition.

2.7.2. EIS Analysis

EIS was used to evaluate the impedance of the HNBR-coated CNT fiber microelec-
trodes. EIS measurements were performed in 0.01 M PBS (pH 7.4) in the frequency range
of 1 MHz to 0.1 Hz with an amplitude of 10 mV.

2.7.3. Cyclic Voltammetry (CV)

CV in 0.01 M PBS (pH 7.4) was used to electrochemically pretreat and stabilize the
HNBR-coated CNT fiber microelectrodes. The pretreatment was performed by cycling
the potential from +1 V to −1 V at a scan rate of 0.1 V s−1 for 50 cycles (until a stable
current was achieved). CV was also used to analyze the CSC and the water window of the
fabricated microelectrodes. The CSC was analyzed in the potential range of +1 to −1 V at a
scan rate of 0.1 V s−1. The water window was analyzed by cycling the potential from +2 to
−2 V at a scan rate of 0.1 V s−1.

2.8. Long-Term Stability

The long-term stability of the HNBR-coated CNT fiber microelectrodes and the in-
tegrity of the HNBR coating were analyzed via electrochemical testing and SEM. The
HNBR-coated CNT fiber microelectrodes were soaked in 0.01 M PBS at 37 ◦C for 4 weeks.
Accelerated aging tests were also performed at 60 and 75 ◦C for 2 weeks. The effects
of aging were evaluated using EIS and CV, and morphological changes were analyzed
using SEM.

2.9. In Vitro Cytotoxicity of HNBR Coating
2.9.1. Elution Test

To evaluate the toxicity of the HNBR coating, glass slides were coated with a 0.05 g mL−1

HNBR solution and cured at 160 ◦C for 10 min. The coated glass slides were cleaned by
soaking them in autoclaved distilled water for 24 h followed by soaking in absolute ethanol
for 30 min. The samples were submerged in 3 mL of serum-free DMEM/nutrient mixture
F-12 (F12, Gibco) at 37 ◦C and 5% CO2. Glass slides without an HNBR coating were used
as a control. A positive control was prepared using 0.1% Triton-X in 3 mL of DMEM/F12,
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and incubated DMEM/F12 acted as a negative control. Following 1 day of incubation,
the elution media of the HNBR-coated samples and controls were supplemented with
10% FBS and 1% pen/strep. Separately, 3T3 fibroblast cells were seeded in a 48-well plate
at a seeding density of −20,000 cells well−1 and grown in DMEM supplemented with
10% FBS and 1% pen/strep. The cells were incubated at 37 ◦C in a humidified environment
of 5% CO2 until 80–90% confluency. The growth medium in each well was replaced with
100% serum-supplemented elution medium. The cells were incubated for 24 h and the
cell viability was then assessed using an XTT assay. XTT was prepared at a concentration
of 1 mg mL−1 in pre-warmed supplemented media. N-Methyl dibenzopyrazine methyl
sulfate (PMS) prepared at a concentration of 10 × 10−3 M in sterile PBS served as the
electron donor. Immediately prior to introduction to the cells, 10 µL of PMS solution was
added to 4 mL of XTT solution. Then, XTT/PMS (62.5 µL) was added to each well, which
contained 250 µL of medium. After incubation for 3 h, the resulting color changes were
evaluated by measuring the absorbance at 450 nm using a spectrophotometer (SpectraMax
i3, Molecular Devices). Three independent cell cultures were prepared, and the blank-
subtracted absorbance values were normalized to the media-only negative control for each
culture. The normalized cell viability represents the average of the three cultures and is
plotted with error bars representing the standard deviation.

2.9.2. Neuronal Cultures

Primary neurons were isolated from embryonic day 18 rat fetuses following previously
published protocols [47]. Briefly, the mother rat was euthanized under CO2 followed by cer-
vical dislocation and the pups were removed. From individual pups, cortices were isolated
and submerged in 0.15% trypsin solution to obtain cells, which were then resuspended
in neurobasal medium supplemented with B27 and pen/strep. Neurons were plated at
30,000 cells cm−2 in a 24-well plate containing HNBR-coated fibers and grown for 3 days
before fixing with 4% paraformaldehyde. The fixed cells were stained to visualize neurite
outgrowth (anti-β-III tubulin) and nuclei (DAPI). A confocal microscope (Olympus Flu-
oview 1000) was used to collect z-stack fluorescent images. ImageJ was used to flatten the
z-stack and obtain a snapshot of the neurons growing near the HNBR-coated CNT fibers.

3. Results and Discussion
3.1. Optimization of the CDC Technique for Fabricating Flexible HNBR-Coated CNT Fibers

Dip-coating techniques are widely used to coat various substrates with polymer ma-
terials. In the present study, a continuous approach was adopted to enable the coating of
meters-long CNT fibers with HNBR in a single step. The CDC technique facilitates the fab-
rication of uniform and pinhole-free insulated CNT fibers, which have utility in both micro-
and macroscale applications. Advantageously, the CDC approach is efficient, generates
less organic solvent waste, and provides control over the polymer coating thickness based
on the polymer concentration/viscosity and withdrawal speed. Recently, this technique
has been used to coat polymer optical fibers and hollow fiber membranes with cladding
materials and polyvinyl alcohol, respectively [48,49]. Alvarez et al. first reported the
fabrication of HNBR-coated CNT fiber microcables using the CDC approach with acetone
as a solvent [43].

Herein, the CDC approach was optimized to generate pinhole-free, uniform HNBR
coatings with a controlled thickness on CNT fibers. The CNT fibers were prepared by
dry-spinning a VA-CNT array and subsequent fiber densification. The solvent-induced
densification process generally improves the conductivity and mechanical properties of
CNT fiber [43,50,51]. Initially, the CDC process was optimized using a densified CNT
fiber with a diameter of 44 µm (Figure 2A). Subsequently, the optimized parameters were
used to coat CNT fibers with diameters in the range of 25–66 µm to demonstrate the wide
applicability of the CDC approach.
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(A) an acetone-densified CNT fiber with a diameter of 44 µm, and CNT fibers with diameters
of (B) 24.8 ± 0.7, (C) 43.6 ± 1.3, and (D) 66.0 ± 0.3 µm after coating with HNBR using the opti-
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of 6 mm s−1). Corresponding cross-sectional SEM images of the HNBR-coated CNT fibers with
diameters of (E) 24.8 ± 0.7, (F) 43.6 ± 1.3, and (G) 66.0 ± 0.3 µm.

The theory of liquid film development on a substrate via dip-coating is well-established
and has been further extended for fiber geometries. Generally, the thickness of the meniscus
depends on multiple parameters, including the fiber length, withdrawal speed, and fluid
properties such as viscosity and density [48,52,53]. In this study, the HNBR concentration
and fiber withdrawal speed were evaluated as critical parameters to achieve complete
fiber coverage with a uniform thickness. For dip-coating, a suitable solvent is necessary
to obtain uniform polymer films. Volatile organic solvents with low surface tensions,
such as alcohols, are favored for dip-coating applications [54]. We previously dispersed
HNBR using acetone because of its low boiling point (56 ◦C) [43], but dispersion was
limited at HNBR concentrations lower than 0.055 g mL−1. In the current study, methylene
chloride was chosen as the dispersion solvent, as HNBR could be dispersed at a wider
range of concentrations. In addition, the low surface tension and fast evaporation (boiling
point: 39.6 ◦C) of methylene chloride were found to be beneficial for uniform polymer film
development on CNT fibers.

Using a CNT fiber with a diameter of 44 µm, the withdrawal speed (1.5–13.0 mm s−1)
was first optimized at a constant HNBR concentration of 0.055 g mL−1. The CNT fiber
sidewall coverage and insulation properties were evaluated using SEM imaging and
electrochemical testing. Although continuous coating of the CNT fiber was achieved at a
minimum withdrawal speed of 6 mm s−1, the coating thickness was not sufficient to provide
complete insulation. As shown by the SEM image in Figure S2A, the underlying CNT fiber
features were visible when the coating thickness was less than 1 µm. Fundamental research
on dip-coating techniques has suggested that the coating thicknesses can be increased by
using withdrawal speeds below 0.1 mm s−1 or above 1 mm s−1 [54]. The coating was found
to be discontinuous when the withdrawal speed was below 6 mm s−1, although withdrawal
speeds below 1.5 mm s−1 were not evaluated in this study. At higher withdrawal speeds, a
slight improvement in the coating thickness was observed. However, higher withdrawal
speeds resulted in a shorter exposure time for polymer cross-linking at 160 ◦C. Therefore,
to provide sufficient time in the cylindrical furnace for cross-linking, further optimization
was performed at a withdrawal speed of 6 mm s−1.
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Subsequently, the effects of the HNBR concentration (0.055–0.10 g mL−1) on coating
uniformity and thickness were analyzed. A significant improvement in polymer thickness
was achieved using 0.1 g mL−1 HNBR. As shown in Figure 2B–D, CNT fibers with various
diameters (24.8 ± 0.7, 43.6 ± 1.3, and 66.0 ± 0.3 µm) were coated with HNBR using
the optimized CDC conditions (0.1 g mL−1 HNBR dispersion in methylene chloride at
a withdrawal speed of 6 mm−1). Corresponding cross-sectional images are presented
in Figure 2E–G. Under the optimized conditions, the topographic features of the CNT
fiber were completely covered, the diameter was uniform along the fiber length, and the
fabricated coating was pinhole free. The average HNBR coating thickness was 7 µm for the
CNT fibers with a diameter of 24.8 µm.

The presence of defects and the insulation behavior of the CNT fibers coated under the
optimized conditions were analyzed using Cu electrodeposition (Figure S2B). To evaluate
the limitations of the CDC technique, a 4.8 m long CNT fiber was continuously coated
under the optimized CDC conditions. Continuous coating of the entire fiber was achieved,
and no defects were observed at either end of this fiber, as shown by the SEM images in
Figure S1C. These results demonstrate the efficiency of the CDC approach for fabricating
large quantities of pinhole-free and uniform HNBR-coated CNT fibers using inexpensive
materials and a homemade setup.

Strong polymer–electrode adhesion is critical for developing insulating coatings on
implantable neural electrodes, and the development of suitable polymer materials and
technologies is an ongoing research area. Polymers such as parylene C show good perfor-
mance as insulating materials but lack strong adhesion with underlying substrates [55,56].
The importance of this phenomenon is discussed further in Section 3.4. SEM images at
the interface between the HNBR coating and CNT fiber (Figure S2D,E) reveal the excellent
wetting quality of the polymer. The SEM image in Figure S2D was taken at the point on the
CNT fiber where the polymer film began to develop at the meniscus. Figure S2E shows a
high-magnification SEM image of the HNBR-coated CNT fiber cross section. These images
indicate seamless integration between HNBR and the CNT fiber, in agreement with our
previous study [43], which is expected to be beneficial for developing neural electrodes.
To further evaluate the suitability of the HNBR-coated CNT fibers for neural electrode
development, the chemical, electrochemical, aging, and biocompatibility characteristics
were evaluated.

3.2. Spectroscopic Characterization of HNBR Coating

To analyze the chemical nature of HNBR, the CNT fibers before and after coating
were characterized using FT-IR and Raman spectroscopy. However, XPS was performed
on HNBR-coated glass slides, as the HNBR-coated CNT fibers are much smaller than the
instrumental limitation (lowest surface area of 400 µm diameter spot size).

Raman spectroscopic analysis of the uncoated CNT fiber with a diameter of 24.8 µm re-
vealed the presence of characteristic D (sp3 carbon, 1330 cm−1), G (sp2 carbon, 1590 cm−1),
and G′ (2660 cm−1) bands (black line, Figure 3A). The Raman spectrum of the fiber af-
ter coating contained additional peaks at 1080, 1442, 2230, 2857, and 2900 cm−1 (red
line, Figure 3A). Similar peaks were observed for pristine Zetpol 2000 HNBR (blue line,
Figure 3A). The peaks at 1442 and 2857–2900 cm−1 were attributed to the deformation
and stretching vibrations, respectively, of CH2 groups in the highly saturated nitrile poly-
mer [57–59]. The presence of nitrile groups was clearly indicated by the sharp peak at
~2230 cm−1, which was assigned to the v(C≡N) stretching vibration [57]. Typically, nitrile
butadiene rubbers also exhibit peaks at ~1300 and 1640–1660 cm−1 (C=C stretching). How-
ever, as Zetpol 2000 HNBR is a completely hydrogenated nitrile polymer, the peak observed
near 1590 cm−1 for the HNBR-coated fiber is likely due to the characteristic G band of the
underlying CNT fiber [57]. This assignment was further confirmed by the absence of a peak
at 1590 cm−1 for pristine Zetpol 2000 HNBR. The FT-IR spectrum of the coated CNT fiber
also exhibited characteristic peaks corresponding to HNBR (Figure 3B) [60–62]. The peaks
at 2926, 2856, and 1465 cm−1 were attributed to the stretching and deformation vibrations
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of CH2 groups in the polymer structure. The peak at 724 cm−1 was assigned to –CH2–
vibrations in saturated C–C bonds. The distinct peak at 2237 cm−1 was attributed to –C≡N
groups. These observations indicate that the chemical nature of HNBR was preserved after
the coating process.
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Figure 3. Chemical characterization of HNBR-coated CNT fibers. (A) Raman spectra of a pristine CNT
fiber (black), an HNBR-coated CNT fiber (red), and neat Zetpol 2000 HNBR (blue); (B) ATR-FT-IR
spectra of a pristine CNT fiber (black), an HNBR-coated CNT fiber (red), and neat Zetpol 2000 HNBR
(blue); the fibers were coated using the optimal CDC parameters (0.1 g mL −1 HNBR dispersion in
methylene chloride at a withdrawal speed of 6 mm−1). (C) XPS survey scan and high-resolution XPS
spectra at the (D) N 1s, (E) C 1s, and (F) O 1s core levels of an HNBR-coated glass slide; HNBR-coated
glass slides were prepared as described in Section 2.5.1.

XPS was used to further confirm the chemical nature of HNBR. As shown by the XPS
survey scan of an HNBR-coated glass slide (Figure 3C), the C 1s and N 1s peaks were
predominant with a low-intensity O 1s peak. The atomic percentages of C, N, and O were
90.50 ± 0.67%, 7.49 ± 0.21%, and 1.66 ± 0.46%, respectively. The absence of a Cl peak
confirmed that the solvent evaporated completely during withdrawal of the substrate.
High-resolution N 1s, C 1s, and O 1s spectra are shown in Figure 3D–F. In the N 1s
spectrum (Figure 3D), a single peak was observed at 399.9 eV corresponding to free –C≡N
groups [62,63]. Deconvolution of the C 1s spectrum (Figure 3E) gave two peaks at 284.3 and
286.7 eV. According to the manufacturer, Zetpol 2000 HNBR is a fully hydrogenated nitrile
rubber with little to no double bonds in the backbone. Therefore, the peak at 284.5 eV was
assigned to C–C and C–H (sp3 C) in the polymer backbone [64,65]. The peak at 286.7 eV was
assigned to –C≡N groups and C–O surface functional groups introduced after peroxide
curing [62,64,65]. Deconvolution of the O 1s spectrum (Figure 3F) resulted in a single peak
at 532.8 eV, which confirmed the introduction of C–O-containing functional groups during
peroxide curing. Similar C–O-containing groups have been previously reported following
nitrile rubber curing processes [64].

3.3. Cytotoxicity Evaluation of HNBR Coating

Implantable devices should be able to function in vivo without triggering undesirable
immune and inflammatory responses [66,67]. Accordingly, biocompatibility is a key re-
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quirement for the clinical use of implantable biomaterials. Different aspects of biomaterials,
such as their chemical nature, mechanical properties, and structural properties, can interact
with the biological environment of the host and negatively influence the host tissue [67],
resulting in undesirable effects, including cytotoxicity, sensitization, irritation, systemic
toxicity, subchronic toxicity, genotoxicity, and inflammatory tissue responses. The biocom-
patibility of CNT fibers has been previously demonstrated [68–70]. Thus, in the current
study, we focused on evaluating the cytotoxicity of the HNBR coating prepared from Zetpol
2000 HNBR. The manufacturer (Zeon Chemicals) states that Zetpol 2000 HNBR meets all
FDA guidelines for safe and direct contact with food materials, but its grade has not been
evaluated for implantable biomedical devices. Therefore, it is important to investigate the
biocompatibility of HNBR.

Elution tests were primarily used to evaluate the toxicity of leachable materials such
as unreacted raw materials, cross-linking agents, and impurities, which can leach into the
local environment over time and generate toxic effects. After soaking HNBR-coated glass
slides in serum-free DMEM for 1 day, the elution media was collected, treated with serum
and antibiotics, and added to 3T3 fibroblasts cells after they reached 80–90% confluency.
As shown in Figure 4A, the elution media from HNBR-coated samples did not have a
toxic effect on the normalized cell viability, as compared to the positive control (one-way
ANOVA, Kruskal–Wallis multiple comparison test, *** p < 0.001). Further, there was no
significant difference between the HNBR, media-only, and glass-only control conditions,
confirming the absence of toxic leachable materials in the HNBR coating.
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Figure 4. Biocompatibility of HNBR-coated samples. (A) XTT cell viability assay, showing no
significant differences in normalized cell viability between the media obtained by soaking HNBR-
coated glass coverslips for 1 day and the media-only negative control. Media with 0.01% Triton-X
served as the positive control with a toxic effect on the 3T3 fibroblast cells. The data are shown as
mean normalized cell viability with error bars representing the standard deviation for n = 3 cell
cultures, each with 3 technical well replicates (** p < 0.01, *** p < 0.001, one-way ANOVA with
Kruskal–Wallis multiple comparison test). (B) Image showing neuron growth on 24.8 µm HNBR-
coated CNT fibers, where green and blue represent β-tubulin immunolabeling and nuclei, respectively.
(C) Representative high-magnification image with the fiber highlighted by a white box.

We also performed a direct contact assay by placing HNBR-coated CNT fibers on
cultured primary neurons. As visualized in Figure 4B,C, neurons grew seamlessly around
and on the fiber itself. This observation further confirms the suitability of HNBR insulation
for CNT fiber electrodes for neural applications.

3.4. Electrochemical Analysis of HNBR-Coated CNT Fiber Microelectrodes
3.4.1. EIS Analysis

EIS is widely used to evaluate the properties of implantable microelectrodes including
electrode–electrolyte interactions, metal electrode corrosion, conductive polymer oxidation,
and electrode biofouling by proteins and inflammatory cells. Insulating polymers can also
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be subjected to delamination, degradation, and mechanical damage during insertion [35,71],
which can expose the underlying conductive materials, resulting in device failure and
health risks.

In the current study, EIS was used to investigate the stability of the HNBR-coated CNT
fiber microelectrodes in vitro as an initial indicator of their suitability for its use in vivo. For
the electrochemical evaluation, HNBR-coated CNT fiber microelectrodes were prepared
using the 24.8 µm CNT fibers with an HNBR coating thickness of 7 µm. Prior to EIS
analysis, the HNBR-coated CNT fiber microelectrodes were electrochemically pretreated
to achieve stable performance. In particular, consistent charging currents were obtained
after 50 CV cycles in the range of +1 to −1 V in PBS (pH 7.4), as shown in Figure S3A,B.
Electrochemical pretreatment significantly reduced the impedance of the microelectrodes,
especially in the mid- and low-frequency ranges (Figure 5A). The phase angle and the
Nyquist plot of a single microelectrode is shown in Figure S3C,D, respectively. Figure 5B
shows a comparison of the impedance at 1 kHz for HNBR-coated CNT fiber microelectrodes
before and after electrochemical pretreatment (n = 15). The deviation in impedance was
small after electrochemical pretreatment, with an average impedance of 55.9 ± 19.5 kΩ for
electrochemically pretreated HNBR-coated CNT fiber microelectrodes at 1 kHz.
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physical damage to the HNBR coating was observed following repeated CV cycling. Elec-
trodeposition in CuSO4 solution was used to investigate potential breakage of the polymer 
resulting from the application of higher voltages. SEM images of the side of the microe-
lectrode and the microelectrode active area after electrodeposition are shown in Figure 
S3E,F. Cu particle deposits were only observed on the microelectrode active area, not the 
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Figure 5. Electrochemical characterization of HNBR-coated CNT fiber microelectrodes. (A) Bode plot
for the EIS analysis of HNBR-coated CNT fiber microelectrodes in the frequency range of 0.01–106 Hz
in 0.01 M PBS (pH 7.4), (B) impedance analysis at 1 kHz for HNBR-coated microelectrodes before
and after stabilization by electrochemical pretreatment (n = 15), and (C) CV curve representing the
CSCc of an HNBR-coated CNT fiber microelectrode. CV measurements were performed in 0.01 M
PBS (pH 7.4) at a scan rate of 0.1 V s−1. The inset show the average CSCc for HNBR-coated CNT fiber
microelectrodes (n = 15).

The stabilized electrodes were evaluated via SEM and electrodeposition to confirm
that no physical damage/delamination occurred during electrochemical pretreatment.
No physical damage to the HNBR coating was observed following repeated CV cycling.
Electrodeposition in CuSO4 solution was used to investigate potential breakage of the
polymer resulting from the application of higher voltages. SEM images of the side of the
microelectrode and the microelectrode active area after electrodeposition are shown in
Figure S3E,F. Cu particle deposits were only observed on the microelectrode active area,
not the sidewalls of the HNBR-coated CNT fiber microelectrodes, which implies that no
polymer delamination occurred. Therefore, the significant improvement in impedance after
electrochemical pretreatment was attributed to activation of the electrode surface area by
increasing electrolyte penetration into the CNT fiber to form a double layer (activation-
enhanced length effect) and surface functionalization by oxygen-containing functional
groups. The activation-enhanced length effect of VA-CNTs has previously been studied
experimentally and using equivalent circuit modeling [72]. Similar electrochemical pre-
treatment techniques are frequently used to activate carbon-based microelectrodes and are
considered to introduce oxygen-containing functional groups and remove impurities [73].
The microelectrode consist of millions of densified CNTs with their tips and sidewalls
exposed at the surface, which can undergo activation due to tip and sidewall functionaliza-
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tion. Depending on the density of CNTs and tip/sidewall contribution, the electrochemical
properties could vary between samples. The calculated specific impedance of the stabilized
microelectrode at 1 kHz was 27.0 ± 9.4 MΩ µm2, which is remarkable compared to those
of previously reported metal- and carbon-based microelectrodes [9]. The low impedance of
the fabricated HNBR-coated CNT fiber microelectrodes is favorable for both stimulation
and recording purposes. As the long-term stability of both the HNBR coating and electrode–
electrolyte interface is important for chronic applications, additional aging studies were
performed, as discussed in Section 3.4.3.

3.4.2. CSC and Water Window Analysis

The CSC is another important electrochemical property for neural electrodes. Neural
interfaces with larger CSC values are preferential to enhance the performance of stimulation
electrodes [23,74,75]. Delamination and electrolyte leakage through insulating coatings
can lead to undesirable large electrical currents that can harm tissues and cells. Thus,
monitoring the CSC provides information about insulating polymer failure as well as the
stability of the electrode material. CSC, which is defined as the total available reversible
charge per unit of geometrical surface area of the electrode, is typically estimated by
performing CV in PBS within the water window [74,76–78]. The cathodal CSC (CSCc),
which is frequently used to estimate the total reversible charge available in the cathodic
phase of a pulse of stimulation area, was used in the current study. Owing to their extremely
high surface areas and excellent conductive properties, CNTs are widely used to increase
the CSC of metal electrodes [79].

To evaluate CSCc, the CNT fiber microelectrodes with a fiber diameter of 24.8 µm and
an HNBR coating thickness of 7 µm were used. The water window for the HNBR-coated
CNT fiber microelectrodes was estimated using CV in PBS (Figure S4A). A water window
in the range of −1.6 to 1.3 V was observed, which is much wider than those reported for
metallic (Pt, Au, IrOx) and conductive-polymer-based neural electrodes [80–83]. Vitale et al.
also reported a wide water window of −1.5 to 1.5 V for CNT fiber electrodes [9]. The CSCc
was calculated from the time integral of the cathodic current between potentials of −1
and 1 V (Figure 5C). The average CSCc (487.6 ± 49.8 mC cm−2) was significantly larger
than those of reported metal- and CNT-fiber-based neural electrodes [9,10]. The stabilized
microelectrodes were monitored overnight to confirm the stability of CV and the EIS data
(Figure S4B,C).

3.4.3. Aging Studies of HNBR-Coated CNT Fiber Electrodes

In vitro aging studies provide information about the durability of a material and
its suitability for chronic applications. Prolonged microelectrode soaking may result in
water vapor diffusion through the polymer, delamination due to weak adhesion, and
unwanted reactions between the coating material and surrounding PBS solution, which can
cause insulating coating materials to fail over time. The resulting exposure of underlying
CNT fiber sidewalls can significantly increase charge transfer, which could be harmful.
Accelerated aging tests at elevated temperature allow polymer degradation to be evaluated
in a short period of time [23,84]. Accelerated aging tests can also be performed in the
presence of hydrogen peroxide at elevated temperatures to predict the effect of reactive
oxygen species on the electrode itself [24]. However, this effect is more relevant for metallic
neural electrodes due to metal dissolution.

Therefore, in the current study, accelerated aging tests were only performed at elevated
temperatures to study the degradation of HNBR. The stability of the polymer at 37 ◦C
over 4 weeks was investigated to achieve a better understanding of its properties under
physiological conditions. In addition, the HNBR-coated CNT fibers were analyzed at 60
and 70 ◦C for 45 days. Figure 6A–F show the morphologies of the HNBR-coated CNT fibers
that were incubated at 37, 60, and 75 ◦C in PBS. No physical damage or delamination of
HNBR was observed over 4 weeks at 37 ◦C in PBS (Figure 6A,B), which implies that HNBR
remained unreactive during the analysis period under physiological conditions. HNBR
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composites have previously been reported to have excellent chemical, solvent, and aging
resistance, which is attributable to the fully saturated polymer backbone structure [85].
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Figure 6. Morphological and EIS analysis of aged HNBR-coated CNT fibers. High-magnification
SEM images of HNBR-coated CNT fibers after incubation (A,B) at 37 ◦C for 30 days in PBS, (C,D) at
60 ◦C for 45 days in PBS, and (E,F) at 75 ◦C for 45 days in PBS. EIS analysis of HNBR-coated CNT
fiber microelectrodes incubated (G) at 37 ◦C for 3 weeks and (H) at 60 ◦C for 2 weeks. Weeks 1, 2,
and 3 are denoted as W1, W2, and W3, respectively.

Strong adhesion between the electrode and polymer coating material is very important
for reducing water vapor accumulation between the insulating polymer and the underlying
conductive components. This is a serious issue for parylene C-based systems, as parylene
C shows poor adhesion with many materials and the substate must undergo surface
pretreatment to increase adhesion. Notably, the excellent wetting behavior of HNBR
on CNT fibers is extremely beneficial for creating seamless integration at the polymer–
CNT interface. As shown in Figure S2D,E, HNBR wets the CNT fiber surface easily, thus
diminishing the risk of water vapor accumulation issues.

HNBR also remained intact without cracks, delamination, or swelling after accelerated
aging at 60 and 75 ◦C for 45 days in PBS (Figure 6C–F). The durability of the 7 µm thick
HNBR coating at these high temperatures implies that the polymer can withstand physio-
logical conditions for much longer periods. The manufacturer (Zeon Chemicals) reports
that Zetpol 2000 HNBR can withstand even higher temperatures (160 ◦C). For polymers
such as polyimide, almost complete delamination from metal-based electrodes occurs at
87 ◦C over 7 days [24]. In contrast, no delamination was observed for the HNBR-coated
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fibers at any of the studied temperatures. However, cavity formation did occur, the degree
of which was higher at 60 and 75 ◦C than at 37 ◦C. In addition, the cavities were found to
form during first week with no increases observed during further incubation. Importantly,
hole formation was not observed when the HNBR-coated CNT fibers were incubated at 60
and 75 ◦C without PBS. Therefore, this phenomenon may be due to a water-soluble impu-
rity. An elution test was performed to analyze the possible toxic effects of water-soluble
impurities, as described in Section 3.3.

EIS was performed for the HNBR-coated CNT fiber microelectrodes incubated at 37
and 60 ◦C to evaluate the changes in impedance and CSC over time. Generally, the forma-
tion of cracks and cavities can expose underlying conductive elements to the electrolyte
solution, resulting in a reduced impedance and higher CSCc. The changes in impedance
at 1 kHz over time for the HNBR-coated CNT fiber microelectrodes incubated at 37 and
60 ◦C are shown in Figure 6G,H, respectively. For each temperature condition, three elec-
trodes are presented in Figure 6G,H. The impedance was analyzed every 7 days and the
measurements were performed at room temperature. For the microelectrodes incubated
at 37 ◦C in PBS, a gradual increase in impedance was observed over 3 weeks in the mid-
to low-frequency regions (Figure S5A). However, the HNBR coating remained intact, and
no damage was observed. Additionally, for the microelectrodes incubated at 60 ◦C in
PBS, an increase in impedance was observed after 2 weeks (Figure S5B). However, the
impedance analysis time was reduced to 2 weeks for the microelectrodes incubated at
60 ◦C due to the change in color (possible oxidations) that occurred at the metal/CNT fiber
connections, where Ag paste was employed. Compared to electrode 1 and 2, electrode 3
showed a significant increase in the impedance at 1 kHz (Figure 6H). The SEM images of
the electrodes revealed that no damage was visible at the interface of the microelectrode
that was in contact with the electrolyte, but SEM images of the microelectrode surfaces
revealed that debris might accumulate on the electrode surface after prolonged soaking in
PBS. Therefore, the increased impedance could be due to changes in the electrode surface
instead of damage to the HNBR coating. The observed CSCc further confirmed the fouling
of the electrode surface, in agreement with the EIS results.

4. Conclusions

In this work, the CDC approach was used to coat CNT fibers with a flexible polymer,
HNBR, to develop pinhole-free coatings with uniform thicknesses. Critical CDC parameters,
including the HNBR concentration and withdrawal speed, were optimized to achieve
uninterrupted and uniform HNBR coatings on CNT fibers. The feasibility of this technique
for coating CNT fibers with diameters in the range of 25–66 µm and lengths of up to
4.8 m was successfully demonstrated. The biocompatibility of the HNBR coating was
confirmed in vitro using elution tests and neuronal cultures. The microelectrodes prepared
from the HNBR-coated CNT fibers showed favorable electrochemical properties for the
development of neural electrodes. These electrodes achieved a specific impedance and
CSCc of 27.0 ± 9.4 MΩ µm2 and 487.6 ± 49.8 mC cm−2, respectively. Furthermore, aging
tests revealed that the HNBR coating had better tolerance for extreme temperatures than
previously reported insulating materials. These findings provide a basis for developing
flexible polymer coatings on carbon-based implantable microelectrodes for long-term
biomedical applications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bioengineering10060647/s1, Figure S1: Schematic illustration of
HNBR coated CNT fiber microelectrode fabrication; Figure S2: SEM evaluation of HNBR coated CNT
fiber sidewalls and cross sections; Figure S3: Electrochemical evaluation, and SEM characterization of
electrochemically pretreated HNBR coated CNT fiber microelectrodes; Figure S4: Water window, and
overnight stability analysis of electrochemically pretreated HNBR coated CNT fiber microelectrodes;
Figure S5: Impedance analysis of thermally aged HNBR coated CNT fiber microelectrodes.
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