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Abstract: The rising prevalence of diabetes and the increasing awareness of self-health management
have resulted in a surge in diabetes patients seeking health information and emotional support in
online health communities. Consequently, there is a vast database of patient consultation information
in these online health communities. However, due to the heterogeneity and incompleteness of
the content, mining medical information and patient health data from these communities can be a
challenge. To address this issue, we built the RoBERTa-BiLSTM-CRF (RBC) model for identifying
entities in the online health community of diabetes. We selected 1889 question–answer texts from the
most active online health community in China, Good Doctor Online, and used these public data to
identify five types of entities. In addition, we conducted a comparative evaluation with three other
commonly used models to validate the performance of our proposed model, including RoBERTa-
CRF (RC), BilSTM-CRF (BC), and RoBERTa-Softmax (RS). The results showed that the RBC model
achieved excellent performance on the test set, with an accuracy of 81.2% and an F1 score of 80.7%,
outperforming the performance of traditional entity recognition models in named entity recognition
in online medical communities for doctors and diabetes patients. The high performance of entity
recognition in online health communities will provide a crucial knowledge source for constructing
medical knowledge graphs. This integration would help alleviate the growing demand for medical
consultations and the strain on healthcare resources, while assisting healthcare professionals in
making informed decisions and providing personalized services to patients.

Keywords: diabetes; online healthcare data; named entity recognition; RoBERTa-BiLSTM-CRF; online
health community

1. Introduction

In 2030, it is expected that 11.3% of adults will have diabetes, which would affect
roughly 643 million people. Diabetes is one of the most rapidly expanding global crises of
the 21st century [1]. Relevant studies have indicated that roughly half of web-based health
information users with chronic health issues may benefit from accessing online health
information [2]. The Q&A structure of online health communities (OHCs) is becoming
more and more popular, with diabetic patients seeking medical knowledge and diabetic
self-management assistance [3–5].Online health communities store a significant amount of
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case information, medical knowledge, and prescription data, which serves as the hotspots
for medical big data applications.

In the doctor–patient Q&A texts from the online health community, entities can be
identified as linked to diseases, medications, tests, treatments, and symptoms for diabetes
patients, and used to provide various intelligent services to diabetic patients. We can also
gain a deeper understanding of patients’ needs and interests in health-related information
through entity recognition [6].With this knowledge mined from online health communities,
we can then offer patients individualized medical care, health information, decision-making
participation, emotional support services, and improvements in online medical services.

Historically, vast sets of rules or lexicons had to be manually created by professionals
for both rule-based and lexicon approaches to medical entity recognition [7–9]. Using bench-
mark data from the i2b2 2009 drug challenge and a hybrid lexicon-based and rule-based
model, [10] achieved an F1 score of 66.97% for the named entity recognition of pharmaceu-
ticals. Statistics-based machine learning algorithms leveraging manually annotated corpora
for supervised training have exhibited a significant increase in accuracy over rule-based
and lexicon-based entity recognition approaches [11,12]. With the advent of deep learning,
numerous neural-network-based models have effectively been used for the textual entity
recognition of biological documents [13,14], electronic medical records [15–17], and online
health communities [18–20] Dreyfus Dreyfus. Based on the entity recognition infrastructure
deep learning model LSTM-CRF, Guillaume Lample et al. [21] proposed a neural network
model that combines bidirectional long short-term memory (BiLSTM) and conditional
random fields (CRFs). This bidirectional structure enables the capture of sequential in-
formation in context, leading to widespread applications in entity recognition. Wang, Z.
et al. [22] retrieved input patient fundamental information and illness information, anno-
tated entities on medical community Q&A texts, and trained a BiLSTM-CRF to recognize
and extract entities linked to diabetes in the medical domain. However, the BiLSTM-CRF
model focuses on extracting features between words and characters from the text while dis-
regarding the contextual meaning of context. To address this issue, Jacob Devlin et al. from
Google introduced a BERT pre-training model [23]. This model improved the quality of
embedding words and reduced the workload of downstream classification tasks, resulting
in better recognition performance. In recent years, named entity identification in electronic
medical records [24–26] and biomedical literature [27] has been successfully implemented
with BERT, a pre-trained model with enhanced contextual long-range semantic learning
capability based on word vectors.

Due to their lack of medical knowledge, users of the online healthcare communities
for diabetes produce texts that contain inaccurate or slang expressions. Entity recogni-
tion of Q&A text in online health communities is challenged with semantic ambiguity,
content heterogeneity, high complexity, and imperfect recognition; hence, it is difficult
to achieve the desired outcome. Some studies have shown that applying the RoBERTa
model to named entity recognition tasks improves the entity recognition performance
(F1 score) [28]. To mitigate the impact of Chinese online health data on the performance
of entity recognition, this paper utilizes a combined model of RoBERTa-BiLSTM-CRF to
accomplish medical entity recognition tasks related to diabetes. This method primarily
addressed the following tasks: (1) We standardized the diabetes annotation corpus of
the online health community using the diabetes entity classification standards of Ruijin
Hospital; (2) The pre-trained model RoBERTa-BiLSTM-CRF was used to identify named
entities in Q&A text from the Good Doctor Online health community, and evaluated by
comparing it with the other three models; (3) The entity recognition performance of the
Q&A texts from the perspective of the patient was compared with that of electronic medical
records from the clinician’s perspective.
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2. Method
2.1. Data Collection and Preprocessing

We chose the top Chinese online doctor–patient Q&A platform, “Good Doctor Online”
(https://www.haodf.com/, accessed on 5 December 2021), searched the Q&A section of
the diabetes-specific disease section, and collected 9446 questions from November 2020 to
November 2021. When consulting doctors, patients submitted content using a specified
information description framework, as shown in Figure 1.
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Figure 1. Online doctor-patient Q&A text structure (from the website’s original screenshot).

For this study, the following preprocessing processes were carried out: (1) Removed all
non-textual content (replacing emoji icons with emoji-related codes); (2) Filtered 2000 values
at random from the acquired dataset of 9445 values, deleted duplicate and nonsensical data
to obtain 1889 values, and converted the data to JSON format; (3) Annotated the questions
of health community Q&A text into eight categories (check, disease, drug, mood, life, social,
symptom, and treat) using the Doccano annotation tool. Figure 2 depicts the annotation
interface; (4) To process the exported text, it was divided into 6669 values. The dataset was
then further split into a training set consisting of 6019 data slices and a test set consisting of
650 data slices. The ratio of this split was approximately 9:1. Within the training set, the
data were divided into a training subset and a validation subset, at a ratio of 5:1. Next, we
converted the JSON format files into a data format for generic named entity recognition
tasks using BIO tagging; (5) Utilized the RoBERTa word vector model made available by
the Harbin Institute of Technology as an open source. Figure 3 depicts the specific data
preprocessing procedure.
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2.2. RoBERTa-BiLSTM-CRF Model Construction

This article employed the RoBERTa-BiLSTM-CRF model, which is composed of three
layers: the RoBERTa word vector layer, the BiLSTM layer, and the CRF layer. In the word
vector layer, word embedding and model construction were carried out by applying the
Chinese pre-training model from the HUST Xunfei Lab in order to obtain word-level vector
information and a semantic representation suitable for the Chinese language. The BiLSTM
layer is utilized for semantic encoding, and forward and backward LSTM networks are
used for each training sequence; the forward and backward networks were connected to
the same output layer. The CRF layer, which effectively evaluated the labeling information
before and after the sequence, filtered out entities that did not conform to the labeling rules
and outputs a sequence with the best likelihood of being correctly categorized. Figure 4
depicts the general structure of the RoBERTa-BiLSTM-CRF model.

2.2.1. RoBERTa Pre-Training Layer to Construct Word Vectors

Each input word of the encoder generated three vectors, denoted by vectors, accord-
ingly. After calculating the inner product between and producing the similarity weights,
the similarity was calculated. Then, the weights were normalized to a value between 0 and
1, and the similarity vector was processed using the function shown in Equation (1).

αi = so f tmax( f (Q, Ki)) =
exp( f (Q, Ki))

∑i exp( f (Q, Ki))
(1)
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Scaling was accomplished by multiplying 1√
dk

with the result of the inner product of

Q and K. The attentional mechanism is presented in Equation (2).

Attention(Q, K, V) = so f tmax
(

QKT
√

dk

)
V (2)

Combining the outcomes of attention processes yielded the multi-headed attention
module, as determined using Equation (3).

MultiHead(Q, K, V) = Concat(head1, head2, head3, . . . , headh)Wo (3)

The output of the multi-headed attention layer was then passed to the feed-forward
neural network, the module described in Equation (4).

FFN(Z) = max(0, ZW1 + b1)W2 + b2 (4)

The output layer employed a self-supervised approach to estimate the probability
that the masked target word and the two phrases shared a contextual link. After multiple
training iterations, the likelihood and the weight parameter with the largest value for the
two tasks are determined.
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2.2.2. Layer of BiLSTM for Semantic Encoding

Long short-term memory networks incorporate memory units in the hidden layer,
which can better solve the problem of gradient disappearance caused by excessively long
sequences in the training of conventional recurrent neural networks, enabling them to be
more effectively used in the named entity recognition task. Its structure consists of the
following equations:

it = σ
(

xt · wi
xh + ht−1 · wi

hh′ + bi
h

)
(5)

ft = σ
(

xt · w f
xh + ht−1 · w

f
hh′ + b f

h

)
(6)

ot = σ(xt · wo
xh + ht−1 · wo

hh′ + bo
h) (7)

c′t = tanh(xt · wc
xh + ht−1 · wc

hh′ + bc
h) (8)

ct = it ⊗ c′t + ft ⊗ c′t−1 (9)

ht = ot ⊗ tanh(ct) (10)

The σ denotes the Sigmoid activation function, ⊗ is the dot product operation, and xt
is used as the unit input; it, ft,ot denotes the input gate, forgetting gate, and output gate at a
specific moment, respectively; tanh denotes the hyperbolic tangent activation function; w,b
represent the weight matrix and bias vector of the input gate, forgetting gate, and output
gate, respectively; c′t represents the state at time, which is the intermediate state obtained
only from the current input and is used to update the state at time t; ht represents the
output at time t.

The BiLSTM bi-directional long and short-term memory network with forward and
reverse LSTM for each word sequence was used to decode the text sentences in the input
layer, and data conversion and transfer through forward LSTM and backward LSTM were
used to acquire contextual feature vectors in both directions. First, the output calculated the
error existing in the output layer at each moment, followed by the derivatives of parameters
of the forward LSTM from moment t to moment 1. For the network portion of the backward
LSTM, loss needs to be calculated from moment 1 to moment t, and reverse differentiation
be conducted. The formula for the output is provided in the following equations:

⇀
h t = LSTML

(
⇀
x t,

⇀
h t−1

)
(11)

↼
h t = LSTMR

(
↼
x t,

↼
h t−1

)
(12)

ht =

[
⇀
h t,

↼
h t

]
(13)

2.2.3. CRF Optimized Tag Sequence

CRFs can compensate for the shortcomings of BiLSTM by providing an ideal sequence
of predictions based on the relationship between surrounding labels. The output score
matrix of BiLSTM is supposed to be P for any arbitrary sequence X = (x1, x2, . . . , xn). The
size of P is n× k, where n represents the number of words, k represents the number of tags,
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and Pij represents the score of the jth tag of the word. Equation (14) describes the score
function for the sequence of predictions Y = (y1, y2, . . . , yn).

s(X, Y) =
n

∑
i=0

Ayi, yi+1 +
n

∑
i=0

Pi, yi (14)

A denotes the matrix of transferred scores, Aij represents the scores transferred from label i
to label j, and the size of A is k + 2. Equation (15) describes the probability of generating
the predicted sequence Y.

p(Y|X) =
es(X,Y)

∑Ỹ∈YX
s
(

X, Ỹ
) (15)

The probability function of the expected sequence could be obtained by taking the
logarithm at both ends.

ln(p(Y|X)) = s(X, Y)− ln

 ∑
Ỹ∈YX

s
(

X, Ỹ
) (16)

In Equation (17), Ỹ denotes the true labeled sequence, whereas YX denotes all con-
ceivable labeled sequences. Decoding yielded the output sequence corresponding to the
maximum score.

Y∗ = arg maxs
(

X, Ỹ
)

ỸεYX

(17)

3. Result
3.1. Text Annotation

Health Community Q&A texts are self-reported by patients to their physicians; there-
fore, the language of the text differed from that of the medical literature and electronic
medical records. When annotating, it is important to note the frequent abbreviations and
misspellings. The original words were precisely aligned with the common words. Under
the supervision of two medical informatics professionals and one medical expert, we coded
each record in terms of the classification criteria for diabetes mellitus at Ruijin Hospital.
This labeling was divided into eight categories (check, disease, drug, lifestyle, mood, social
context, symptom, and treatment). Table 1 summarizes the classification criteria.

Table 1. Labeling classification standards.

Classification Description Labeling Case

Check Test and examination items, physical examination, review, etc. A review at the hospital the previous day; a check-up
at the hospital.

Disease Disease names, such as hypertension, diabetes, etc. No diabetes in the family either.

Drug The name of the drug, such as nifedipine, metformin,
nifedipine, etc.

The medications being taken are Metformin
Hydrochloride and Vildagliptin.

Lifestyle Patient’s lifestyle, e.g., smoking, alcohol
consumption, sleep, etc. Smoking; drinking; staying up late.

Mood Irritable, anxious, worried So now it is confusing.

Social context
Dad (my dad), wife (my wife), medical history, occupation,

height, weight, age, gender (pregnancy and
gestation), wanting children.

Height and weight: 171 cm, 70 kg.
Pregnancy: not pregnant.

Symptom
Patient’s subjective description of feelings and signs (skin
jaundice), such as dizziness, non-dizziness, nocturia, puffy

eyelids, and frequent need to urinate.

Feeling of vertigo when standing suddenly; I urinate
frequently and often, but each time the amount of

urine is not much, nausea, vomiting, weakness,
stomach pain, and breast swelling.

Treatment Chinese medicine treatment, immunotherapy, ventilator,
and stent release. Immunotherapy.
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3.2. Experimental Setup

This study was based on the Python + PyTorch + GPU deep neural network learning
framework. The cross-entropy loss function was used as the loss function, and the AdamW
method was employed for model training optimization. A five-fold cross-validation proce-
dure was utilized to run our proposed model. During the training process, we performed
fine-tuning on Roberta. The input dimension, sequence_length, was set to 128. The initial
learning rate of the model was set to 3 × 10−5, while the learning rates of BiLSTM and CRF
were set to five times greater than that of Roberta, namely, 1.5 × 10−4. A cosine schedule
with a warmup was used to adjust the learning rate. We set the warmup steps to one-tenth
of the total training epochs, and the learning rate decay rate was set to 0.01 (weight_decay).
The word embedding dimension (pooler_fc_size) was set to 768, and the batch size was set
to 16. Dropout was applied with rates of 0.1 at the input layer and hidden layers. The total
number of training epochs was set to 50, and the F1 score was calculated on the validation
set after each epoch. The best model was saved accordingly. The patient number was set to
10, which means that if the model did not show improvement on the validation set over
10 consecutive epochs, the training would be terminated early. The weights, biases, and
other parameters were continuously optimized during the training process. To prevent is-
sues such as gradient explosion or vanishing gradients during code execution, the gradient
clipping technique was employed. The performance of the best model was tested on the
final test set, which was not used during model training. The F1 score was calculated for
each category, and the average score was taken as the F1 score on the test set. The average
F1 score from the five rounds of cross-validation was calculated as the final F1 score. The
experimental parameters for model training are summarized in Table 2.

Table 2. Experimental parameters.

Experimental Parameters Value

Sequence_length 128
Batch_size Train set 16, test set 16

Pooler_fc_size 768
Epoch 50

Learning rate 3 × 10−5

Optimizer Adam
Input layer dropout 0.1

Hidden layers dropout 0.1

3.3. Evaluation

This study examined the performance of the model by calculating its precision, recall,
accuracy, and F1 scores. TP, TN, FP, and FN are the number of positive samples correctly
predicted for the positive class, the number of samples correctly predicted for the negative
class, the number of samples incorrectly predicted to be in the positive class, and the
number of samples incorrectly predicted to be in the negative category, respectively. In this
study, the entity array obtained through manual annotation was referred to as the truth
entity set, while the array of entities predicted by the machine learning model after training
was called the predicted entity set. Taking the intersection of these two arrays, the number
of entities that appear in both arrays was defined as true positives (TPs), indicating that
the machine successfully predicted the true entities. The number of entities in the truth
entity set that were not correctly predicted was defined as false negatives (FNs), while the
portion of entities in the predicted entity set that were not correctly predicted was defined
as false positives (FPs). Figure 5 presents the confusion matrices for the four models.

Pre =
TP

TP + FP
(18)

Re =
TP

TP + FN
(19)



Bioengineering 2023, 10, 659 9 of 14

F1 =
2× Pre× Re

Pre + Re
(20)

Accuracy =
TP + TN

TP + TN + FP + FN
(21)
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Precision refers to the ratio of actual positive samples to expected positive samples.
Recall, also known as sensitivity, is the percentage of predicted true-positive samples to
the total number of true-positive samples. The F1 value is a combined precision and recall
rating. Accuracy reflects a model’s ability to correctly classify the overall samples, i.e., the
proportion of samples that are correctly predicted among all samples.

3.4. Model Performance

To verify the validity and feasibility of the model, the total experimental results of our
RBC model and other excellent models are shown in Table 3; the baseline model was BC.
Other models are RC and RS. The experimental results demonstrate that our suggested
RBC model enhanced precision by 4.3%, recall by 7%, F1 values by 5.6%, and Acc values by
5.8%, and had a better overall performance when compared with the BiLST-CRF baseline
model. We used five-fold cross-validation, training, and testing on the corpus; the final
results are shown in Table 3.

Table 3. Comparative experimental results of four models on the test set.

Models F1 P R Acc

RBC 0.807 0.786 0.829 0.812
RC 0.795 0.755 0.827 0.803
RS 0.790 0.755 0.828 0.799
BC 0.751 0.743 0.759 0.754

Table 4 presents a statistical evaluation of the effectiveness of eight distinct entity
recognition categories. We observed that two entity types, emotional and social attributes,
achieved superior results with significantly higher precision, recall, and F1 values than
other entity types, whereas two entity types, symptoms and therapies, were significantly
less effective. For the identical CRF model based on words, the RBC and RC impacts were
extremely similar.
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Table 4. Evaluation of the effect of different entity recognition of four models.

Model Index Check Disease Drug Lifestyle Mood Social Symptoms Treat

RBC
P 0.739 0.787 0.730 0.754 0.865 0.941 0.609 0.571
R 0.774 0.863 0.823 0.723 0.922 0.926 0.709 0.585
F1 0.756 0.823 0.774 0.738 0.892 0.933 0.655 0.578

RC
P 0.719 0.761 0.730 0.696 0.903 0.918 0.596 0.542
R 0.771 0.850 0.821 0.732 0.933 0.924 0.710 0.639
F1 0.744 0.803 0.773 0.713 0.917 0.921 0.647 0.586

RS
P 0.717 0.742 0.704 0.697 0.878 0.915 0.582 0.516
R 0.772 0.866 0.824 0.726 0.956 0.923 0.690 0.624
F1 0.743 0.799 0.759 0.710 0.915 0.919 0.631 0.564

BC
P 0.682 0.722 0.697 0.702 0.857 0.918 0.533 0.559
R 0.731 0.766 0.684 0.668 0.756 0.909 0.521 0.610
F1 0.704 0.748 0.687 0.681 0.795 0.913 0.526 0.582

We identified eight entity types from Q&A texts: check, disease, drug, lifestyle, emo-
tion, social attribute, symptom, and treatment. Table 5 displays the distribution of the
eight types of entities in the 1890 records. The entities with the highest frequency were
social properties, diseases, and tests, which accounted for 89.68, 80.05, and 80.00%, re-
spectively; followed by drugs, symptoms, lifestyle, and treatment, which accounted for
56.4, 36.40, and 25.93%, respectively. The less frequent entities were symptoms and emo-
tions, which accounted for 7.61 and 7.59%, respectively. In addition, we counted the top
10 highest-frequency words of each entity type. For example, among 4259 check entity
types, fasting blood glucose, postprandial blood glucose, glycated hemoglobin, and glu-
cose tolerance tests were the most common tests for diabetes; these high-frequency words
accounted for 70.86% of the examination entity categories. Among the disease entity types,
hypertension, fatty liver, coronary heart disease, cerebral infarction, and stroke were the
most frequently occurring diseases; these high-frequency words accounted for 73.15% of
the disease entity categories, indicating that diabetic patients are often afflicted by other
types of cardiovascular diseases and complications. Table 5 describes the details of the
top 10 entities.

Table 5. Related statistics of entity frequency.

Entity Type Entity
Frequency Rate Top 10 Entities Top 10

Number of Entities
Top 10
Rate

Check 1512/1890 80%

Blood glucose, fasting blood glucose, fasting,
postprandial, glycated hemoglobin, physical

examination, high blood glucose, glucose tolerance,
review, and postprandial blood glucose.

3019/4259 70.86%

Disease 1513/1890 80.05%

Diabetes, hypertension, hyperglycemia, type
2 diabetes, fatty liver, coronary heart disease, cerebral

infarction, obesity, hyperlipidemia, and
complications of diabetes.

1790/2447 73.15%

Drug 1066/1890 56.4%
Insulin, Metformin, Acarbose, Glucose, Dapagliflozin,

Glucagon, Glimepiride, Bystolic, Gleevec,
and Chinese medicine.

1306/2504 52.16%

Life 490/1890 25.92%

Blood sugar control, exercise, diet control, poor sleep,
stopping the medication, exercise, not taking

medication, losing weight, watching what you eat, and
staying up late.

509/787 64.68%

Mood 144/1890 7.61% Worry, doubt, fear, anxiety, hurry, tension, tiredness,
anger, uneasiness, and fear. 132/185 71.35%
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Table 5. Cont.

Entity Type Entity
Frequency Rate Top 10 Entities Top 10

Number of Entities
Top 10
Rate

Social 1695/1890 89.68%
Height and weight, greater than six months, pregnant,

not pregnant, within six months, within one month,
within one week, self, allergy, and father.

3864/4690 82.39%

Symptom 688/1890 16.4%

Thirst, bitterness and dryness, dizziness and
lightheadedness, excessive urination, weakness,
weight loss, nausea, sweating, panic attacks, and

frequent urination.

465/1564 29.73%

Treat 421/1890 22.08%
Surgery, chemotherapy, radiotherapy, drug therapy,
inpatient treatment, weight loss, Chinese medicine,

stents, minimally invasive, and immunization.
429/655 65.50%

4. Discussion

Combining the diabetes entity classification criteria of Shanghai Ruijin Hospital, our
model demonstrated that the RoBERTa-BiLSTM-CRF-based deep learning model could
perform the online Q&A text-based diabetes entity recognition task with an F1 value of
81.51%, outperforming previously published online healthcare entity recognition results
using the BiLSTM-CRF model (68.43%) [29]. This is comparable to the recently reported
BERT-BiLSTM-CRF-model-based named entity recognition system for the diabetes litera-
ture (79.89%) [30]. The benefit of the RoBERTa-BiLSTM-CRF model (F1 value of 81.51%)
over the benchmark model, BiLSTM-CRF (F1 value of 75.28%), is that BERT produces better
word-level vectors than the phrase vectors acquired using Word2vec. Pre-training in the
biomedical corpus improves BERT’s ability to comprehend difficult biomedical literature.

The semi-structured doctor–patient health community requires patients to fill in
socio-demographic data and provides optional fixed-word input, which may indicate that
socio-demographic information descriptions are relatively standardized and fixed, and the
accuracy and sensitivity of entity recognition were improved, with F1 values exceeding
90% for all four models. In addition, the patients’ inputs in the text boxes of “chief
complaint” and “help wanted” were relatively free text, and the majority of patients used
colloquial language to describe their symptoms and treatments due to a lack of professional
knowledge. The “Help” text box contained a highly free-form description written primarily
in colloquial language, with a certain number of misspellings and ambiguities regarding
the concept of professional terms, which are significantly different from the electronic
medical records portrayed from the physician’s perspective. The language style of the
doctor–patient Q&A community is information-oriented language expression, which is
characterized by specific, certain, and objective vocabularies, while the language style of the
patient–patient community is social-support-oriented language expression, characterized
by ambiguous and empathic features. In the Chinese electronic medical record dataset,
CCKS, based on the BERT model, published studies demonstrating that the F1 values for
the symptom-sign category all exceeded 95% and the F1 values for the treatment entity
category all exceeded 82% [31,32]. Additionally, the entity recognition was superior to
the entity recognition in online health communities [33,34]. It has been demonstrated that
biomedical experts and the general public differently perceive medical entities in diabetes.

In addition, we analyzed named entities extracted from online health communities
to investigate the key topics discussed and emphasized in patients’ online health Q&As
for the purpose of studying the health information needs of patients. Table 5 shows the
frequency of entity occurrences in each category and the proportion of TOP10 entities
in the respective entity type. The frequency indicates the number of times a category of
entities is mentioned in relevant posts. In 1890 relevant posts, for example, the test and
examination category entities were mentioned 1512 times. The experimental data suggest
that they focus on diseases (possibly assessment screening for diabetes and complications
of diabetes), tests and examinations (on diabetes screening and concerns about glycemic
control management), and medications (possibly counseling on medication involving
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diabetes), as confirmed by previously published studies on entity identification in online
health communities for diabetes [35,36].

The limitations of this study include the following: (1) The data sources only com-
prised single online health community doctor–patient Q&A texts, without considering
differences in recognition performance of the BERT model on datasets from other online
health communities with different language styles. Furthermore, the study lacked a compre-
hensive investigation into the connection between language expression features of different
chronic diseases and the applicability of the chosen model. Therefore, further research
must be conducted on the applicability of our model to online health community texts.
(2) The diabetes data used in the study were cross-sectional static data of patients, and
longitudinal cohorts of different stages of chronic disease progression were not collected
without patient tracking [37]. Future research must continue to standardize the annotated
corpus, expand its coverage, and optimize the outcomes of the model.

5. Conclusions

For the named entity recognition of the online medical community of diabetes, the
RoBERTa-LiSTM-CRF model outperforms the other three models: RoBERTa-CRF (RC),
BilSTM-CRF (BC), and RoBERTa-Softmax (RS). The proposed model, consisting of a pre-
trained model with enhanced contextual long-range semantic learning ability based on
word vectors, can effectively address entity recognition challenges within the health com-
munity. In addition, we found that patients with different disease stages have distinct
focused topics and that the extracted entity type and attribute values will also vary. The
high-performance entity recognition in online health communities represents a crucial
knowledge source for constructing medical knowledge graphs. It can be applied to in-
telligent question-answering systems, clinical decision support systems, and other appli-
cations. This integration helps alleviate the growing demand for medical consultations
and the strain on healthcare resources while assisting healthcare professionals in mak-
ing informed decisions and providing personalized services to patients. In our future
research, we will implement the BERT model for pre-training on additional websites of
online healthcare communities.
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