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Abstract: Deep brain stimulation (DBS) is widely used as a treatment option for patients with
movement disorders. In addition to its clinical impact, DBS has been utilized in the field of cognitive
neuroscience, wherein the answers to several fundamental questions underpinning the mechanisms
of neuromodulation in decision making rely on the ways in which a burst of DBS pulses, usually
delivered at a clinical frequency, i.e., 130 Hz, perturb participants’ choices. It was observed that
neural activities recorded during DBS were contaminated with large artifacts, which lasts for a few
milliseconds, as well as a low-frequency (slow) signal (~1–2 Hz) that can persist for hundreds of
milliseconds. While the focus of most of methods for removing DBS artifacts was on the former, the
artifact removal capabilities of the slow signal have not been addressed. In this work, we propose
a new method based on combining singular value decomposition (SVD) and normalized adaptive
filtering to remove both large (fast) and slow artifacts in local field potentials, recorded during a
cognitive task in which bursts of DBS were utilized. Using synthetic data, we show that our proposed
algorithm outperforms four commonly used techniques in the literature, namely, (1) normalized least
mean square adaptive filtering, (2) optimal FIR Wiener filtering, (3) Gaussian model matching, and
(4) moving average. The algorithm’s capabilities are further demonstrated by its ability to effectively
remove DBS artifacts in local field potentials recorded from the subthalamic nucleus during a verbal
Stroop task, highlighting its utility in real-world applications.

Keywords: deep brain stimulation (DBS); DBS artifact; adaptive filtering; Stroop task; local field
potentials (LFP)

1. Introduction

The impact of deep brain stimulation (DBS) on local field potential (LFP) recordings
can vary depending on the pattern of pulses used [1–3]. Recent research revealed that multi-
pulse stimulation-induced artifacts can persist for up to 1.5 milliseconds [1]. However,
earlier studies have found that DBS artifacts can contaminate recorded signals for much
longer periods, potentially lasting tens, or hundreds of milliseconds [2]. Additionally,
another work noted that the shape of DBS artifacts can be influenced by factors such as the
shape and impedance of electrodes, the distance between the stimulation and recording
sites, as well as the amplitude, frequency, and duration of stimulus pulses [3].
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Several filtering techniques have been proposed for removing artifacts from LFP
recordings in the literature. These include a low-pass filter [4], a notch filter [5], and band-
pass filters [6]. Specifically, reference [4] focused on removing high-frequency artifacts
generated by DBS (130 Hz) by implementing a low-pass filter with a corner frequency of
50 Hz using Butterworth coefficients. Another study [5] reported that no biomarkers for
Parkinson’s disease were found in the frequency band between 125 and 155 Hz and thus a
high-order (8th) Chebyshev notch filter with a center frequency of 140 Hz and a stopband
between 125 and 155 Hz was used to suppress artifacts during DBS. A band-pass filter
with a frequency band between 100 Hz and a Nyquist frequency of 211 Hz was used to
eliminate all stimulation interference [6].

Template subtraction is a commonly used method for eliminating DBS artifacts from
LFP recordings. Several studies have explored different methods of implementing this tech-
nique [7]. They used thresholding to identify DBS events and then located segments of the
LFP that may have been affected by artifacts by analyzing the minimum and zero-crossing
points surrounding each detected event. They then employed an ensemble empirical mode
decomposition (EEMD) algorithm to decompose the segment into intrinsic mode functions
(IMFs) and reconstructed the DBS template through a weighted summation of these IMFs,
with greater weight given to IMFs with higher frequencies. Another work [8] took a differ-
ent approach, first detrending the LFP signal by eliminating the residue of the IMF set, then
segmenting DBS pulses based on peak points, creating an average artifact shape derived
from all pulses, which was then smoothed using a moving average filter to reconstruct the
artifact template. Similarly, the averaging all the stimulus artifact segments, and a short
time period of 0.4 ms around them, was used to construct the template of the stimulus
artifact [9]. Although template matching is an effective method to identify specific patterns
of interest, the variability of DBS artifacts may introduce additional noise into the data,
making it difficult to accurately match templates and identify the desired signal.

A technique for removing DBS artifacts from LFP recordings, known as detrending,
uses empirical mode decomposition (EMD) [10]. The approach involved identifying the
last intrinsic mode function (IMF) as a trend and removing it to generate a detrended signal.
DBS events were then considered as a waveform composed of a set of sine waves, and the
amplitude, frequency, and phase of these waves were initialized by visually inspecting the
power spectrum. These parameters were then iteratively removed from each segment of
the contaminated recording. Another method of removing DBS artifacts is the dynamic
averaging of small groups of consecutive segments [11,12]. Segments that are temporally
close to each other have similar DBS artifact shapes, and therefore, artifacts can be removed
by taking the average of small groups of consecutive segments [11,12]. Similarly, DBS
pulses were detected by amplitude thresholding, and took an average of neighboring
segments before and after each pulse to generate the stimulus artifact template, which was
then subtracted from the raw data at the location of each pulse [13,14].

Another method for filtering DBS artifacts from LFP recordings is based on temporal
decomposition, using mutual information between independent components and the refer-
ence signal of the DBS [15,16]. The signals were decomposed into temporally independent
components using independent component analysis (ICA) and then the mutual information
(MI) was computed, between the DBS artifact and each of these individual components,
to determine how much information is shared between them. Finally, components that
showed high mutual information were removed. Another technique for removing DBS arti-
facts is space separation to extract artifact subspace [17–20]. This approach assumes that the
DBS component and the original signal are approximately orthogonal to each other, thus,
the raw signal is projected onto the orthogonal components using signal space projection
(SSP), and the DBS artifact is identified and projected out. Eigenvalue decomposition (EVD)
of the covariance matrix computed from concatenated epochs, including DBS events, was
performed and then projected onto orthogonal signal and artifact subspaces. The segments,
including DBS artifacts, were then projected out of the noise subspace. Another study [21]
also extracted eigenvectors that span the subspace of the DBS artifact at a specific frequency.
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Principle component analysis (PCA) was also employed to identify orthogonal bases
that effectively captured the majority of the variance in the data, and to eliminate eigenspaces
associated with artifacts [22]. They demonstrated that this approach was more effective at
removing deep brain stimulation (DBS) artifacts than alternative techniques such as signal
space separation. A different method was employed using thresholding to detect DBS
artifact peaks and, subsequently, setting samples within the affected period to zero [23].
The missing data were then interpolated by utilizing the neighboring samples that pre-
ceded and followed the contaminated period. Other solutions proposed to address the
issue of DBS artifacts in LFP recordings include: adaptive filtering [24]; linear Wiener
filtering [25]; template subtraction using an adaptive shape based on the Euclidean median
of k-nearest neighbors [26]; weighted moving average template subtraction, in which the
template is estimated as a weighted average of a limited number of neighboring pulses [27];
a template-based subtraction method that utilizes past artifact samples and linear regres-
sion [28]; interpolation techniques, including linear proposed [29], Gaussian [30], and
Cubic Spline [31]; a symbiotic combination of front-end and back-end template subtrac-
tion [32]; and polynomial subtraction of power spectral density in the frequency domain
to mitigate low-frequency distortions in LFP arising from impedance mismatch during
DBS therapy [33]. Despite the effectiveness of these techniques in filtering unwanted noise,
there is always a risk of over-filtering, which means that these methods may remove not
only unwanted noise but also important information from the signal. This can be partic-
ularly problematic for slow wave activities in LFP signals, which can contain important
information about brain activity and function.

A summary of limitations of the state-of-the-art methods is provided in Table 1.

Table 1. Limitations of current techniques.

Frequency domain analysis

Frequency domain techniques identify artifact based on narrow frequency peaks in the frequency
spectrum. The effectiveness of these methods depends on the chosen window size and threshold
parameter C, which require careful selection and evaluation to achieve satisfactory results. DBS
artifacts can be present across the entire frequency spectrum, including frequencies that are
relevant for studying brain activity. Therefore, defining specific frequency bands for artifact
removal may not be practical.

Template-based methods

Estimating a general template for DBS artifacts is challenging due to the wide variety of shapes
they can have and their variability over time. Moreover, conventional template-based methods,
which have primarily been used in single-pulse stimulation studies, may not yield optimal results
when dealing with high-frequency DBS.

Low-pass and notch filters Low-pass and notch filters may not be efficient if the stimulation peaks overlap other
frequency bands.

Threshold-based methods Underestimating the threshold can lead to a slight amplitude bias and potentially result in
missing parts of the physiological data. Overestimating the threshold can leave residual artifacts.

Methods based on principal
component analysis (PCA) PCA can lead to the loss of information due to the reduction in dimensionality it induces.

Methods based on signal
space separation (SSS)

SSS assumes that the natural brain activity is not correlated with any artifacts or unwanted
signals. However, in reality, there can be situations where strong sources of activity leak into the
intermediate part, leading to the false identification of sources as artifact.

As previously mentioned, methods such as template matching may introduce addi-
tional noise to the data due to the varying nature of DBS artifacts. While techniques such
as adaptive filtering, FIR Wiener filtering, and moving average techniques can effectively
preserve fast oscillations, there is a risk of over-filtering, which may result in the removal
of important information from the critical slow wave activities in LFP signals. In the
present study, we develop a hybrid filtering method that utilizes the strengths of multiple
techniques, including SVD and adaptive filtering, to eliminate both sharp spikes and slow
wave artifacts.
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2. Materials and Methods

The proposed SVD-based adaptive filtering technique for removing DBS-induced
slow and fast dynamics is conceptually illustrated in Figure 1. These dynamics can greatly
impact the processing of LFP and EEG signals during cognitive tasks. In this study, data
recorded from patients with Parkinson’s disease (PD) performing a verbal Stroop task were
used. As demonstrated in Figure 1, DBS modulates the neural activities of subthalamic
neurons, while LFP and EEG signals are recorded from multiple electrodes. Through the
application of the SVD-based adaptive filtering algorithm, the artifacts observed during
and after DBS pulses were effectively removed. (See Section 2.2.1 for further information
on the experimental data).
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Figure 1. A Conceptual Framework for SVD-based Adaptive Filtering of DBS-Induced Artifacts
during a Verbal Stroop Task: This figure illustrates the conceptual framework of the SVD-based
adaptive filtering algorithm for removing both high- and low-frequency artifacts induced by deep
brain stimulation (DBS) during a verbal Stroop task. The final window in the figure presents the
outcome of the algorithm, where we can see the signal without DBS artifact, and therefore yielding a
more accurate measurement of neural activity related to cognitive processes.

2.1. Data

The present study includes an examination of both synthetic and experimental data sets.

2.1.1. Synthetic Data

The synthetic dataset comprised a sine wave, colored noise, and a DBS artifact template
(as illustrated in Figure 2). The synthetic signal had a duration of 3 s and was sampled at
a frequency of 1.5 kHz. To create the contaminated signal, both colored noise and a sine
wave were added to the artifact template. The colored noise had a weight of 10, while the
sine wave had a weight of 40.
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Figure 2. Synthetic Signal Generation Process: This figure illustrates the procedure for creating
synthetic signals, which consists of a combination of a sine wave representing slow-wave move-
ment artifacts, colored noise representing neural activity, and DBS artifacts modeled on a stimulus
artifact template.

To generate colored noises, a white noise sequence is passed through an auto-regressive
(AR) filter with an order of N [34]:

∑k=N
k=0 aky[n− k] = x[n] (1)

where x[n] is a white noise.
The AR filter coefficients can be produced as [34]:

a0 = 1
ak =

(
k− 1− α

2
) ak−1

k
(2)

which can be employed as an infinite impulse response (IIR) filter by utilizing the filter
transfer function in the following format [34]:

H(z) =
1

1 + ∑N
k=1 akz−k

(3)

The “dsp.ColoredNoise” class was used in Matlab software to execute this process.
The concept of combining a sine wave and colored noise originated from a PhD

thesis conducted at the Institute of Biomaterials and Biomedical Engineering, University
of Toronto. The thesis explored the generation of synthetic EEG signals by introducing
Gaussian noise to a sine wave [35]. Additionally, the sine wave can serve as a simulation
for a low-frequency LFP [36].

2.1.2. Experimental Data

For the experimental portion of the study, data were collected from patients with
Parkinson’s disease who were receiving trains of DBS during specific periods of a Stroop
task (nine men, with an average age of 60.4 years and an age range of 44 to 73 years). The
task involved displaying a color word on a screen and asking the patients to name the ink
color of the word into a microphone. In the conflict trials, the word and ink color did not
match, while in the non-conflict trials, they did match [37].

Four different stimulation conditions were used, with each condition applied randomly
to one trial out of every four. These four conditions were: No stimulation, Ready period,
Early response, and Late response. Each patient completed a total of 240 trials, with event-
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related stimulation applied during each trial after a certain number of test trials had been
completed. Bilateral subthalamic nucleus (STN) LFPs and scalp EEG were recorded during
the trials, using a sampling frequency of 5 kHz and a filtering range of 1–1000 Hz. The
data were down-sampled to 1000 Hz for analysis. Only trials with response times between
0.3 and 1.8 s were included in the analyses [37].

The trains of pulses used for stimulation consisted of 11 pulses with a duration of
approximately 80 milliseconds, a frequency of 130 Hz, a monophasic waveform, and a
pulse width of 100 microseconds. The stimulation intensity for event-related deep brain
stimulation (DBS) was 1.92 ± 0.76 milliamperes (mA). The trigger pulses for stimulation
were generated using Spike2 software from Cambridge Electronic Design in the UK, and
were delivered through a constant current stimulator from Digitimer in Welwyn Garden
City, Hertfordshire, UK [37].

Neurophysiological mapping was employed to confirm the stimulated contact’s lo-
cation. Intraoperative recordings were used to identify the ventral border of the STN by
detecting a change in the pattern of cell firing, which was then used to determine the final
target for the DBS electrode implantation. The STN’s top and bottom margins were deter-
mined with reference to the DBS electrode’s final position (DBS 3387 electrode, Medtronic,
Minneapolis), as reported in the operative notes. The location of each contact relative to
the STN was estimated using the electrode’s known dimensions, i.e., four 1.5mm contacts
spaced 1.5 mm apart [37].

For better understanding of the experiment’s details and other relevant information
about the dataset, we strongly recommend referring to the published article by the research
team led by Dr. Robert Chen at Toronto Western Hospital [37].

2.2. Benchmark DBS-Artifact Suppression Techniques in this Study

For the comparison of the performance of the proposed technique, four existing
methods were used as benchmark techniques. These methods were normalized least
mean square adaptive filtering [38], optimal FIR Wiener filtering [39], Gaussian model
matching [40], and moving average techniques [27].

2.2.1. Normalized Least Mean Square (NLMS) Adaptive Filter Algorithm

The main structure of a NLMS filter consists of a FIR filter with a coefficient update
procedure in which the coefficients are updated so that the difference between the output
and the reference signal becomes minimum.

The NLMS filter is defined by the following equations.

y[n] = wT [n− 1]u[n]

e[n] = d[n]− y[n]

w[n] = αw[n− 1] + f (u[n], e[n], µ)

f (u[n], e[n], µ) = µe[n] u∗ [n]
ε+uH [n]u[n]

(4)

where n is the current index of temporal sample, u is the input signal, u∗ is the complex
conjugate of input signal, uH is the conjugate transpose of input signal, w is the filter weight,
y is the output signal, e is the estimation error, d is the reference signal, µ is the adaptation
step size, and ε is the stability constant [41].

2.2.2. Optimal FIR Wiener Filter

FIR Wiener filter produces an estimation of the artifact using a reference signal. The
optimal filter satisfies the Wiener–Hopf equation given by following equation [42]:

RH = Rxy (5)
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where R, H and Rxy are, respectively, the symmetric Toeplitz autocorrelation matrix of the
input signal, impulse response of the optimal filter, and cross-correlation between the input
and the desired output. The matrix of R is of the form given by:

R =

r1 · · · rn
...

. . .
...

rn . . . r1

 (6)

2.2.3. Gaussian Model Matching

The global peaks in the signal are fitted using Gaussian model which is given by:

y =
k

∑
i=1

αie
[−( x−βi

γi
)

2
] (7)

where α, β, γ and k are, respectively, the amplitude, centroid, peak width, and the number
of peaks to fit.

This fitted model is then used as the artifact template and subtracted from the original
signal to provide a clean version of the signal.

2.2.4. Moving Average

The artifact template is generated based on the local k-sample average values, where
each average is calculated over a sliding window of length k across neighboring samples
of original signal. The window of length k is shifted across the neighboring samples of
the original signal. At each position of the window, the k samples within the window are
considered and the average is calculated. By applying this iteratively for different positions
of the sliding window across the original signal, the artifact template based on the local
k-sample average values is generated.

µ =
1
k

k

∑
i=1

fi (8)

The filtered signal is then obtained by template subtraction from the original signal.

2.3. Proposed Algorithm

The SVD adaptive filtering algorithm is a method for removing slow components of
DBS artifacts from an input signal while also reducing the presence of sharp DBS peaks.
This filtering includes two separate modules for removing slow and fast waves of DBS
artifacts (DBS artifacts start with fast and sharp transients followed by a slow wave).

The process begins by initializing the input signal. The algorithm then generates a
set of circularly shifted versions of the input signal by repeatedly shifting the elements a
certain number of positions. These shifted signals are stored and then combined to create a
matrix. Next, the algorithm performs SVD to obtain the matrices U, S, and V. The diagonal
matrix S is extracted, and any singular values that are more than 90% of the maximum
singular value are set to zero (Figure 3). Using the modified S matrix, along with U and V,
the algorithm reconstructs the signal. A reference signal is then calculated by finding the
moving average of the corresponding values, with a window size of 20. Starting from the
DBS time until the end of the array, the values of reconstructed signal are replaced with
the reference signal. An adaptive filtering algorithm using the least mean squares (LMS)
method is then applied to extract the high frequency component and suppress the DBS
peaks (Figure 4). This process is repeated twice more to further reduce the amplitude of
these peaks.
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Here is the Algorithm 1 that describes the above steps in the proposed technique:

Algorithm 1: SVD Adaptive Filtering

1. Initialize a variable X as the input signal.
2. Generate a set of circularly shifted versions of the input signal by looping through a range of

1 to 40, and for each iteration:

A. Circularly shift the elements of X by the current iteration number of positions.
B. Append the shifted signal to a new variable Xshifted.

3. Concatenate the original signal X and the shifted versions in Xshifted to form the signal
matrix Xconcat.

4. Perform SVD on the concatenated signal matrix Xconcat to obtain the matrices U, S, V.
5. Extract the diagonal matrix S from the SVD results.
6. Zero out the largest singular values in the S matrix, which are determined by values greater

than 90% of the maximum singular value.
7. Use the modified S matrix, along with the U and V matrices from the SVD, to reconstruct

the signal matrix Xrecon.
8. Compute a reference signal using the moving average of the corresponding values with a

window size of 20.
9. Starting from DBS time to the end of the array, replace the values of Xrecon with the

reference signal.
10. Implement an adaptive filtering algorithm using the least mean squares (LMS) method to

extract a high frequency component and suppress the sharp DBS peaks:

A. Apply a moving average filter to the input signal X with a window size of 100.
B. Initialize an LMS filter object with filter length of 7 and step size of a small value.
C. Apply the LMS filter to the Xrecon signal to obtain the filter weights and error signal.
D. Locate two change points in the error signal, assuming them to correspond to the

period including sharp DBS peaks.
E. Locate the peaks in the error signal within these two change points and reduce their

amplitudes by a factor of 10.
F. Repeat the process twice more to further reduce the amplitudes of these peaks.
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3. Results
3.1. Validation of Artifact Removal Algorithms on Synthetic LFP Signal

Figure 5 presents a comparison of the contaminated signals for positive and negative
pulses. The first sample (left) illustrates the contaminated signal when the pulse is neg-
ative, while the second sample (right) shows the contaminated signal when the pulse is
positive. This comparison highlights the effect of DBS pulse polarity on the contamination
of the signal.
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Figure 5. The effect of reversing the polarity of the stimulus on the slow wave component of DBS
artifacts; when the stimulus is reversed, the artifact is reversed or mitigated.

The time–frequency analysis in Figure 6 was conducted to assess the preservation of
the original signal’s temporal and spectral information after DBS artifact removal. The
availability of the clean version of synthetic signals made it easy to evaluate the performance
of the artifact removal algorithm. By visually comparing the time-domain signals before
and after the removal of DBS artifacts, it is evident that the algorithm not only effectively
eliminated the sharp spikes caused by DBS, but also the slow activities induced by both
the DBS artifact and sine wave. Additionally, by observing the small fluctuations in the
amplitude of the original signal, it can be seen that the filtered version closely resembles the
original signal. The comparison of the spectrogram plots, in Figure 6, between the original
and artifact-free signals confirms the preservation of temporal–spectral patterns within the
original signal and demonstrates the good performance of the proposed filtering technique.

Table 2 quantitatively evaluates the quality of filtering by comparing the differences
in average power between original and contaminated signals with artifact-free signals in
various frequency bands. The percentages of reduction in differences are as follows: Delta:
54.24%, Theta: 69.10%, Alpha: 84.32%, and Beta: −43.75%.

Table 2. Power Differences between Original and Contaminated Signals Compared to Artifact-Free
Signals in Different Frequency Bands: This comparison illustrates the reduction in artifacts in the
time–frequency domain as a result of the artifact removal process.

Average of Power Differences between
Original Signal and

Contaminated Signal
Original Signal and
Artifact-Free Signal

Delta band 0.1025 0.0469
Theta band 0.1026 0.0317
Alpha band 0.0485 0.0076
Beta band 0.0384 0.0552

The mean-squared error (MSE) between the original synthetic and contaminated
signals was compared to the MSE between the original synthetic and artifact-free sig-
nals in time domain (Table 3). The percentage difference obtained by SVD filtering was
95.26%, which outperformed other techniques. Adaptive filtering came in second place
with a percentage difference of 46.99%. Based on these results, it was hypothesized that
combining SVD with adaptive filtering may improve the suppressing of both DBS and
motion artifacts. This hypothesis was tested on real data and the results are presented in
following subsection.
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Table 3. Time domain comparison of MSE values.

Technique Mean-Squared Error (MSE) between the Original Signal and Percentage Difference in MSE%
Contaminated Signal (µV2) Artifact-Free Signal (µV2)

SVD 1230 58.57 −95.26
Gaussian model matching 1230 1540 +24.91
FIR wiener filtering 1230 671.55 −45.76
Adaptive filtering 1230 656.27 −46.99
Moving average 1230 1400 +16.01

3.2. Validation of Artifact Removal Algorithms on Experimental LFP Signal

Figure 7 displays the evaluation of various filtering techniques, including
SVD (Figure 7A), adaptive filtering (Figure 7B), FIR Wiener filtering (Figure 7C), Gaussian
model matching (Figure 7D), and moving average (Figure 7E), for suppressing artifacts
in DBS signals, with the aim of identifying the most effective combination of techniques
for eliminating sharp spikes and slow waves caused by DBS pulses. Figure 7E shows
that the use of a moving average window smoothed out most slow activities, including
non-artifactual components, and yet sharp spikes induced by DBS remained present in
the filtered signal. Similarly, adaptive filtering in Figure 7B and FIR wiener filtering in
Figure 7C flattened out artifactual and non-artifactual slow activities without removing
sharp spikes. In contrast, the use of a Gaussian model matching filter in Figure 7D intro-
duced unwanted noise into the signal. It is clear from these results that the use of a single
technique, such as moving average filtering, adaptive filtering, or FIR wiener filtering, is not
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sufficient to effectively remove both fast and slow artifactual components without affecting
the useful neural information. Instead, the most effective approach would be to utilize the
strengths of multiple techniques, such as the SVD technique (Figure 7A) for reproducing
clean slow wave activities in the original signal and adaptive filtering for reproducing fast
oscillations. In this way, both sharp spikes and slow wave artifacts induced by DBS can be
effectively eliminated.

Table 4 demonstrates that the average power of the filtered signal using SVD is closer
to the baseline value within the delta and theta frequency bands, when compared to other
techniques. This highlights the capability of SVD in reconstructing the slow wave activities
present in the original signal.

Table 4. Comparison of Average Power for Various Filtering Techniques in Different Frequency Bands.

Average Power
Baseline SVD Adaptive Filtering FIR Wiener Filtering Gaussian Model Matching Moving Average

Delta 0.1930 0.1868 0.1427 0.0982 0.2805 0.0921
Theta 0.2246 0.2263 0.1797 0.1443 0.2875 0.1445
Alpha 0.1783 0.1880 0.1600 0.1621 0.1730 0.1697
Beta 0.2141 0.2198 0.2167 0.2760 0.1284 0.2866

Figure 8 illustrates the reference signals generated at various stages of the proposed
algorithm. Figure 9 presents the results of an SVD-based adaptive filtering technique
applied to remove DBS artifacts. The subplot A of the figure demonstrates the effectiveness
of the technique in preserving neural activity while effectively filtering out the sharp spikes
and slow bumps associated with DBS. The low and high frequency components induced
by neural activity remain untouched, while the DBS artifacts are successfully removed. The
subplots of B and C provide additional support for the technique’s effectiveness through
the use of spectrograms. A spectrogram is a visual representation of the frequency content
of a signal over time, and it provides a powerful tool for analyzing and interpreting signals,
particularly those that vary over time. The spectrograms in these subplots demonstrate
the effectiveness of the SVD-based adaptive filtering technique in removing the slow wave
activities induced by DBS. By eliminating these artifacts, the spectrograms reveal a clean
and accurate representation of neural activity. Specifically, the spectral content of the
filtered signal is seen to closely match the spectral content of the original neural activity,
with a significant reduction in the spectral content of the DBS artifacts. This is a strong
indication that the SVD-based adaptive filtering technique is effectively removing these
artifacts, while preserving the underlying neural activity.
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Figure 7. Evaluation of various techniques for suppressing artifacts in DBS signals. The aim of
this comparison was to identify the most effective combination of techniques for eliminating both
sharp spikes and slow waves caused by DBS pulses. A comprehensive analysis of different filtering
methods was considered to provide insight into ways to improve the overall quality of DBS filtering.
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of combining SVD with adaptive filtering for removing deep brain stimulation (DBS) artifacts. The
subplot (A) compares the contaminated signal with the filtered version in the time domain, with
the enlarged window highlighting the beginning of DBS. The subplots (B,C) provide a spectral
analysis of the contaminated and filtered signals, respectively, through the use of spectrograms. The
SVD-based adaptive filtering technique is able to effectively remove DBS artifacts while preserving
the underlying neural activity, as demonstrated by the clean version of the signal and the consistent
spectral content in the filtered version of the signal.

4. Conclusions

Neurostimulation has emerged as a cutting-edge technology for the treatment of
neurological disorders, offering great potential for closed-loop neuromodulation. However,
recorded neural signals, such as LFPs, are often contaminated by artifacts induced by
stimulation pulses. We observed that a short DBS burst induced both fast (sharp, lasting
for a few msec) and slow (lasting for hundreds of msec) artifacts.

Here, we proposed a solution using SVD-based adaptive filtering. To address the issue
of over filtering with adaptive filtering, an additional module was included in the study to
separate meaningful slow wave activities from artifacts. This module reproduced the slow
wave activities in LFP recordings by applying the SVD and considering singular values
less than a specific threshold. Our synthetic results showed that the proposed technique
exhibits a superior performance compared to existing methods, and successfully recovered
both high and low-frequency neural information without increasing noise levels. Using
LFPs recorded from STN during a verbal Stroop task, we demonstrated that SVD-adaptive
filtering successfully removed slow artifactual dynamics induced by a short burst of DBS.

The proposed adaptive filtering approach improved the detection of neural oscillations
in a short time period after DBS pulses which, in turn, can be useful for enhancing the
efficacy of closed-loop neuromodulation devices. By effectively suppressing DBS artifacts
from LFP recordings, we anticipate that the proposed SVD-based adaptive filtering method
will provide a valuable tool for researchers and practitioners in the field of neurostimulation.

One potential limitation of our proposed technique is the lack of real-time adaptation.
It may have a high computational cost, especially when applied to large-scale datasets.
Although adaptive filtering is known for its ability to adapt to changes in signal power and
statistical properties, the combined approach may not be able to handle rapid changes in
real-time scenarios. In future work, we will improve the implementation of the algorithm
for real-time applications.

Our objective for future works is to enhance the efficiency of our methodology in the
real-time removal of deep brain stimulation (DBS) artifacts, with the objective of developing
a more robust controller [43,44] for closed-loop DBS applications.
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