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Abstract: Medical image segmentation has made significant progress when a large amount of labeled
data are available. However, annotating medical image segmentation datasets is expensive due to
the requirement of professional skills. Additionally, classes are often unevenly distributed in medical
images, which severely affects the classification performance on minority classes. To address these
problems, this paper proposes Co-Distribution Alignment (Co-DA) for semi-supervised medical
image segmentation. Specifically, Co-DA aligns marginal predictions on unlabeled data to marginal
predictions on labeled data in a class-wise manner with two differently initialized models before
using the pseudo-labels generated by one model to supervise the other. Besides, we design an over-
expectation cross-entropy loss for filtering the unlabeled pixels to reduce noise in their pseudo-labels.
Quantitative and qualitative experiments on three public datasets demonstrate that the proposed
approach outperforms existing state-of-the-art semi-supervised medical image segmentation methods
on both the 2D CaDIS dataset and the 3D LGE-MRI and ACDC datasets, achieving an mIoU of 0.8515
with only 24% labeled data on CaDIS, and a Dice score of 0.8824 and 0.8773 with only 20% data on
LGE-MRI and ACDC, respectively.

Keywords: medical image segmentation; semi-supervised learning; distribution alignment; co-training

1. Introduction

Currently, there are various new technologies and devices that assist in clinical diag-
nostic work [1–3], among which medical image segmentation plays an important role in
clinical auxiliary diagnosis [4]. Recently, researchers have made great efforts in medical
image segmentation [5–7] and achieved excellent performance with a large amount of
labeled data. However, the annotation of medical data are typically dependent on medical
professionals, and annotating large datasets is time-consuming.

To address this problem, semi-supervised (SS) medical image segmentation leverages
a large amount of unlabeled data in conjunction with a small amount of labeled data to
improve model performance. Particularly, unlabeled data are relatively affordable, as
the laborious annotation process can be avoided. Recently, consistency regularization
methods [8–12] have received great attention in SS medical image segmentation. The
primary difference of various consistency regularization methods lies in their intended
objectives. For example, the majority of perturbation consistency methods [10] tend to
maintain a consistent unlabeled prediction with various augmentations. Uncertainty–aware
methods [8,12] force consistent predictions in reliable regions of two corresponding models.
Multi-task based methods [9,11] design a multi-task framework to guarantee an invariant
relation of unlabeled data among different tasks. Despite the fact that these consistency
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regularization methods have obtained encouraging results, most of the previous methods
neglect two essential problems: class imbalance and the mismatch of class distributions
between labeled and unlabeled data. For the first problem, there have been some effective
and efficient solutions [13,14] to deal with class imbalance in the fully supervised scenario.
However, these methods are unsuitable for the semi-supervised case because long-tail
samples and noisy samples are usually difficult to identify in unlabeled data. For the
second problem, ReMixMatch [15] proposed a coefficient transform to align labeled and
unlabeled class distributions for SS classification. One of their key limitations, however, is
that it only considers the empirical ground-truth class distribution, which could be highly
imbalanced or even biased when the labeled data are scarce. In addition, estimating the
labeled distributions may lead to an unaffordable computational cost for dense prediction
tasks such as image segmentation.

In this paper, we focus on maintaining consistent distributions of labeled and unlabeled
data under a co-training framework, unlike existing consistency regularization methods.
However, it is non-trivial to achieve class distribution consistency. In particular, the
empirical class distribution could be highly imbalanced or even biased when the data
are sparsely labeled. Figure 1a shows the vanilla Distribution Alignment (DA) [15] in
which an overall output class distribution on unlabeled data are maintained to align model
outputs to the empirical ground-truth class distribution. More specifically, DA maintains a
running average of predictions on unlabeled data. When the model outputs a prediction
for an unlabeled sample, the distribution alignment scales the prediction by the empirical
class distribution on labeled data over the average predictions on unlabeled data, so as
to obtain an output that is aligned to the ground-truth class distribution. On the other
hand, Figure 1b shows the cross-pseudo supervision [16] based on co-training [17] that
uses two parallel networks with identical architecture but different initializations, and
then uses the output of one network to supervise the other one. Inspired by ReMixMatch
and cross-pseudo supervision, we propose a novel Co-Distribution Alignment (Co-DA)
method to overcome class imbalance and the mismatch of class distributions by integrating
the above methods into a unified learning framework. Specifically, Co-DA transforms
the model output according to the ratio of the class-specific marginal distribution on
labeled data over the average model predictions on unlabeled data for that same class and
supervise the model from the other view as pseudo-labels. Different from ReMixMatch,
Co-DA uses an exponential moving average (EMA) to simplify the estimation of the labeled
distribution. More importantly, instead of relying solely on a single empirical ground-truth
class distribution, we seek to fully exploit the model prediction for all classes, aiming to
minimize the class-dependent distribution discrepancy between the model outputs on
the labeled and the unlabeled data. Therefore, we preserve independent distributions for
each class instead of an overall distribution as shown in Figure 1a,c. On the other hand,
in contrast to typical co-training, Co-DA tends to keep the consistency between labeled
and unlabeled distributions rather than the cross-consistency of predictions as shown in
Figure 1b,c. Therefore, Co-DA is more computationally efficient for dense prediction tasks
such as image segmentation and is less likely to be affected by errors at individual pixels
within the co-training framework. To further reduce the impact from inaccuracies in the
model prediction on unlabeled data, we design an over-expectation cross-entropy loss to
filter out noises in pseudo-labels.

Our main contributions can be summarized as follows:

• To our knowledge, we are the first to solve the semi-supervised medical image seg-
mentation problem with distribution alignment. In particular, we propose class-wise
distribution alignment that utilizes the class-dependent output distribution instead of
the overall empirical ground-truth class distribution, which could be highly imbal-
anced and biased when the labeled data are scarce.

• Our co-distribution alignment framework is more computationally efficient for dense
prediction tasks involving a large number of pixels as compared to typical co-training
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methods such as CPS [16]. More importantly, distribution alignment has better regu-
larization, as the proposed method provides superior performance.

• To further reduce the impact from inaccurate predictions on unlabeled data, we
propose a simple, yet effective over-expectation cross-entropy loss to filter out noises
in pseudo-labels.

• Experimental evaluation results on three publicly available medical imaging datasets
demonstrate the superior performance of our approach compared to the state-of-
the-art methods. Moreover, ablation studies also verify the efficacy of the various
components in Co-DA.

• Our method does not depend on a particular deep network architecture. Therefore, it
can be used in conjunction with different models for medical image segmentation as
a plug-and-play module to address the challenges of learning from imbalanced data
and the distribution mismatch between labeled and unlabeled data.

The rest of the paper is organized as follows. Section 2 reviews recent literature in
the areas of deep semi-supervised learning, semi-supervised medical image segmentation,
co-training and distribution alignment methods. Section 3 describes the proposed method
in detail, followed by experimental evaluation in Section 4 and closing remarks in Section 5.

M1

M1

M1

M2

M2

(a) DA (b) Co-training (c) Co-DA

… …

LUL

…

…

Input
Output
Pseudo-label
Supervision
Distribution 
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Figure 1. Illustration of a comparison of Co-Distribution Alignment (Co-DA) with Distribution
Alignment (DA) and co-training. (a) is the DA in ReMixMatch [15], (b) is co-training [16], (c) is the
proposed Co-DA. M1 and M2 here stand for two differently initialized networks. The dark blue
circles and squares denote the output and the pseudo-labels of M1. The light blue circles and squares
denote the output and the pseudo-labels of M2.

2. Related Work

In this section, we review related literature in semi-supervised medical image seg-
mentation. We first review recent work in deep semi-supervised learning, and then more
specifically in semi-supervised medical image segmentation, as well as progress in co-
training and distribution alignment methods that are closely related to our approach.

2.1. Deep Semi-Supervised Learning

Recently, semi-supervised learning (SSL) has made remarkable progress in various
machine learning tasks. SSL methods can be broadly categorized into pseudo-labeling
methods, consistency regularization methods, entropy minimization methods and hybrid
methods. Specifically, pseudo-labeling methods [18–21] aim at obtaining the pseudo-labels
of unlabeled data by self-training. Consistency regularization methods [9,22–24] force
similar predictions under different perturbations of unlabeled data to expand the decision
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regions. Entropy minimization methods [25,26] tend to make the decision boundary
follow low density regions with the help of unlabeled data. Hybrid methods [15,27,28]
simultaneously combine some advantages of the above SSL methods. Our method belongs
to both pseudo-labeling and consistency regularization methods, yet it addresses a critical
problem that is largely ignored in existing methods. To be specific, most existing methods
neglect class imbalance and the mismatch of class distributions between labeled data and
unlabeled data, which are common in medical images and severely affect the performance
of SSL methods.

2.2. Semi-Supervised Medical Image Segmentation

The distinctive appearance and class distribution characteristics of medical images
pose unique challenges in applying SSL methods to them. In particular, medical image
segmentation usually involves localizing objects with extreme shape and scale variations,
and the class distribution could be highly skewed. Similar to generic SSL methods, common
semi-supervised medical image segmentation methods include GAN-based, consistency
regularization and pseudo-labeling methods. Specifically, GAN-based methods [29,30]
attempt to use adversarial training to fool the discriminator with unlabeled data. For
example, DCT-Seg [31] utilizes two models that are co-trained to generate pseudo-labels
for each other. In addition, SS-Net [32] proposes a collaborative learning method to jointly
improve the performance of disease grading and lesion segmentation with an attention
mechanism. On the other hand, different from consistency regularization methods in
generic SSL, for medical image segmentation, people usually design a strategy to keep
consistency in local regions, e.g., regions of low uncertainty [12], regions of random cate-
gory [33], etc. Finally, pseudo-labeling methods leverage an auxiliary model to generate
pseudo-labels for unlabeled data. Unlike existing methods, our Co-DA focuses on explor-
ing the discrepancy between labeled and unlabeled data distributions, which is of vital
importance in SS medical image segmentation due to data scarcity and imbalance.

2.3. Co-Training

The original co-training algorithm [17] assumes that there are two naturally segmented
views of the same instance, which are redundant and independent under certain conditions.
Concretely, data from any of them are sufficient to train a strong learner, and the views are
independent of each other. More specifically, the main steps of the co-training algorithms are
divided into view acquisition, learner differentiation and label confidence estimation [34].
Recent progresses in co-training [31,35,36] primarily focus on maintaining the diversity
across models with deep networks. In particular, cross-pseudo supervision [16] proposes to
impose consistency on two segmentation networks perturbed with different initialization
for the same input image. In contrast, Co-DA uses co-training to align the distributions of
labeled and unlabeled predictions.

2.4. Distribution Alignment

Distribution alignment is widely used in domain adaptation. These methods work by
aligning marginal distributions [37,38] or joint distributions [39–41] of different domains.
In semi-supervised learning, domain alignment has also been considered to close the
gap between predictions on labeled and unlabeled data. Compared to our proposed
approach, the most relevant existing method is ReMixMatch [15], which uses a coefficient
transformation to align the marginal distributions of labeled and unlabeled data. However,
class distribution in medical images can be highly imbalanced, while ReMixMatch treats
samples from all classes as a whole and neglects the variations in marginal distribution of
each class. Different from ReMixMatch, in this work, we align marginal distributions in
a class-wise manner that is more general and works better for imbalanced datasets with
minority classes.
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3. Our Approach

In this section, we describe the proposed approach in detail. We begin by revisiting
the cross-pseudo supervision framework that our work is based on. Afterwards, we de-
scribe the three main components of Co-Distribution Alignment, i.e., marginal distribution
estimation, class-wise distribution estimation and distribution transformation. In addition,
we introduce an over-expectation cross-entropy loss that is used to further improve model
performance by filtering out inaccurate pseudo-labels. The overall framework is presented
in Figure 2.
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Figure 2. Overview of Co-DA for semi-supervised medical image segmentation, which consists of
a stream for labeled data and a stream for unlabeled data. F1 and F2 are two parallel networks
with the same architecture but different initializations. For labeled data, the standard cross-entropy
loss (CE Loss) is used. For unlabeled data, ŷu1 and ŷu2 are pseudo-labels given by Equation (8),
and we use the aligned output distribution from one network to supervise the other one. For the
over-expectation cross-entropy loss (O-E Loss) in Equation (10), pu = max(F (xu)) denotes the class
probability corresponding to the pseudo-labels, t stands for the threshold given by Equation (9) and
the O-E Masks are the thresholded binary masks to filter out pixels with low confidence in their
pseudo-labels. We use class-wise DA to align marginal distributions for each class to better deal with
imbalanced datasets. Here,Ml andMu denote the labeled and the unlabeled marginal distributions.

3.1. Cross-Pseudo Supervision

Cross-pseudo supervision works by generating two views of the same input image
with differently initialized segmentation networks. In this way, one network can discover
the self-mistakes made by the other model [16,17]. Following [16], we also use two parallel
networks F1, F2 with the same structure but different initialization for collaborative
training. To define our problem more formally, and without loss of generality, we view
the medical image segmentation problem as a pixel-wise classification one since our focus
in this paper is the cross-alignment of marginal distributions. More specifically, let Dl =
{(xl

i , yl
i)}m

i=1 denote the labeled dataset and Du = {xu
j }n

j=1 the unlabeled dataset. Here, xl
i

and xu
j are the image pixels, and yl

i is the class label for xl
i . The loss function on the labeled

dataset can be written as:

Ls = −
1
m

m

∑
i=1

yl
i

[
logF1(xl

i) + logF2(xl
i)
]
, (1)
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For the unlabeled data, we adopt the cross-pseudo supervision loss, which uses the
pseudo-labels generated by one model to supervise the prediction of the other model, as
follows:

Lu = − 1
n

n

∑
j=1

[
ŷu2

j logF1(xu
j ) + ŷu1

j logF2(xu
j )
]
, (2)

where ŷu1
j , ŷu2

j are the pseudo-labels generated by F1 and F2, respectively. Here, pseudo-
labels are the mode of prediction, i.e., the label derived from the most probable class.

Equation (2) shows that pseudo-labels determine our optimization objective. Therefore,
most existing methods [16,36] focus on correcting or generating more accurate pseudo-
labels to supervise unlabeled predictions. However, their methods neglect the fundamental
challenges of learning from imbalanced data and the distribution mismatch between labeled
and unlabeled data. In the next section, we introduce the proposed Co-DA that specifically
addresses these problems.

Let us take a closer look at the pseudo-labels in Equation (2). We can conjecture that,
ideally, if the pseudo-labels ŷu1

j , ŷu2
j follow the class distribution on labeled data, applying

Equation (2) would already align the unlabeled class distribution to the labeled class distri-
bution. However, due to class imbalance in medical image segmentation, the distribution of
pseudo-labels could be biased toward majority classes. In this paper, we propose to address
this problem by explicitly aligning the marginal distributions on unlabeled and labeled
data after cross-pseudo supervision. In particular, our Co-DA considers K class-dependent
distributions (where K is the number of classes) instead of a single overall empirical class
distribution in naive DA. This approach allows us to capture and align finer class-wise
statistics in the marginal distributions, as we describe in the next section.

3.2. Co-Distribution Alignment

In this section, we outline the proposed Co-Distribution Alignment in detail. Specifi-
cally, we first introduce an efficient method to estimate the class distribution on labeled data
during training, and then discuss class-wise distribution estimation for capturing detailed
statistics in labeled and unlabeled marginal distributions, followed by the distribution
transformation to align the unlabeled distributions to labeled distributions.

3.2.1. Marginal Distribution Estimation

The vanilla DA in ReMixMatch [15] needs to use the empirical ground-truth class
distribution for aligning model predictions on unlabeled data to it. However, estimating
ground-truth class distribution becomes computationally expensive for segmentation tasks
where a single image contains a large number of pixels, and using only a small amount
of labeled data is inappropriate, as the estimation may not well represent the overall class
distribution. To address this issue, we use the exponential moving average (EMA) to
estimate the aggregated class predictions on labeled data, which can be written as:

T l = α× T̂ l + (1− α)×E[F (xl ; Θ)], (3)

where T l and T̂ l are the labeled distributions of the current iteration and the previous
iteration, α determines that T l is the average prediction of last 1/(1− α) iterations and Θ
represents the parameters of the network. It should be noted that our work differs from
ReMixMatch [15] in that we use EMA to estimate the class predictions on labeled data,
which is more computationally efficient for dense prediction tasks. In addition, we note
that the MLE of observations can be given by:

Θ = arg max
θ
F (X ; θ)

= arg min
θ
−

m

∑
i=1

logF (xl
i ; θ)−

n

∑
i=1

logF (xu
i ; θ),

(4)
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where X is the entire dataset that includes both labeled and unlabeled data. Obviously,
Θ is related to the likelihoods of both labeled and unlabeled data. Therefore, the labeled
distribution estimated by Equation (3) considers both labeled and unlabeled data to estimate
the labeled distribution and only costs manageable computations during training.

3.2.2. Class-Wise Distribution Estimation

An important limitation of the original DA is that class imbalance may cause the tail
classes to diminish from the estimated distribution, as they only represent a small fraction
of labeled data, ultimately leading to a biased distribution transformation. Unlike naive
DA [15], Co-DA builds K independent distributions for each class, where K is the number
of classes and each distribution is class-specific. Therefore, Co-DA is more robust to class
imbalance due to the decoupled modeling process. Specifically, we maintain two matrices
Ml ∈ RK×K and Mu ∈ RK×K for labeled and unlabeled distributions, respectively, in
which row i is the distribution for the i-th class. For the i-th row of the labeled matrixMl

i ,
we use Equation (3) to approximate the marginal distribution according to the ground-truth
class label as follows:

Ml
i = α · M̂l

i + (1− α) ·E[I[yl=i]F (xl)], (5)

where I[·](·) is the indicator function. For the i-th row of the unlabeled matrixMu
i , we

update the marginal distribution by EMA according to the model prediction following
ReMixMatch [15]. The class membership of unlabeled data are obtained by the mode of
prediction, i.e., the most probable class. However, we observe that the tail categories in
the unlabeled distributions may be difficult to update due to their infrequent presence in a
batch. In this case, we use the inverse transformation from labeled distribution to unlabeled
distribution to update the unlabeled distribution. The overall update strategy ofMu

i can
be written as follows:

Mu
i =


M̂l

i ×E[M̂u
i /M̂l

i ], if {ŷu|ŷu = i} = ∅,

α× M̂u
i + (1− α)

×E[I[ŷu=i]F (xu)], otherwise,

(6)

where ŷu = arg maxF (xu) and M̂u
i is the unlabeled distribution in the previous iteration.

This update strategy stems from the original distribution alignment proposed in ReMix-
Match [15], but here, we use it to estimate the unlabeled distribution when the unlabeled
data from a certain class (usually the minority classes) are absent in a batch. In addition,
we use EMA to maintain a stable update of the distributions required for our Co-DA in the
training process. It should be noted that, in practice, there are two models (i.e., F1 and F2)
in our method, and each model will be used to update their ownMl andMu; we omit
their subscripts for notational simplicity.

3.2.3. Distribution Transformation

Following ReMixMatch, we align the distributions using coefficient transformation
but with each class functioning independently. Besides, we use a temperature τ to scale the
labeled distribution following CReST [42]. Different from CReST, however, we choose an
adaptive temperature according to the class-specific aggregated model prediction. More
specifically, the temperature and the transformation of class i is given by:

τi = 1−Ml
ii, (7)

[ŷu = i] =⇒ F ′(xu) = Normalize
(
F (xu)⊗Ml

i
τi �Mu

i
)

(8)
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where [ŷu = i] denotes that, according to the network, the i-th class is the most probable,
and we therefore use the i-th row in Ml and Mu, i.e., Ml

i and Mu
i , for the coefficient

transformation. In Equation (8), ⊗ and � denote the element-wise product and division,
respectively. In addition, F (xu) and F ′(xu) denote the network prediction for xu before
and after distribution transformation.

We note that the temperature τi further prevents the transformed distribution to be
dominated by majority classes. Specifically, τi → 0 makes the labeled distribution closer to
uniform distribution, while a larger τi results in a smaller shift. τi not only makes the model
more robust against noises in pseudo-labels in the early training stage, but also encourages
the emergence of minority classes in the middle and late stages.

After distribution transformation, the network prediction after alignment, F ′(xu),
is then used for cross-pseudo supervision according to Equation (2), instead of F (xu) as
originally shown in Equation (2).

3.3. Over-Expectation Cross-Entropy Loss

In order to further reduce the negative impact of inaccurate pseudo-labels, we propose
an over-expectation cross-entropy loss for learning from unlabeled data. Motivated by
the definition of EMA, Ml and Mu can be regarded as the expectations of the labeled
and unlabeled distributions, respectively. Intuitively, we can use the estimated aggregated
model prediction for the i-th class as an adaptive threshold to filter out unlabeled samples
below expectations to reduce noise. More specifically, the threshold t(i) for the i-th class is
given by:

t(i) =Mu
ii (9)

As we will show in Section 4.5, this adaptive and dynamic threshold is consistently superior
to different static threshold values and do not bring in additional hyperparameters. In this
way, Equation (2) can be rewritten as:

Lu = −E
[
I[pu2

i >t(ŷu2
i )]ŷ

u2
i logF ′1(xu

i ) + I[pu1
i >t(ŷu1

i )]ŷ
u1
i logF ′2(xu

i )
]
, (10)

where pu
i stands for the probability corresponding to the pseudo-labels, ŷu

i stands for the
class prediction of the pseudo-labels and we refer to our loss in Equation (10) as the over-
expectation cross-entropy loss (O-E Loss). In a nutshell, this is an extension to the soft label
cross-entropy loss that incorporates the threshold filtering in Equation (9). The logarithm
comes from the cross-entropy between two probability distributions, and we refer readers
to [43] for further background information. See Figure 2 for the O-E Masks 1 and 2 as an
illustration for applying Equation (10) in practice. The complete training process of Co-DA
is summarized in Algorithm 1.

Algorithm 1 Co-Distribution Alignment.

1: Input: Labeled training data {(xl
i , yl

i)}m
i=1, unlabeled training data {xu

i }n
i=1, max itera-

tions Imax, two parallel networks F1(Θ1) and F2(Θ2), learning rate η, momentum α
for exponential moving average

2: Initialize F1(Θ1) and F2(Θ2) with different parameters
3: for iteration=1 to Imax do
4: Update the labeled distributionMl by Equation (5);
5: Update the unlabeled distributionMu by Equation (6);
6: Generate the pseudo-labels ŷu1 and ŷu2 w.r.t. F1(Θ1) and F2(Θ2) by Equation (8);
7: Calculate the supervised loss Ls(xl , yl) according to Equation (1);
8: Calculate the unsupervised loss Lu(xu, ŷu1, ŷu2) according to Equation (10);
9: Update Θ1= Θ1 − η · ∇Θ1(Ls + Lu);

10: Update Θ2= Θ2 − η · ∇Θ2(Ls + Lu);
11: end for
12: Output: F1(Θ1) and F2(Θ2).
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4. Experiments

In this section, we thoroughly verify the efficacy of the proposed Co-DA on three
challenging public medical image segmentation datasets. Specifically, we first outline
the experimental setup, including an introduction to the datasets, the evaluation metrics
and our implementation details in Section 4.1, followed by quantitative and qualitative
results on the three datasets in Section 4.2, Section 4.3 and Section 4.4, respectively. We
also present ablation studies in Section 4.5 to demonstrate that our method provides a
strong performance that is comparable to its fully supervised variant, and the individual
components proposed in our method are all contributing to the performance of our model.

4.1. Experimental Setup
4.1.1. CaDIS

We first evaluate the performance of our method on a 2D medical image segmentation
task. The publicly available CaDIS dataset [44,45] consists of 4671 frames from 25 surgical
videos, which are collected by experts and annotated at the pixel level. Following [44], we
consider three progressively more difficult semantic segmentation tasks on this dataset.
Specifically, task 1 contains 8 classes, with 4 for anatomical structures, 1 for all instruments
and 3 for other objects that appear in frames; task 2 contains 17 classes, which divides
the single instrument classes in task 1 into 10 more specific classes of instruments; task 3
contains 25 classes, where instruments are further subdivided according to the handles and
parts of certain instruments.

To thoroughly demonstrate the efficacy of the proposed method, we compare our
method with state-of-the-art competing methods on all three tasks with varying levels
of labeled data. This task poses some unique challenges for segmenting the anatomical
structures, surgical instruments and other objects (i.e., surgical tapes, hands and eye
retractors) simultaneously. In particular, classes are unevenly distributed, and some objects
are either thin or small, or both.

4.1.2. Late Gadolinium Enhancement MRI

To further demonstrate the performance of our method on 3D medical image seg-
mentation tasks, we also evaluate our method on the Late Gadolinium Enhancement
MRI (LGE-MRI) dataset [46]. This dataset is a collection of 154 3D LGE-MRIs acquired
from the Left Atrial Segmentation Challenge, which contains data from 60 patients with
atrial fibrillation prior to and post-ablation treatment. The goal is to perform Left Atrium
(LA) segmentation, and the images have an isotropic resolution of 0.625 × 0.625 × 0.625
mm3. In particular, it is challenging to segment the LA in the top and the bottom slices,
corresponding to the pulmonary veins and the mitral valve, respectively.

4.1.3. ACDC

In addition, we evaluate the performance of our method on another 3D medical
image segmentation task using the ACDC (Automated Cardiac Diagnosis Challenge) 2017
dataset [47]. This dataset consists of MRI images from 100 patients with expert annotations.
Among these, 2 are used as the validation set, 20 are used as the test set and the rest are used
as the training set. The ACDC dataset contains images from patients with normal cardiac
anatomy as well as those with previous myocardial infarction, dilated cardiomyopathy,
hypertrophic cardiomyopathy and an abnormal right ventricle. One unique challenge in
this task lies in identifying the left ventrice, the myocardium and the right ventrice, which
could all be very small at certain anatomical structures such as the apex.
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4.1.4. Evaluation Metrics

This section presents the evaluation metrics employed to assess the effectiveness of
the proposed approach. Firstly, we follow [48] and use the mean Intersection over Union
(mIoU) to evaluate the CaDIS dataset, given as follows:

mIoU =
1
c

c

∑
i=0

TP
TP + FP + FN

, (11)

where c is the number of classes, and TP, FP and FN denote the number of pixels that are
true positives, false positives and false negatives, respectively. In addition, Dice score,
Jaccard, the average surface distance (ASD) and the 95% Hausdorff Distance (95HD) are
adopted to evaluate LGE-MRI [8]. Also, methods are evaluated with Dice score and 95HD
for ACDC 2017. Specifically, Dice, Jaccard and ASD are given as follows:

Dice = 2TP/(2TP + FP + FN), (12)

Jaccard = TP/(TP + FP + FN), (13)

ASD =

(
∑

a∈S(A)
min

b∈S(B)
||a− b||+ ∑

b∈S(B)
min

a∈S(A)
||b− a||

)
|S(A)|+ |S(B)| ,

(14)

where S(·) denotes the set of surface voxels, and the two sets A and B refer to the ground-
truth and network prediction, respectively. || · || denotes the L2 distance. For the Hausdorff
distance, it could be written as:

HD = max(h(S(A), S(B)), h(S(B), S(A))), (15)

where h(S(A), S(B)) = max
a∈S(A)

{
min

b∈S(B)
||a− b||

}
, denoting the maximum distance of voxels

in A to the nearest voxel in B. The 95% Hausdorff Distance is based on the 95th percentile of
the surface distance above in order to eliminate the impact from a small number of outliers.

4.1.5. Implementation Details

For CaDIS, we use the publicly available split strategy [48] of 3550 frames for training
and the remaining 1120 for validation. For 12%, 24% and 49% labeled data in our experi-
ments, we randomly choose 424, 834 and 1729 labeled frames, respectively. In addition,
we randomly crop the original image to 352× 352 and augment the data in the same way
as in [48], including random horizontal flipping, Gaussian noise and color jittering. To
mitigate the effects of data imbalance, we also follow [48] and use Repeat Factor Sampling
in the labeled set. For LGE-MRI, we are consistent with [8]’s pre-processing scheme, divid-
ing the original 100 sheets of data into 80 for training and 20 for validation. All data are
centrally cropped in the heart region and randomly cropped to 112× 112× 80. The data
augmentation strategy used included random flips and rotations of 90, 180 and 270 degrees.
For the ACDC 2017 dataset, we use random flip, rotation and scaling as data augmentation.

The proposed method is implemented with PyTorch [49]. We use an nVIDIA GeForce
RTX 3090 GPU for training. We choose to train CaDIS and ACDC datasets with EfficientNet-
B3-based [50] Unet [5] and LGE-MRI with Vnet [51] as backbone architectures. Both
networks are updated using the SGD optimizer with a momentum of 0.9 and an initial
learning rate of 0.0001, with the learning rate divided by 0.0011/epoch for each epoch, where
epoch depends on the ratio of iterations to the number of labeled data in training, and the
batch size is set to 8. For CaDIS, we set the number of iterations in one epoch to 10,000 when
the ratio of labeled data are 12%, 20,000 when the ratio of labeled data are 24% and 50,000
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when the ratio of labeled data are 49%; for training LGE-MRI, the number of iterations is
set to 6000 uniformly; for ACDC, the number is 30,000 uniformly.

4.2. Results on CaDIS

In order to better verify the effectiveness of the proposed method, we compare it
with the following state-of-the-art methods: URPC [52], UAMT [8], CLD [53] and CPS [16].
Among these methods, URPC [52], UAMT [8] and CLD [53] are specifically designed
for semi-supervised medical image segmentation, while CPS [16] is a generic semantic
segmentation algorithm. We also experiment with a naive setup, i.e., to train the model
with only labeled data, denoted as Baseline. As shown in Table 1, Co-DA outperforms other
methods on different split settings. Specifically, in Task 1, our method is able to improve
0.1223, 0.1017 and 0.0329 on mean IoU with 12%, 24% and 49% labeled data, respectively.
For Task 2 and Task 3, the corresponding improvements are 0.1304, 0.1228, 0.1832 and
0.0845, 0.1181, 0.1189. It should be noted that under Task 1 with 12% labeled data, the
performance of our method is slightly lower than UAMT for semi-supervised medical
image segmentation and CPS for generic image segmentation, which is probably due to the
data distribution being relatively balanced when the amount of data and number of classes
are small. However, as the problem gets more difficult when we have more imbalanced
datasets with more classes, the performance gain obtained from our method becomes more
prominent.

Table 1. Mean IoU results on CaDIS. Bold numbers represent the best performance.

Method
12% Labeled Data 24% Labeled Data 49% Labeled Data

Task 1 Task 2 Task 3 Task 1 Task 2 Task 3 Task 1 Task 2 Task 3

Baseline 0.5973 0.3719 0.2784 0.7498 0.5413 0.3859 0.8603 0.6066 0.5286

URPC [52] 0.6649 0.4449 0.3169 0.7486 0.5383 0.3886 0.8361 0.6328 0.5414
UAMT [8] 0.7223 0.2953 0.2180 0.7760 0.5288 0.4085 0.8811 0.6925 0.5815
CPS [16] 0.7222 0.4570 0.3525 0.8437 0.6562 0.4821 0.8874 0.7774 0.5837
CLD [53] 0.7120 0.4465 0.3056 0.8376 0.6474 0.4325 0.8857 0.7553 0.5999

Co-DA (Ours) 0.7196 0.5023 0.3629 0.8515 0.6641 0.5040 0.8932 0.7898 0.6475

In Figure 3, we show the qualitative results of Co-DA. The comparison between Co-DA
and CLD [53] shows that Co-DA could obtain superior results, especially in the instrument
regions. We present the confusion matrices of Co-DA and Baseline on CaDIS Task 1 in
Appendix A.

4.3. Results on Late Gadolinium Enhancement MRI

Similar to our setup in the CaDIS experiment, the quantitative results of the experi-
ments on Late Gadolinium Enhancement MRI (LGE-MRI) with 10% and 20% labeled data
are shown in Table 2, where we also present the experimental results for all the competing
algorithms. Our proposed Co-DA consistently provides a strong performance among
all algorithms. With 10% labeled data, Co-DA boosts 21.78% and 26.54% on Dice and
Jaccard over the baseline, and reduces 2.86 voxels and 10.7 voxels on ASD and 95HD,
respectively. With 20% labeled data, Co-DA consistently provides the best performance,
improving 25.3% and 29.48% on Dice and Jaccard over the baseline, and reduces 5.54 voxels
and 16.08 voxels on ASD and 95HD, respectively. We note that our method demonstrates
the strongest performance on Dice score and Jaccard under all settings. Furthermore, we
present the trends in mIoU with 20% data and different methods in Figure 4. It is evident
that the proposed Co-DA trains more quickly than other methods, requiring fewer training
iterations than CLD, CPS, URPC, etc. The performance of Co-DA also remains stable once
peaked.
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(a) (b) (c) (d)

Figure 3. Comparison of the proposed Co-DA and another state-of-the-art method, CLD [53],
on CaDIS with 49% labeled data. (a) is the input to the networks, (b) is the ground-truth of the
corresponding input, (c) is the output of CLD and (d) is the output of Co-DA.

Table 2. Experimental results on LGE-MRI. Bold numbers represent the best performance.

Method
10% Labeled Data 20% Labeled Data

Dice (%) Jaccard (%) ASD
(Voxels)

95HD
(Voxels) Dice (%) Jaccard (%) ASD

(Voxels)
95HD

(Voxels)

Baseline 62.41 46.67 10.27 36.01 62.94 49.70 9.23 30.85

URPC [52] 83.67 63.57 10.27 27.67 81.30 68.90 7.14 24.43
UAMT [8] 66.38 52.04 6.64 21.27 86.81 76.99 4.66 17.89
CPS [16] 69.38 47.77 17.09 27.09 73.29 59.42 8.73 26.39
CLD [53] 65.22 42.26 6.68 23.79 77.03 63.85 5.27 19.66

Co-DA (Ours) 84.19 73.21 7.41 25.31 88.24 79.18 3.69 14.77
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Figure 4. Trends in mIoU on the LGE-MRI dataset with 20% labeled data. It is clear that Co-DA not
only provides the best performance, but also trains more quickly than most other methods, requiring
a smaller number of training iterations. Additionally, the performance is stable once peaked.

Figure 5 shows some examples of the segmentation results on LGE-MRI, using the
proposed Co-DA and another state-of-the-art method, CLD [53]. CLD tends to have
difficulty in accurately segmenting the pathological regions and will partially misjudge the
healthy regions, while our segmentation results of the pathological regions are much closer
to the ground-truth. In addition, our method is less likely to generate spurious artefacts
commonly found in the results obtained with CLD, showcasing the strong regularization
ability of class-wise distribution alignment.

4.4. Results on ACDC

According to Table 3, the performance of our method on the ACDC dataset is better
than or comparable to other competing algorithms, which shows that our method is also
effective in this segmentation task. With 10% labeled data, our method is able to outperform
the baseline with a 12.35% margin on Dice and a 6.18 voxels improvement on 95HD. With
20% labeled data, these performance boosts are 10.3% and 4.63 voxels, respectively. It is
clear that our method provides the best performance in terms of 95HD under both settings.
However, our method, along with other methods for semi-supervised medical image
segmentation, displays a slightly poorer performance than CPS on Dice score, indicating
the excellent performance of CPS and showing that distribution alignment for pseudo-
labels does not work well enough on the ACDC dataset, which we will continue to explore
in future work. Although our method does not provide the best Dice score, the performance
in terms of 95HD is better than all other algorithms, demonstrating that Co-DA is able
to provide high quality segmentation with accurate boundary delineation. We present
example segmentation results of CLD and our proposed Co-DA in Figure 6.
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(a) (b) (c) (d)
Figure 5. Comparison of the proposed Co-DA and another state-of-the-art method, CLD [53], on 2D
slices of MRI on LGE-MRI with 20% labeled data, where (a) is the input to the networks, (b) is the
corresponding grouth-truth, (c) is the output of CLD and (d) is the output of Co-DA.

Table 3. Experimental results on ACDC. Bold numbers represent the best performance.

Method
10% Labeled Data 20% Labeled Data

Dice (%) 95HD (Voxels) Dice (%) 95HD (Voxels)

Baseline 70.59 12.11 77.43 9.57

URPC [52] 77.59 6.46 86.07 5.07
UAMT [8] 72.47 15.49 82.68 6.05
CPS [16] 83.96 8.75 87.81 5.95
CLD [53] 83.04 6.13 86.58 5.81

Co-DA(Ours) 82.94 5.93 87.73 4.94
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(a) (b) (c) (d)

Figure 6. Comparison of the proposed Co-DA and another state-of-the-art method, CLD [53], on the
ACDC dataset with 10% labeled data, where (a) is the input to the networks, (b) is the corresponding
ground-truth, (c) is the output of CLD and (d) is the ouput of Co-DA.

4.5. Ablation Studies

In this section, we perform additional experiments to verify the strong learning ca-
pacity Co-DA as compared to its fully supervised variant. In addition, we isolate the
different components of our method to ensure that they all contribute to the final perfor-
mance. Finally, we look into the efficacy of the dynamic threshold for the over-expectation
cross-entropy loss and compare examples of pseudo-labels generated with and without
Co-DA.

Firstly, we compare Co-DA with the fully supervised settings on both CaDIS and
LGE-MRI and present the results in Figure 7. In many cases, the performance of Co-DA
is very close to the fully supervised setting, demonstrating the outstanding efficacy of
class-wise distribution alignment. Specifically, with 49% labeled data, Co-DA provides only
slightly lower mIoU on CaDIS Tasks 1 and 2 as compared to the fully supervised setting. It
even marginally outperforms the fully supervised case on Task 3, which means the refined
pseudo-labels have a superior quality.

Secondly, to ensure the complementary effect of proposed components in our method,
i.e., the co-distribution alignment and the over-expectation cross-entropy loss, we conduct
a set of ablation experiments on CaDIS, and the results are presented in Table 4. The
third row demonstrates that the over-expectation cross-entropy loss reduces the noise in
pseudo-labels by dynamically varying the threshold to filter out low-confidence pixels,
achieving a significant improvement of 0.0488 on Task 3 for mean IoU over the baseline.
The fourth row shows that the proposed Co-DA can bring a gain of 0.1303 on Task 3, while
there is a slight decrease in performance on Task 2. Empirically, we conjecture the reason is
that Task 1 and Task 3 have more severe class imbalance than Task 2 [44]. Considering the
overall stability of the proposed method, we apply the two newly designed modules to
co-training simultaneously, obtaining improvements of 0.0058, 0.0124 and 0.0748 on the
three tasks over the baseline, respectively.

Table 4. Results from our ablation study on CaDIS. Performance shown in mean IoU. O-E denotes
the proposed over-expectation cross-entropy loss.

Co-Training DA O-E Co-DA
49% Labeled Data

Task 1 Task 2 Task 3

X 0.8874 0.7774 0.5837
X X 0.8893 0.7718 0.6438
X X 0.8903 0.7824 0.6325
X X 0.8907 0.7681 0.7140
X X X 0.8932 0.7898 0.6585
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Figure 7. Comparing the baseline, Co-DA and the fully supervised method on the CaDIS dataset
in terms of mIoU. In some cases, Co-DA performs comparably to the fully supervised method,
demonstrating its strong learning capacity.

We also visualize examples of the pseudo-labels generated by the networks with and
without Co-DA, and the results are shown in Figure 8. Clearly, Co-DA is able to improve
the quality of pseudo-labels, resulting in an overall accuracy improvement and a reduction
of the negative impact from incorrect pseudo-labels.

(a) (b) (c) (d)

Figure 8. Visualization of pseudo-labels generated by Co-DA. (a) is the input image, (b) is the ground-
truth, (c) are pseudo-labels generated by the network without Co-DA and (d) are the pseudo-labels
refined by Co-DA.
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Finally, according to Figure 9, different predefined thresholds for the over-expectation
loss will also lead to different levels of performance. Yet, a dynamic threshold as provided
by Equation (9) is consistently superior, as it is able to automatically select a suitable gating
value for retaining reliable pseudo-labels.

Figure 9. A performance comparison of static thresholds versus the dynamic threshold that our
method adopts, according to Equation (9) on Task 1 of the CaDIS dataset with 24% labeled data. It is
clear that the dynamic threshold provides superior mean IoU.

5. Conclusions

In this paper, we propose a novel Co-Distribution Alignment (Co-DA) approach to
partially labeled medical image segmentation tasks with imbalanced class distributions.
Our key idea involves a class-dependent alignment between labeled distributions and unla-
beled marginal distributions that is suitable for dense prediction tasks. Specifically, Co-DA
simplifies the estimation of labeled distributions, extends the original DA to class-wise
distribution alignment with cross-supervision and adopts adaptive temperature scaling
for labeled distributions to avoid highly imbalanced estimations. In addition, we propose
an over-expectation cross-entropy loss to reduce noises in pseudo-labels. Extensive exper-
iments, including abation studies, on three publicly available datasets demonstrate the
consistently superior learning capacity of our approach.
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Appendix A

In Figure A1, we show the confusion matrices of Co-DA on CaDIS Task 1. We can
clearly observe that under different split settings, Co-DA performs favorably in comparison
to the Baseline.

Figure A1. The confusion matrices of our proposed Co-DA and Baseline (only with 24% and 49%
labeled data) on CaDIS Task 1. The proposed Co-DA performs better than the Baseline on the majority
of classes under both settings.
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