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Abstract: Multi-contrast magnetic resonance imaging (MRI) is wildly applied to identify tuberous
sclerosis complex (TSC) children in a clinic. In this work, a deep convolutional neural network with
multi-contrast MRI is proposed to diagnose pediatric TSC. Firstly, by combining T2W and FLAIR
images, a new synthesis modality named FLAIR3 was created to enhance the contrast between TSC
lesions and normal brain tissues. After that, a deep weighted fusion network (DWF-net) using a late
fusion strategy is proposed to diagnose TSC children. In experiments, a total of 680 children were
enrolled, including 331 healthy children and 349 TSC children. The experimental results indicate
that FLAIR3 successfully enhances the visibility of TSC lesions and improves the classification
performance. Additionally, the proposed DWF-net delivers a superior classification performance
compared to previous methods, achieving an AUC of 0.998 and an accuracy of 0.985. The proposed
method has the potential to be a reliable computer-aided diagnostic tool for assisting radiologists in
diagnosing TSC children.

Keywords: tuberous sclerosis complex; children; convolutional neural network; multi-contrast MRI;
rare neurodevelopmental disorder

1. Introduction

Tuberous sclerosis complex (TSC) is a rare neurodevelopmental disorder caused by
mutations in the TSC1 and TSC2 genes [1,2]. It is characterized by angiofibromas of the
face, epilepsy, an intellectual disability, and hamartomas in multiple organs including the
heart, kidneys, brain, and lungs [3–5]. The majority of pediatric TSC patients experience
their initial seizure in the first year of life [6–8], which has a severe impact on the lives
of TSC children [9,10]. Therefore, it is urgent and valuable to develop valid and robust
classification models for TSC children in a clinic.

Neurological symptoms are prevalent in nearly all children with TSC, and multi-
contrast magnetic resonance imaging (MRI) is frequently employed for a clinical diag-
nosis [11]. To date, T2-weighted imaging (T2W) and fluid-attenuated inversion recovery
(FLAIR) have been commonly utilized in a pediatric TSC diagnosis, allowing for the iden-
tification of lesions and facilitating high lesion-to-brain contrast visualization. But, the
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cerebrospinal fluid (CSF) signal is strong in T2W, which severely interferes with the vi-
sualization of periventricular TSC lesions. FLAIR imaging can suppress cerebrospinal
fluid and sufficiently show the lesion–brain contrast clearly, and FLAIR also reduces the
signal-to-noise ratio while pressing CSF [12]. Currently, it is not possible for a single MRI
sequence to produce all the required tissue contrasts in a single contrast image due to the
trade-offs that need to be made when choosing MRI pulse sequence parameters [13]. In
recent studies, it has been demonstrated that a synthesized contrast that blends T2W and
FLAIR imaging can augment the contrast of multiple sclerosis (MS) lesions, leading to an
improved diagnostic efficacy [12,13]. However, to the best of our knowledge, there are
not studies on applying a synthesis contrast combining T2W and FLAIR for diagnosing
pediatric TSC so far.

Otherwise, deep learning has been studied as an advanced artificial intelligence
technology that can automatically learn from medical image data and extract a large number
of features [14]. Previously, deep learning models and multi-contrast MRIs have been
successfully used for automatically detecting strokes [15] and classifying brain tissues [16].
Until now, convolutional neural networks (CNNs) have been applied to assist in tuber
segmentation in TSC patients [17]. Sanchez et al. [18] used two types of contrast MRI,
T2W and FLAIR, for the detection task of TSC tubers and achieved the receiver operating
characteristic curve that can have an area under the curve (AUC) of 0.99. However, their
approach employed a 2D network and solely relied on handpicked MRI slices with evident
tubers as input to the network. This method failed to account for the spatial attributes of
MRI and neglected the fact that not all TSC patients exhibit visible lesions. Additionally,
their datasets were limited to merely 114 TSC patients and 114 controls. Alternatively,
recent research suggests that 3D CNNs excel at capturing the spatial characteristics of MRI
and effectively capitalize on the interplay between voxels. Consequently, they have been
reported to yield superior results in predicting chronological age [19].

To further raise the performance of identifying TSC children in a clinic, a novel deep
learning method, named the deep weighted fusion network (DWF-net), was proposed to
effectively diagnose pediatric TSC lesions with multi-contrast MRIs. The proposed method
has a synthesis contrast, named FLAIR3, from the combination of T2W and FLAIR that
can maximize the lesion–brain contrast of pediatric TSC lesions. Moreover, the proposed
method has a 3D CNN strategy of the weighted late fusion model combined with multi-
contrast MRI to automatically diagnose pediatric TSC. The experimental dataset has a total
of 680 children, including 331 healthy and 349 TSC children. Experiments intuitively show
that the new synthesis FLAIR3 contrast and the weighted 3D CNN strategy can effectively
improve the contrast saliency of pediatric TSC lesions, and the classification performance.

The proposed deep learning method is efficient in distinguishing TSC children from
healthy children and presently achieves the best performance. The proposed method has
great potential in helping clinical doctors diagnose TSC children and provides an effective
research tool for pediatric doctors.

2. Methods
2.1. Optimal Combination of T2W and FLAIR

Cortical and subcortical nodules are the most common lesions in TSC children. The
increased prominence of lesions is crucial for clinical doctors to diagnose pediatric TSC [20].
The T2W signal is related to water content, and most of the lesions have stronger T2W
signals than surrounding normal tissues, often exhibiting a bright state. Therefore, the
location and size of the pediatric TSC lesions can be seen from the T2W sequence. However,
the outline of the lesion is relatively vague in the T2W sequence, and it is difficult to clearly
outline the outline of the lesion. Moreover, there was a strong cerebrospinal fluid (CSF)
signal interference in T2W. FLAIR, also known as water-suppression imaging, suppresses
(darkens) CSF hyperintensity in T2W, thereby making lesions adjacent to CSF clear (bright-
ened). Compared with the T2W sequence, the FLAIR sequence can better represent the
surroundings of the lesion and clearly show the lesion area. FLAIR is a T2W scan that
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selectively suppresses CSF by reversing pulses. However, CSF signal suppression comes
at the expense of reducing the signal-to-noise ratio [12]. FLAIR2 and FLAIR3 have been
proposed to combine T2W and FLAIR to improve lesion visualization in MS disease [12,13].
Inspired by [12,13], we propose to optimize the combination of T2W and FLAIR as a new
modality named FLAIR3 in pediatric TSC disease as follows [13]:

FLAIR3 = FLAIRα × T2Wβ

s.t. α + β = 3
(1)

where the optimized α is 1.55 and β is 1.45 based on the signal equations of FLAIR and
T2W [13], which can optimally balance the lesion contrast between FLAIR and T2W.

2.2. Late Fusion Strategies

Some recent studies [21] have shown that the late fusion model could grasp the data
distribution effectively and finally achieve the best classification performance. Inspired
by [22,23], a weighted late fusion strategy was used to combine multi-contrast MRI for
classification tasks in pediatric TSC patients. First, T2W, FLAIR, and FLAIR3 were fed into
a feature extractor. We propose a deep weighted network (DWF net) that takes the scores
of the T2W, FLAIR, and FLAIR3 models as input, and outputs the final classification with a
simple and efficient weighted average integration method, as follows:

SDWF = W1 × ST2W + W2 × SFLAIR + W3 × SFLAIR3
s.t. ∑3

i=1 Wi = 1
(2)

where ST2W, SFLAIR, and SFLAIR3 represent the classification scores of T2W, FLAIR, and
FLAIR3 models, respectively. SDWF denotes the final output prediction scores of the pro-
posed DWF-net. W1, W2, and W3 are the weights of the prediction scores of the three
multi-contrast MRIs.

To explore the optimal fusion between multi-contrast MRI and to enhance the AUC of
the proposed DWF-net, the experiments were performed for values of W1 between 0 and
1, and W2 from 0.1 to 1−W1 with a step of 0.1; W3 is 1−W1−W2. The weight-searching
algorithm is shown in Algorithm 1.

Algorithm 1 The weight searching algorithm for fusion

Input: The prediction scores ST2W, SFLAIR, and SFLAIR3 of three input images and corresponding
ground truth y on testing set.
Output: The weight (W1, W2, and W3) with best AUC on testing set.
1: Initialize AUC best ← 0.
2: for i: =0 to 10 do
3: for j: =0 to 10–i do
4: k← 10-i–j
5: S temp = (i×ST2W + j×SFLAIR + k×SFLAIR3) × 0.1
6: AUC temp = Compare (Stemp, y)
7: if AUC temp > AUC best then
8: AUC best ← AUC temp
9: W1 ← i×0.1
10: W2 ← j×0.1
11: W3 ← k×0.1
12: end for
13: end for
14: end for
Return W1, W2, and W3

2.3. Network Architectures

The proposed DWF-net method for pediatric TSC patients was implemented using two
different 3D CNN architectures. The following sections describe two different 3D CNN models.



Bioengineering 2023, 10, 870 4 of 16

ResNet was proposed in 2015 and has been widely applied in detection, segmentation,
recognition, and other fields [24]. In addition, ResNet has demonstrated a stable and
excellent classification performance in image classification among different variants of
various 3D CNNs [24]. Therefore, the first 3D CNN model we consider is 3D-ResNet, which
uses a shortcut connection to make a reference for the input of each layer and learns to
form a residual function. The residual function is easier to optimize, making the number of
network layers much deeper, and can easily obtain a higher accuracy from deeper depths.

For the second 3D CNN model, we utilized the 3D-EfficientNet architecture [25] as
our feature extractor. This classification network is known for its efficiency in improving
accuracy and reducing the training time and network parameters. The EfficientNet was
designed using a neural architecture search and employs the mobile inverted bottleneck
convolution (MBConv) module as its core structure. This module, similar to depth-wise
separable convolution, minimizes parameters significantly. In addition, the attention idea
of the squeeze-and-excitation network (SENet) is also introduced [26] in EfficientNet. The
attention mechanism of SENet allows the model to focus more on channel features that
are most informative, while suppressing those unimportant channel features, thereby
improving the model performance.

As shown in Figure 1a, for the pediatric TSC identification tasks with one single
MRI modality, the 3D-ResNet34 and 3D-EfficientNet were used as a feature extractor.
When DWF-net was used, two or three modalities were applied as inputs, as shown in
Figure 1b. Table 1 displays the 10 models that were trained in this study, each with distinct
architectures and inputs.
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Table 1. Detailed information on ten network structures.

Model Name Input Modality Method

Eff_FLAIR FLAIR only 3D-EfficientNet
Eff_T2W T2W only 3D-EfficientNet

Eff_FLAIR3 FLAIR3 only 3D-EfficientNet
Eff_FLAIR_T2W FLAIR + T2W DWF_net

Eff_DWF_net FLAIR + T2W + FLAIR3 DWF_net

Res_FLAIR FLAIR only 3D-ResNet34
Res_T2 T2W only 3D-ResNet34

Res_FLAIR3 FLAIR3 only 3D-ResNet34
Res_FLAIR_T2W FLAIR + T2W DWF_net

Res_DWF_net FLAIR + T2W + FLAIR3 DWF_net

3. Materials and Experiments
3.1. Dataset

In this study, all pediatric volunteers were from Shenzhen Children’s Hospital. The
study was approved by the Ethics Committee of Shenzhen Children’s Hospital (No.2019005).
Written informed consent was obtained from all pediatric volunteers and/or their parents.
In total, 349 TSC children and 331 healthy children (HC) were included in this study. Inclu-
sion criteria for pediatric TSC patients were (1) aged 0–20 years, (2) no other neurological
disorders, and (3) clinically diagnosed with TSC. (4) T2W and FLAIR images are complete
and clear. Inclusion criteria for healthy children were (1) aged 0–20 years, (2) without
any neurological disorder, (3) clinically defined normal or non-specific findings during
routine clinical care. (4) T2W and FLAIR images are complete and clear. Figure 2 shows the
exclusion and inclusion criteria of our study.
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Figure 2. Study exclusion and inclusion criteria of the pediatric dataset.

The data were randomly split into train-validation-test sets in a 7:1:2 ratio. To ensure
that every group had the same class proportion, stratified random sampling was employed.
Training, validation, and testing datasets had no overlap of patients.
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3.2. Data Processing

Firstly, a FMRIB Linear Image Registration Tool (FLIRT) of FSL (http://fsl.fmrib.ox.
ac.uk (accessed on 1 January 2021.)) was used to register T2W into the FLAIR space, and
mutual information was used as the cost function. In neuroimaging studies, the lesions
are usually located in the brain tissue, and the skull part is an irrelevant site. When brain
MRI images are used for classification network research, the brain tissue of the region of
interest is often the input. HD-bet is an algorithm for extracting brain tissue [27], which
can remove irrelevant images such as of the neck and eyeball. Therefore, in the second step,
the deep learning tool HD-bet is used to strip the skull in MRI. Subsequently, all 3D MRI
images were resized to 128 × 128 × 128, and the image intensity was normalized to the
range of 0 to 1 using the min–max normalization formula:

xNormalized =
x−Min(x)

Max(x)–Min(x)
(3)

where Max(x) and Min(x) represent the highest and lowest values of the brain-extracted
MRI images, respectively, and xNormalized refers to the normalized MRI images. Finally, T2W
and FLAIR were combined and transformed into FLAIR3. The flowchart illustrating the
data preprocessing can be found in Figure 3.
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3.3. Baseline and Effectiveness of Skull Stripping

In this study, we compared 10 different proposed 3D CNN models with a 2D-InceptionV3
model [18] (baseline model) to evaluate the effectiveness of the proposed deep learning
methods. The 2D-InceptionV3 model was exclusively trained on our FLAIR data, with the
maximum transverse slice of the FLAIR chosen as the input. Furthermore, we conducted a

http://fsl.fmrib.ox.ac.uk
http://fsl.fmrib.ox.ac.uk
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series of experiments on FLAIR images and T2W images with and without skull-stripping
preprocessing to assess the effectiveness of the skull-stripping methodology.

3.4. Comparison of Normalization Methods

Typically, normalization methods often have a significant impact on the performance
of deep learning models. The min–max normalization and Z-score normalization are most
used in medical image normalization. While the min–max normalization approach is
appropriate for most kinds of data and can effortlessly maintain the initial data distribution
structure, it is not ideal for handling sparse data and is prone to being affected by outliers.
The Z-score normalization method employs the mean and standard deviation of the original
data to normalize it. The following formula illustrates this:

xNormalized =
x−Mean(x)

std(x)
(4)

When Mean(x)= 0, std(x) = 1, that is, the mean is 0 and the standard deviation is 1,
meaning that the processed data conform to the standard normal distribution. This Z-score
method is suitable for most types of data, but it is a centralized method, which will change
the distribution structure of the original data, and it is also not suitable for the processing
of sparse data. To explore the effectiveness of the normalization operation, we conducted
three sets of experiments on both T2W and FLAIR images when using the same network,
which are without the normalization method, the Z-score normalization, and the min–max
normalization, respectively.

3.5. Model Training and Evaluation

For our experiments, we used the same partitioning for the training set, validation set,
and test set across all models. Each model was trained using a learning rate of 0.0001, SGD
optimization, a batch size of 4, and 50 epochs, with the binary cross-entropy loss function.
To implement the training, validation, and testing process, we used Python version 3.8.10
and PyTorch version 1.9.0 environments.

For each cohort, we calculated the area under the curve (AUC) of the receiver operating
characteristic (ROC), accuracy (ACC), sensitivity (SEN), and specificity (SPE) to evaluate
the classification performance of all models. These metrics rely on the true positive (TP),
which counts the total number of correct positive classifications, and the true negative (TN),
which represents the total number of accurate negative classifications. The false positive
(FP) accounts for the total number of positive classifications that are incorrect, while the
false negative (FN) represents the total number of negative classifications that are incorrect.
We obtained the ACC, SEN, and SPE through the following formulas:

Accuracy (ACC): The percentage of the whole sample that is correctly classified:

ACC =
TP + TN

TP + TN + FP + FN
(5)

Sensitivity (SEN): The percentage of the total sample that is true and correctly classi-
fied:

SEN =
TP

TP + FN
(6)

Specificity (SPE): The percentage of the total sample that is negative and correctly classified:

SPE =
TN

TN + FP
(7)

3.6. Statistical Analysis

For this research, categorical variables were presented using the frequency and per-
centage, while continuous variables were expressed as the mean ± standard deviation.
Continuous variables were analyzed using the F-test, while categorical variables underwent
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a chi-square analysis. Statistical significance was defined as p < 0.05. All statistical analyses
were performed using the scikit learn, scipy, and stats libraries in Python 3.8.10.

4. Results
4.1. Clinical Characteristics of Patients

All of the 680 child subjects’ primary clinical features are listed in Table 2. Among
the 349 TSC patients, 188 (53.9%) were identified as male, averaging 45.5 months in age.
Moreover, among the 331 HC, 183 (55.3%) were identified as male, averaging 733 months
in age. There was a significant difference in the average age between the HC group and the
TSC group, with a p-value less than 0.05. There was no significant difference in gender.

Table 2. The main clinical characteristics of all 680 child subjects.

TSC HC p-Value

Number 349 331 -
Male, number (%) 188 (53.9%) 183 (55.3%) 0.711

Age at imaging, mean ± SD (months) 45.5 ± 46.6 73.3 ± 49.2 <0.001

4.2. Visualization Results of FLAIR3

Figure 4 shows FLAIR, T2W, and FLAIR3 images of a TSC child and a healthy child. On
three MRI images of the TSC child, it can be observed that the contrast between the lesions
and brain tissue on FLAIR is not clear enough, there is a severe interference of cerebrospinal
fluid on T2W, and the contrast and clarity of the lesions on the newly generated FLAIR3
image are significantly improved (TSC lesion as shown by the red arrow). In addition,
FLAIR3 inhibits cerebrospinal fluid and can clearly locate the TSC lesion.
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proposed FLAIR3 (the red arrow highlights the TSC lesion).

4.3. Performance of the Models

The performance of DWF-net varies with the weight of W1, W2, and W3 as shown
in Figure 5. The feature extractor in Figure 5a is 3D-EfficientNet, and the best AUC
performance of 3D-EfficientNet is 0.989 (W1 = 0.0, W2 = 0.3, W3 = 0.7). Among the models
evaluated, Res_DWF_net (with weight parameters W1 = 0.2, W2 = 0.3, W3 = 0.5), which
employs 3D-ResNet as a feature extractor and a late fusion strategy as depicted in Figure 5b,
achieves the highest performance. This model has an accuracy of 0.985 and an AUC of
0.998, outperforming other models.
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Figure 5. The performance of DWF-net with different weights. The feature extractor in (a) is 3D-
EfficientNet, and the feature extractor in (b) is 3D-ResNet. The horizontal axis represents the weight
of W1, W2, and W3, and the vertical axis represents the performance of AUC.

The results for all the compared models in the testing dataset are presented in Table 3.
When using 3D-EfficientNet, FLAIR3 achieves an AUC performance of 0.987 and the AUC
of Eff_FLAIR_T2W is 0.974, and the AUC of FLAIR3 is higher than Eff_FLAIR_T2W. FLAIR3
achieves an AUC performance of 0.997 when using 3D-ResNet as the feature extraction
network. When the feature extraction network is 3D ResNet, the AUC of Res_FLAIR_T2W
is 0.994, and the AUC of FLAIR3 is higher than Res_FLAIR_T2W.

Table 3. Detailed performance of different models in pediatric testing datasets.

Input Modality Model Name AUC ACC SEN SPE

FLAIR + T2W InceptionV3 [18] 0.933 0.851 0.812 0.893

FLAIR only Eff_FLAIR 0.974 0.911 0.869 0.954
T2W only Eff_T2W 0.971 0.919 0.869 0.970
FLAIR3 Eff_FLAIR3 0.987 0.926 0.884 0.970

FLAIR + T2W Eff_FLAIR_T2W 0.974 0.933 0.928 0.939
FLAIR + T2W + FLAIR3

(W1 = 0.0, W2 = 0.3, W3 = 0.7) Eff_DWF_net 0.989 0.963 0.942 0.985

FLAIR only Res_FLAIR 0.994 0.970 0.986 0.955
T2W only Res_T2W 0.983 0.956 0.913 0.999
FLAIR3 Res_FLAIR3 0.997 0.978 0.957 0.999

FLAIR + T2W Res_FLAIR_T2W 0.994 0.970 0.942 0.999
FLAIR + T2W + FLAIR3

(W1 = 0.2, W2 = 0.3, W3 = 0.5) Res_DWF_net 0.998 0.985 0.971 0.999

When using the same single-modal MRI as inputs, 3D-ResNet outperforms 3D-
EfficientNet. Additionally, the AUC performance of the FLAIR3 model outperforms the
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T2W-only model and FLAIR-only model. The baseline network (InceptionV3) achieves an
AUC performance of 0.952, and the performance of our all-3D network exceeds the AUC
performance of the baseline network of InceptionV3.

ROC curves for all models of the testing cohort are shown in Figure 6a–c, and Figure 6d
shows the classification performance for all models of the testing cohort.
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4.4. Results of Skull Stripping

The classification performance of FLAIR and T2W images, with or without skull
dissection, is presented in Table 4. The table demonstrates that if the network structure and
input modality remain constant and the skull dissection preprocessing is not carried out,
the classification performance of 3D ResNet and 3D EfficientNet will show a decline.

Table 4. The results of with/without skull stripping in T2W and FLAIR.

Modality Model Name Preprocessing AUC ACC SEN SPE

FLAIR only
3D-EfficientNet Without skull stripping 0.898 0.829 0.754 0.909

Skull stripping 0.974 0.911 0.869 0.954

3D-ResNet Without skull stripping 0.959 0.881 0.855 0.909
Skull stripping 0.994 0.970 0.986 0.955

T2W only
3D-EfficientNet Without skull stripping 0.968 0.916 0.881 0.951

Skull stripping 0.971 0.919 0.869 0.970

3D-ResNet Without skull stripping 0.914 0.829 0.797 0.863
Skull stripping 0.983 0.956 0.913 0.999
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4.5. Comparison of Normalization Methods

Table 5 and Figure 7 depict the classification performance of three normalization methods,
including without normalization, Z-score normalization, and min–max normalization on FLAIR
images and T2W images. The horizontal axis represents the different normalization techniques,
while the vertical axis represents their corresponding performance. In instances where the
input modality and network structure remain constant, it is worth noting that the without-
normalization method has the poorest AUC performance. Furthermore, the AUC performance
of the min–max normalization technique is better than the Z-score normalization technique.

Table 5. The classification performance of with/without skull stripping in FLAIR images and T2W images.

Modality Model Name Preprocessing AUC ACC SEN SPE

FLAIR only

3D-EfficientNet
Without normalization 0.951 0.899 0.863 0.936

Z-score 0.965 0.867 0.754 0.984
Min–max 0.974 0.911 0.869 0.954

3D-ResNet
Without normalization 0.985 0.933 0.971 0.893

Z-score 0.914 0.867 0.797 0.933
Min–max 0.994 0.970 0.986 0.955

T2W only

3D-EfficientNet
Without normalization 0.950 0.911 0.884 0.939

Z-score 0.967 0.933 0.898 0.969
Min–max 0.971 0.919 0.869 0.970

3D-ResNet
Without normalization 0.974 0.918 0.927 0.909

Z-score 0.982 0.918 0.884 0.954
Min–max 0.983 0.956 0.913 0.999Bioengineering 2023, 10, x FOR PEER REVIEW 13 of 17 
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Figure 7. The classification performance of the without-normalization method, the Z-score normal-
ization, and the min–max normalization in FLAIR images and T2W images. (a) 3D-EfficientNet as a
network feature extractor, FLAIR as the network input. (b) 3D-ResNet as a network feature extractor,
FLAIR as the network input. (c) 3D-EfficientNet as a network feature extractor, T2W as the network
input. (d) 3D-ResNet as a network feature extractor, T2W as the network input.
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5. Discussion

The main objective of the proposed approach is to identify TSC children at an early
stage using a 3D CNN model in conjunction with multi-contrast MRI in an automated
manner. Initially, the approach incorporates FLAIR3 as a novel modality for diagnosing
pediatric TSC lesions and optimizes the T2W and FLAIR combination to enhance the
lesion–brain contrast in a clinic. The findings indicate that FLAIR3 has the ability to
enhance the prominence of TSC lesions, while also enhancing classification accuracy and
providing a more intuitive understanding of our deep learning model. Otherwise, the
proposed method used two networks as feature extractors; one is 3D-EfficientNet, which
is a parameter-efficient deep convolutional neural network framework, and the other
classification network is 3D-ResNet, which is a classical residual network. Previously, the
FLAIR3 modality was only used in MS disease [13], but the proposed methods generalized
it to pediatric TSC disease and demonstrated that FLAIR3 was able to better visualize
TSC lesions. Furthermore, a multi-modal fusion network for multi-contrast MRI data was
proposed, which can feed FLAIR3 as a new modality into the proposed DWF-net network,
finally achieving a state-of-the-art classification performance in identifying children with
pediatric TSC. And the dataset has no PET and EEG as input, and only has just the structural
MRI that can be easily and wildly collected at any hospital, which helpfully maximizes
the potential applicability of the proposed approach in clinical practice. In summary, the
proposed method also has innovations in the following aspects: 1) the use of a weighted
fusion algorithm to maximize the fusion multi-contrast MRI and optimize weights to
improve performance; 2) firstly proposes to use a FLAIR3 image to position and visualize
the lesions in a clinical diagnosis of TSC. 3) The utilization of FLAIR3 as the complementary
imaging input to maximize the information extracted from the structure MRI.

In comparison to the 2D CNN model InceptionV3 discussed in [18], the proposed
3D CNN models exhibit an enhanced classification performance. Some previous studies
are also consistent with our conclusion that 3D networks perform better than 2D net-
works [19,28]. We believe that the performance improvement of the 3D network is mainly
due to the full use of the spatial features of MRI voxels, which can extract more information.
In this study, the proposed late fusion method can improve the classification performance
compared to a single modality using a 3D CNN approach, implying that combining mul-
tiple contrasting MRI can exploit complementary visual information between multiple
sequences. This result is consistent with a recent study by Han Peng et al. [29], which
demonstrated that combining models from diverse modalities with complementary infor-
mation leads to a superior performance. The success of the ensemble strategy is not only
attributed to the number of large models but also to independent information gathered
from different modalities. Additionally, recent research has revealed that the late fusion
method outperforms the early fusion technique [30,31]. In addition, Jonsson et al. used
a majority voting strategy to form the final predictions and achieved performance gains
with multimodal inputs [22]. In our experimental results, our findings indicate that when
utilizing the same MRI modality as network inputs, all models with 3D-ResNet feature
extractors outperform the 3D-EfficientNet model. One possible explanation is that 3D-
ResNet has more network parameters than 3D-Effectient, and the network structure is more
complicated. Therefore, 3D-ResNet can extract more high-level image feature information
than 3D-EfficientNet.

Surprisingly, our experiments have successfully demonstrated the effectiveness of
FLAIR3 in a pediatric TSC diagnosis, and the AUC performance of the FLAIR3-only model
outperforms the T2W-only model and FLAIR-only model when using the same network.
We found that the use of 3D-EfficientNet results in a better AUC score for the Eff_FLAIR3
model compared to the Eff_FLAIR_T2W model and that the Res_FLAIR3 model outper-
forms the Res_FLAIR_T2W model when using the feature extraction network 3D ResNet.
This could imply that FLAIR3 can provide more information. When the late fusion strategy
is used, the weight W3 of FLAIR3 is the largest. A reasonable note is that FLAIR3 can
enhance the lesion-to-brain contrast and the TSC lesion is clearer in FLAIR3 than in T2W
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and FLAIR, so FLAIR3 can offer more low-dimensional visual lesion information for deep
learning during the feature extraction stage. Such low-dimensional visual information may
be very helpful for our deep learning algorithms, which could increase the interpretability
of our deep learning algorithms [32].

Moreover, skull stripping plays a crucial role in computational neuro-imaging by being
a vital preprocessing step that has a direct impact on subsequent analyses [33–35]. In this
study, we found that both the 3D-ResNet and 3D-EfficientNet models perform better when
utilizing MRI with skull stripping applied as the input. This may be due to the fact that the
pixel value of the skull is significantly higher than that of the brain tissue [30,36], which
allows for more information to be extracted during the feature selection phase. However, it
is important to note that such information may be irrelevant for our deep learning methods
and may even reduce their performance [37].

Furthermore, image normalization is critical to develop powerful deep learning meth-
ods [38,39]. In this study, the experiments included normalization, no normalization,
min–max normalization, and Z-score normalization. All of the results showed that the
AUC performance without the normalization method is the worst; the AUC performance
of the min–max normalization is better than the Z-score normalization when the input
modality and network structure are the same. Therefore, we suggest that in future similar
studies, the min–max normalization method can be used as a primary choice to normalize
the MRI images.

Otherwise, many experts considered that tubers are stable in size and appearance after
birth and that the proportion to the whole brain will not obviously change with age [40].
The myelination process in a clinic has three stages, namely before 7–8 months of age,
7–8 months to 2 years of age, and after 2 years of age. So, the TSC situation of MRI after
2 years of age should be the same as before, but myelination after 2 years of age may not
have affected our MRI images [41]. But these are statistical results, and there are some
different situations for different TSC patients. In a clinic, MRI should be scanned several
times under the age of 2 to reflect dynamic changes in epileptic lesions. Here, we did not
exclude children under 2 years of age for being close to real clinical situations. The deep
learning method we proposed can be promoted in a clinic and only needs to collect FLAIR
and T2W images of a patient. Our method is simple and effective in a clinic and can be
used as a computer-aided tool to help doctors diagnose TSC patients. In the future, further
situations of TSC patients should be evaluated.

6. Conclusions

In summary, a novel deep learning method of the weighted late fusion model was
proposed to effectively diagnose pediatric TSC lesions with multi-contrast and synthesis-
contrast FLAIR3 MRI. The collected dataset of pediatric TSC disease has a total of 680 children,
including 331 healthy and 349 TSC children. The current testing results illustrated that
the proposed approach can attain a state-of-the-art AUC of 0.998 and accuracy of 0.985.
As such, this method can act as a robust foundation for future studies regarding pediatric
TSC patients.

7. Patents

The work reported in this manuscript has resulted in a patent.
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