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Abstract: Automatic medical report generation based on deep learning can improve the efficiency
of diagnosis and reduce costs. Although several automatic report generation algorithms have been
proposed, there are still two main challenges in generating more detailed and accurate diagnostic
reports: using multi-view images reasonably and integrating visual and semantic features of key
lesions effectively. To overcome these challenges, we propose a novel automatic report generation
approach. We first propose the Cross-View Attention Module to process and strengthen the multi-
perspective features of medical images, using mean square error loss to unify the learning effect of
fusing single-view and multi-view images. Then, we design the module Medical Visual-Semantic
Long Short Term Memorys to integrate and record the visual and semantic temporal information
of each diagnostic sentence, which enhances the multi-modal features to generate more accurate
diagnostic sentences. Applied to the open-source Indiana University X-ray dataset, our model
achieved an average improvement of 0.8% over the state-of-the-art (SOTA) model on six evaluation
metrics. This demonstrates that our model is capable of generating more detailed and accurate
diagnostic reports.

Keywords: automatic medical report generation; multi-view; Long Short Term Memorys

1. Introduction

Writing medical image diagnostic reports is time-consuming, laborious, and profes-
sionally demanding for radiologists. Thus, automatic medical report generation has become
increasingly popular. This method can generate diagnostic text based on natural language
for experienced radiologists, assist radiologists in completing their diagnosis, significantly
reduce the burden of writing text, and accumulate diagnostic experience for radiologists or
medical students who lack clinical experience.

Automatic generation of medical image diagnostic reports is based on traditional
image captions [1–5], using an encoder–decoder framework [6]. Figure 1 is a report sample
in the Indiana University (IU) X-ray dataset, which is widely used in automatic medical
report generation. A sample is composed of multi-view images, findings, impressions, and
Medical Text Indexer (MTI) tags. Findings and impressions are long diagnostic sentences
with fixed sentence patterns. MTI tags are key words generated from the diagnostic sen-
tences. Automatic medical report generation based on the characteristics of medical data
has become a hot research topic in recent years. Zhang et al. [7] used knowledge maps
and prior medical knowledge to enhance the features extracted from images. Xue et al. [8]
used hierarchical Long Short Term Memory (LSTM) to generate long diagnostic sentences.
Li et al. [9] used a template method to generate diagnostic sentences with fixed sentence
patterns. Jing et al. [10] embedded the MTI tags predicted by the encoder in order to gener-

Bioengineering 2023, 10, 966. https://doi.org/10.3390/bioengineering10080966 https://www.mdpi.com/journal/bioengineering

https://doi.org/10.3390/bioengineering10080966
https://doi.org/10.3390/bioengineering10080966
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/bioengineering
https://www.mdpi.com
https://doi.org/10.3390/bioengineering10080966
https://www.mdpi.com/journal/bioengineering
https://www.mdpi.com/article/10.3390/bioengineering10080966?type=check_update&version=1


Bioengineering 2023, 10, 966 2 of 12

ate diagnostic reports. Similarly, Yuan et al. [11] extracted normalized medical concepts
like MTI tags from the diagnostic report.

Medical Image Report 

Findings: Heart size and pulmonary

vascularity appear within normal limits.

There is mild tortuosity to the descending

thoracic aorta. The lungs are free of focal

airspace disease. No pleural effusion or

pneumothorax is seen. No discrete nodules

or adenopathy are noted. Degenerative

changes are present in the spine.

Impression: No evidence of active disease.

MTI tags: Deformity/thoracic vertebrae/mild

frontal view

lateral view

Figure 1. A diagnostic report with multi-view chest X-ray images.

These studies have made progress in producing specific diagnostic reports; however,
there are still two challenges in making full use of the characteristics of medical data to
improve diagnostic report generation. The first challenge is the reasonable use of multi-
perspective medical images. For example, there are two chest X-ray images in the report
sample in Figure 1, so radiologists need to comprehensively evaluate the lesions from
both images in the process of medical image diagnosis in order to write an accurate and
comprehensive diagnostic report. The second challenge lies in the effective combination of
multi-modal data because radiologists need to synthesize the observed image features and
the key lesion features when writing the diagnostic report.

To overcome these two challenges, we propose a novel automatic report generation
approach, which consists of two modules: Cross-View Attention Module and Medical
Visual-Semantic LSTMs (CVAM+MVSL). We first develop CVAM based on the character-
istics of multi-view medical images. The encoder receives the input of frontal and lateral
chest X-ray images and outputs feature maps. Then, the feature maps are sent into two
branches of CVAM. One is the single-view branch, which retains the view features, and the
other is the cross-view branch, which integrates the multi-view features. The binary cross-
entropy (BCE) loss function is used as the classification loss function, and mean square error
(MSE) loss is used to unify the prediction results of the two branches. Next, we propose
the module of MVSL to fuse visual features of the images and semantic features of lesions.
The input for this structure is the multi-view image feature map given by the encoder and
the embedding of predicted medical concepts. MVSL uses three LSTMs to process the
multi-view image features and medical concepts, and the hidden layers of the LSTMs are
utilized to determine the image area and medical concepts that should be examined at the
moment. The medical visual-semantic features calculated by the fully connected layer are
used as the input of the Sentence LSTM–Word LSTM to generate the diagnostic sentence.

The main contributions of our work are as follows:

• We propose CVAM to process multi-view medical images, which not only maintains
the features of images but also makes full use of the complementary information of
frontal and lateral chest X-ray images.

• We present MVSL to couple the visual features of images and the semantic features of
lesions and to employ the hidden layers of LSTMs to determine the important features
at the current moment.

• We perform extensive experiments and a user study to verify the effect and utility
of the proposed methods. Results show that the proposed CVAM can significantly
increase the area under curve (AUC) on both Chexpert and IU X-ray datasets. Com-



Bioengineering 2023, 10, 966 3 of 12

pared with the previous methods, CVAM+MVSL can generate better medical reports
with more information and higher accuracy.

2. Related Work

In this section, we introduce the related work on the topic of automatic medical report
generation. The existing report generation methods mainly improve on encoders and
decoders, but due to the entanglement of these two components, it is difficult to distinguish
the key developments in these two components. Therefore, we introduce the relevant work
in encoders and decoders separately.

Medical image analysis and processing based on deep learning play an increasingly
important role in medical and health auxiliary diagnosis [12–14]. A key application of this
technology is the automatic generation of medical images, which has received extensive
attention in recent years [10,15–19]. Compared to other medical image analysis and pro-
cessing tasks, the automatic generation of medical images is more challenging because it
requires the modeling of both images and texts. So far, most of the current methods of auto-
matic medical report generation are based on the framework of encoder–decoder [6,20–25].

The encoder is responsible for extracting image features. Jing et al. [10] used Convolu-
tional Neural Networks (CNNs) to extract features from single-view chest X-ray images,
taking out the results of the last layer of convolution as the feature expression of medical
images. The majority of studies utilize CNNs as encoders and Recurrent Neural Network
(RNNs) as decoders for report generation. However, Alahmadi et al. [21] employed RNNs
as image encoders, adhering to the encoder–decoder machine translation model paradigm
for caption generation. Li et al. [9] worked on multiple graphs to model the data struc-
ture and the transformation rules among different graphs. Zhang et al. [7] used the chest
abnormality graph with prior knowledge to characterize image features. Yuan et al. [11]
first proposed using two CNNs to process multi-view images; however, the utilization of
multi-view medical images can be further improved. On the basis of these studies, our
CVAM uses the characteristics of multi-view medical images to fuse and process multi-view
medical image features.

The decoder receives the image features extracted by the encoder and generates the
diagnostic sentence using LSTM. Xue et al. [8] proposed to use a Sentence LSTM–Word
LSTM framework similar to [26] to generate multiple diagnostic sentences, which is widely
used in the literature, such as [7,10,11]. Harzig et al. [24] contended that distinct patterns
and data distributions between normal and abnormal cases can lead to biases in models.
They addressed this by employing two separate word LSTMs to differentiate between the
generation of abnormal and normal reports. Jing et al. and Yuan et al. [10,11] proposed
introducing semantic features of lesions in the process of generating reports because these
features can provide more abnormal information. Although we use the same basic Sentence
LSTM–Word LSTM framework of the previous studies, the proposed MVSL pays more
attention to how to effectively combine the visual features of medical images with the
semantic features of lesions and provides the Sentence LSTM–Word LSTM with the data of
image areas and lesion semantics when generating diagnostic sentences.

3. Materials and Methods
3.1. Datasets

The first dataset we use is IU X-ray [27], which contains 3959 medical diagnostic
reports. Each report is labeled with chest X-ray images, impressions, findings, and MTI tags.
We filter out samples of single-view images according to the experimental requirements.
Following the conventions of the field of natural language processing, samples with fewer
than 3 diagnostic sentences are removed, resulting in a total of 3331 samples. We pre-
process the report text by converting it to lowercase text and replacing the words whose
frequency is less than 3 with the 〈unknown〉 token. The filtered 1185 words constitute
more than 99% of the word occurrence rate in the corpus. There are 155 independent
tags in the MTI annotation of the original dataset, which is thus regarded as multi-label
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classification annotation. We randomly select 2000 samples for training, 678 samples for
validation, and 653 samples for testing. The second dataset is Chexpert [28], in which a total
of 224,316 chest X-ray images were collected and 14 common radiographic observations
were labeled. From the entire dataset, 19,811 pairs of data with frontal and lateral images
are utilized for training, 6619 pairs for validation, and 6608 pairs for testing. The purpose of
using this dataset is to pre-train the encoder so that the model can extract effective medical
image features. We then fine-tune the model on the IU X-ray dataset.

3.2. Methods Overview

In Figure 2, we use CVAM to process the features of multi-view medical images
and to predict the tags that represent medical concepts contained in multi-view images
as the semantic features of key lesions. The MVSL developed in this study receives
image features and semantic features of lesions and generates a medical visual-semantic
feature representing the sentence through the joint action of the two features. Using
the characteristics of LSTMs, the module also records historical information to ensure
information independence between diagnostic sentences. We then use the Sentence LSTM–
Word LSTM to generate diagnostic reports.

C
N

N
C

N
N

C
V

A
M MVSL

Sentence LSTM-

Word LSTM

cardiomegaly; 

opacity;

right…

Diagnostic 

Report

Figure 2. Illustration of the methods. The orange rectangle represents the visual features of images;
the green rectangle represents the semantic features of key lesions. CVAM is our proposed Cross-View
Attention Module for processing multi-view medical images, and MVSL is our designed Medical
Visual-Semantic LSTMs integrating visual and semantic features.

3.3. Cross-View Attention Module (CVAM)

As shown in Figure 2, we use two CNNs to extract the features of the frontal-view
image and lateral-view image, respectively. The last convolutional layer yields the feature
map Vf and Vl ({Vf , Vl} ∈ RN×D, where N is the W × H of the feature map and D is the
depth). Each feature map then enters two branches. One is a single-view branch, where
the multi-classification predictions y f and yl of M medical concepts are obtained by the
fully connected layer. The other is a cross-view branch, as shown in Figure 3; Vf and Vl use
SE-Attention [29] to enhance different lesion features channel-wise and then employ the
following formula to complete the cross-view attention:

Va f = λ f (Vf ) + (1− λ) f (Vl), (1)

Val = λ f (Vl) + (1− λ) f (Vf ), (2)

where f is the SE-Attention and λ is a hyperparameter of [0.5, 1], which represents how
many visual features of images are retained. By introducing (1− λ) visual features from
complementary perspectives, Vaf and Val can be calculated by a fully connected layer to
obtain the multi-classification predictions yaf and yal of M medical concepts.
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Figure 3. The architecture of the Cross-View Attention Module.

We then use MSE loss to unify the learning results of the single-view and cross-view
branches. The loss function is shown below:

Lsingle−view =
M

∑
i=1

(y f i − yl i)
2, (3)

Lcross−view =
M

∑
i=1

(yaf i − yali)
2, (4)

LCVAM = Lsingle−view + Lcross−view. (5)

3.4. Medical Visual-Semantic LSTMs (MVSL)

Visual features of images include information about objects and locations, and medical
concepts can be directly used as the semantic information for key lesions. The fusion of
these features can produce a diagnostic sentence that includes the location and type of
the disease. In Figure 2, the MVSL receives the visual features of medical images and
the semantic features of lesions from CVAM. The visual features of different perspectives
and branches are integrated into a visual feature vector through the fully connected layer,
and the semantic features of the lesions are embedded into a semantic feature vector.
As shown in Figure 4, three LSTMs handle the visual feature vectors and semantic feature
vectors, which can be defined as:

hF
s = LSTMF(F, hF

s−1), (6)

where s refers to the diagnostic sentence that is currently being generated. F ∈ {Vf ,Vl ,MS}
represents variables related to the frontal view, lateral view, or medical semantic feature.

Then, three hidden layers are used to calculate the visual vector attention (a
Vf
s , aVl

s ) and
semantic vector attention (aMS

s ):

aF
s = softmax(WF

a tanh(WF
F,aF + WF

hF ,ahF
s )), (7)

where softmax(·) is the function of softmax layer and WF
a , WF

F,a, WF
hF ,a are parameter matrices.

Then, the visual and semantic attention vectors are obtained by the following formulas:

Vatt
f s

=
N

∑
i=1

a
Vf
s iVf i, (8)

Vatt
l s =

N

∑
i=1

aVl
s iVl i, (9)
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MSatt
s =

M

∑
i=1

aMS
s iMSi. (10)

With a fully connected layer W, the three vectors are then integrated to obtain the
medical visual-semantic feature (MVS):

MVSs = W(Vatt
f s

+ Vatt
l s + MSatt

s). (11)

LSTMF AttF

FC

hf
s-1

sf
s-1

hf
s

vf

LSTML AttL

hl
s-1

sl
s-1

hl
s

vl

LSTMMS AttMS

hMS
s-1

sMS
s-1

hMS
s

MS

MVSs

MS

vl

vf

vatt
f s

vatt
l s

MSs
att

Figure 4. The architecture of Medical Visual-Semantic LSTMs.

3.5. Sentence LSTM–Word LSTM

The Sentence LSTM generates the topic of the current diagnostic sentence and the
control vector of whether to continue to generate the diagnostic sentence. The topic of
this sentence is generated by the hidden layer in the Sentence LSTM and medical visual-
semantic feature:

dtopics = tanh(Ws,senthsent
s + Ws,MVSMVSs), (12)

where s is the sequence number of the sentence being generated and Ws,sent and Ws,MVS are
weight parameters. The control vector is generated with the current h and the previous h of
the LSTM:

stops = Wstoptanh(Wdtopic,s−1hsent
s−1 + Wdtopic,shsent

s ), (13)

where Wstop, Wdtopic,s−1, Wdtopic,s are weight parameters.
The Word LSTM uses the topic and embedding vectors to continuously calculate and

output words:
hword

t = LSTMword(xt, dtopics, hword
t−1 ), (14)

where t is the t-th word being generated in one sentence and xt is the embedding vector of
the input. Then, the h of each time is used to complete the word generation:

p(word|hword) = Woutput(Wwordhword), (15)

where Woutput, Wword are weight parameters.

3.6. Training Loss

The input of our model includes: (1) frontal and lateral images I f and Il ; (2) tag T for
medical concepts; (3) a diagnostic report with s sentences; (4) stop signal P.

The model extracts image features from I f and Il by CNN. Then, the features enter the
two branches, and the multi-label classification is conducted. BCE loss is used to calculate
the predicted value and the loss of T:

LBCE = − ∑
j∈{ f ,l,af ,al}

M

∑
i=1

Tilogpj,i + (1− Ti)log(1− pj,i). (16)
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With the LCVAM, the loss of the encoder is formulated as:

Lencoder = αLBCE + βLCVAM. (17)

Next, the Sentence LSTM generates the medical topic vector and control vector s times
and utilizes cross-entropy loss to calculate the loss of the control vector:

Lstop = −
S

∑
i=1

yilog(pi). (18)

Finally, in the Word LSTM, we use cross-entropy to calculate the loss of words and
ground truth of S sentences:

Lword = −
S

∑
i=1

len(si)

∑
j=1

yi,jlog(pi,j). (19)

Combining all the loss described above yields the total training loss:

Ltotal = λeLencoder + λsLstop + λwLword. (20)

4. Results
4.1. Evaluation Metrics

We use AUC as the evaluation metric for encoder training. AUC is a numerical
value ranging from 0 to 1, representing the area under the receiver operating characteristic
curve, which illustrates the relationship between the model’s true positive rate and false
positive rate.

To evaluate medical report generation, we use standard image caption evaluation
metrics BLEU [30], ROUGR [31], and CIDER [32]. BLEU is an evaluation metric based on
n-grams, where n can be 1, 2, 3, and so on. It assesses the degree of n-gram overlap between
the generated text and multiple reference texts, serving to evaluate the quality of generated
text that corresponds to precision in classification tasks. We use the ROUGE-L metric from
the ROUGE metric family to assess the similarity between the texts in this paper. ROUGE-L
is an evaluation metric based on the longest common subsequence. It calculates the length
of the longest common subsequence between the generated text and the reference text to
measure their similarity. CIDER is a fusion of BLEU and the vector space model. It treats
each sentence as a document and calculates the cosine angle of TF-IDF vectors (with terms
being n-grams instead of words), obtaining the similarity between candidate and reference
sentences. Additionally, CIDER leverages inverse document frequency, enhancing the
significance of pivotal vocabulary terms within the corpus.

4.2. Baselines
4.2.1. Multi-Label Classification

The first baseline is a multi-task learning model for processing the input of frontal and
lateral chest radiographs. The second comparative model adds MSE loss to the multi-task
learning model used in [11]. Because of the design of single-view and cross-view in CVAM,
we perform comparative experiments to verify the effectiveness of using two branches. We
also investigate the effect of only using ImageNet during the fine-tuning on the IU X-ray
dataset and compare this effect with those of the other models.

4.2.2. Medical Report Generation

We compare our method with several basic models of image caption and the state-
of-the-art methods for automatic medical report generation. For the method TieNet [16],
CARG [33], and SentSAT+KG [7], we compare them with the results reported in [7]. In ad-
dition, we reproduce HLSTM [26] and CoAtt [10] (the original method is changed to frontal
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and lateral input) for comparison. Our baseline can be regarded as a type of encoder
(pre-trained on Chexpert) + Sentence LSTM + Word LSTM. Our CVAM adds CVAM to
integrate multi-perspective features based on the baseline. Our CVAM+MVSL is a method
for verifying the effectiveness of the proposed method.

4.3. Implementation Details

We employ ResNet50 [34] and use the size of 256 × 256 to train the encoder. The pa-
rameter λ in CVAM is 0.6 according to the experimental results shown in Table 1. Then,
the 8 × 8 × 2048 feature map is output by the last convolutional layer as medical image
features. The other output of the encoder is the prediction of 155 medical concept tags.
After the softmax layer, 10 prediction tags with the highest probability are selected as
the semantic features of the key lesions, which are expressed by 512-dimensional word
embedding. In the decoder, the dimensions of the hidden state and word embedding are set
to 512. We set the Sentence LSTM to generate 6 sentences for each sample during training.
Each sentence retains the first 30 words processed and uses the 〈pad〉 token to fill in when
a sentence contains fewer than 30 words.

We use the Adam optimizer for parameter learning. The learning rates of the encoder,
MVSL, and Sentence LSTM–Word LSTM are set to 1 × 10−3, 1 × 10−4, and 1 × 10−4,
respectively. After training the encoder on Chexpert, we fine-tune it on the IU X-ray dataset.
The loss of the encoder includes BCE loss of multi-label classification and MSE loss of
CVAM. The loss of the decoder includes the cross-entropy loss of the stop control variable
in the Sentence LSTM and words in the Word LSTM. In the experiment, we set α and β in
Lencoder to 1 and 0.05, respectively. In Ltotal , the values of λe, λs, and λw are 1.

Table 1. The AUC of frontal view, lateral view, and total of baseline and CVAM at different λ.
The upper and lower parts are the experimental results of pre-training on the Chexpert and fine-
tuning on the IU X-ray datasets, respectively. Bold indicates the best result.

Datasets Methods AUC-f AUC-l AUC

Chexpert

Multitask 0.822 0.800 0.810
Loss 0.835 0.829 0.832
Ours-naive 0.830 0.829 0.830
Ours (λ = 0.50) 0.838 0.834 0.836
Ours (λ = 0.60) 0.842 0.838 0.840
Ours (λ = 0.75) 0.838 0.834 0.836
Ours (λ = 0.90) 0.843 0.837 0.840

IU X-ray

Multitask–ImageNet 0.874 0.864 0.869
Multitask 0.879 0.872 0.875
Loss 0.890 0.886 0.889
Ours (λ = 0.50) 0.896 0.893 0.895
Ours (λ = 0.60) 0.897 0.894 0.896
Ours (λ = 0.75) 0.892 0.891 0.891
Ours (λ = 0.90) 0.890 0.890 0.890

4.4. Quantitative Analysis
4.4.1. Multi-Label Classification

The AUC of multi-label classification is shown in Table 1. As can be seen in the table,
the CVAM structure can achieve excellent results on both datasets. On the Chexpert dataset,
our model performs 3.7% better than the baseline Multitask. A gap exists between the
classification performance of the baseline for frontal and lateral medical images, but our
method can effectively make up for this gap. Our naive model only uses the cross-view
branch, and the performance of the model in processing frontal images is slightly reduced.
When the two branches are utilized, our model can achieve the best performance. When
fine-tuned on the IU X-ray dataset, the model using CVAM performs 3.1% better than
Multitask–ImageNet. These results show that adding CVAM in the feature extraction stage
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can effectively process multi-view medical images, improve classification performance
while making up for the performance gap of multi-view images, and obtain more useful
lesion features for diagnosis.

4.4.2. Medical Report Generation

Table 2 shows the results of the generated report. Note that because some methods do
not release the source code or lack important details, we compare the results reported in [7].
The methods in the middle part of Table 1 are reproduced with the same data partition as
our method. Compared with the previous work, our CVAM+MVSL method can achieve
better performance on BLEU-n and CIDER, although the comparison with TieNet, CARG,
and SentSAT+KG may be unfair due to different experimental settings. In the reproduced
HLSTM and CoAtt, we change the input to multi-view medical images in order to make a
more reasonable comparison. Our CVAM+MVSL shows better performance on BLEU-n
and CIDER, indicating that the diagnostic report generated by our method has a higher
degree of lexical overlap with the real diagnostic report. CIDER utilizes reverse document
frequency, which increases the significance of important words in the corpus. The results
show that our method can effectively predict important words in the medical corpus.
In ROUGE, the effect of our method is slightly reduced compared with that in CoAtt. This
might be because ROUGE is a metric that considers the recall rate, which can provide more
information for the report generated by our method.

Table 2. Evaluation results for the IU X-ray dataset compared with previous methods. The top part
shows results reported in [7], the middle part results we reproduce, and the bottom part the results of
our methods. Bold indicates the best result.

Methods BLEU-1 BLEU-2 BLEU-3 BLEU-4 CIDER ROUGE

TieNet [16] 0.330 0.194 0.124 0.081 - 0.311
CARG [33] 0.359 0.237 0.164 0.113 - 0.354
SentSAT+KG [7] 0.441 0.291 0.203 0.147 0.304 0.367

HLSTM [26] 0.432 0.271 0.188 0.137 0.310 0.377
CoAtt [10] 0.441 0.284 0.199 0.147 0.397 0.391

Ours-baseline 0.442 0.284 0.201 0.148 0.349 0.373
Ours-CVAM 0.455 0.289 0.204 0.150 0.392 0.384
Ours-CVAM+MVSL 0.460 0.294 0.207 0.152 0.409 0.385

4.5. Qualitative Analysis

As shown in Figure 5, we randomly selected the visual results of automatically gener-
ated medical diagnostic reports, along with the visualization of text and visual-semantic
attention. As can be seen from the figure, our CVAM+MVSL method possesses the follow-
ing characteristics. Firstly, CVAM enables the model to extract more effective lesion features
and predict lesions more accurately. In our model, the report generated for the first sample
accurately described the symptom of “cardiomegaly”, while the report for the second
sample correctly depicted “scarring” and “emphysema”, which CoAtt failed to recognize.
We believe that this improvement is due to the utilization of three-dimensional information
provided by both frontal and lateral views. Secondly, MVSL iteratively selects different
visual and semantic features to generate more diverse diagnostic reports. For the third
sample without diseases, our method generates valuable descriptions beyond conventional
descriptions, such as the diagnosis of “cardiac mediastinal contour and pulmonary vascular
system”. Finally, our method can make full use of the joint and complementary information
of multi-view medical images to complete the diagnosis. The features of “cardiac hyper-
trophy” are captured in the frontal and lateral view of the second sample. When the third
sample is generated to describe the “visible bone structure of the chest”, the lateral image,
instead of the frontal image, captures the bone structure characteristics.
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Images Ground Truth Ours-CVAM-MVSL CoAttMVS Attention
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right…
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Figure 5. Medical image diagnostic reports generated from the IU X-ray dataset, multi-view images,
and focused semantic attention. The underlined text indicates the correspondence between our
method and ground truth. The red bounding boxes or underlines refer to the diagnosis of the
diseased part, and the green indicates that no disease is found. Three semantic features of lesions are
displayed here.

4.6. Clinical Validation

We invited six radiologists to evaluate the diagnostic reports generated by our method
and designed a questionnaire with five questions concerning “fluency of generated reports”,
“comprehensiveness of generated reports”, “accuracy of generated reports in describing
diseased sites”, “accuracy of attention map in capturing diseased sites”, and “utility of
automatic generation of diagnostic reports”. The response to each question was set with a
score ranging from 0 to 10, with 0 being the worst and 10 the most satisfactory. As Table 3
shows, radiologists gave a high evaluation to the fluency of the generated report and the
effect of the algorithm. The lowest score is for “comprehensiveness of report generation”.
This can be attributed to the limitation of the IU X-ray dataset, as the model cannot
effectively generate the words outside the dataset well. However, this problem can be
alleviated by using more diagnostic texts to pre-train the decoder. The scores of the third
and fourth questions are not bad; we think that the encoder focuses on the discriminant
features when extracting features and thus cannot effectively capture all the key features.
This can be solved by using methods proposed by [35]. The average ICC [36] value of the
user study is 0.966, which confirms the consistency and reliability of our results (greater
than 0.75).

Table 3. Statistics for the questionnaire in the user study.

Questions Mean Standard Deviation

1 8.33 0.52
2 7.67 0.52
3 8.17 0.41
4 8.17 0.41
5 10.00 0.00

5. Conclusions

We propose a novel automatic report generation approach composed of Cross-View
Attention Module (CVAM) and Medical Visual-Semantic LSTMs (MVSL). The CVAM
integrates multi-view medical image features to provide more effective visual features of
images and semantic features of key lesions. The MVSL can integrate visual and semantic
data to provide discriminative information for diagnostic report generation. Applied to
the open-source IU X-ray dataset, our model achieved an average improvement of 0.8%
over the state of the art (SOTA) on six evaluation metrics. This demonstrates that our
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model is capable of generating more detailed and accurate diagnostic reports. We attribute
this improvement to the introduction of multi-perspective information, which enables the
model to focus on pathological changes that cannot be captured by a single perspective.
In the future, we plan to use the weakly supervised localization method to extract more
discriminative features from the encoder and use more medical texts to pre-train the
decoder so that the model can generate more varied sentences.
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