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Abstract: Background: The recent development of deep neural network models for the analysis of
breast images has been a breakthrough in computer-aided diagnostics (CAD). Contrast-enhanced
mammography (CEM) is a recent mammography modality providing anatomical and functional
imaging of the breast. Despite the clinical benefits it could bring, only a few research studies have
been conducted around deep-learning (DL) based CAD for CEM, especially because the access to
large databases is still limited. This study presents the development and evaluation of a CEM-CAD
for enhancing lesion detection and breast classification. Materials & Methods: A deep learning
enhanced cancer detection model based on a YOLO architecture has been optimized and trained on a
large CEM dataset of 1673 patients (7443 images) with biopsy-proven lesions from various hospitals
and acquisition systems. The evaluation was conducted using metrics derived from the free receiver
operating characteristic (FROC) for the lesion detection and the receiver operating characteristic
(ROC) to evaluate the overall breast classification performance. The performances were evaluated
for different types of image input and for each patient background parenchymal enhancement (BPE)
level. Results: The optimized model achieved an area under the curve (AUROC) of 0.964 for breast
classification. Using both low-energy and recombined image as inputs for the DL model shows
greater performance than using only the recombined image. For the lesion detection, the model was
able to detect 90% of all cancers with a false positive (non-cancer) rate of 0.128 per image. This study
demonstrates a high impact of BPE on classification and detection performance. Conclusion: The
developed CEM CAD outperforms previously published papers and its performance is comparable
to radiologist-reported classification and detection capability.

Keywords: contrast-enhanced mammography; breast cancer; cancer detection; deep learning; computer
aided detection

1. Introduction

Breast cancer is one of the leading causes of death related to cancer among women
worldwide [1]. Early detection and accurate diagnosis are crucial for the successful treat-
ment of breast cancer. Medical imaging techniques, such as mammography, ultrasound,
and magnetic resonance imaging (MRI), are widely used for the detection and diagnosis of
breast cancer. These imaging modalities have contributed significantly to the improvement
of breast cancer outcomes [2].

Recently, deep learning (DL) has emerged as a promising technique in the field of med-
ical imaging [3-5]. Such algorithms have demonstrated clinically relevant performance for
breast imaging applications, including detection and diagnosis of breast pathologies [6,7].
Deep learning techniques can be trained on large datasets of breast images to recognize
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patterns and features associated with breast cancers, providing radiologists with automated
tools to improve screening and diagnostic accuracy and efficiency. Multiple DL applica-
tions have emerged in the breast imaging environment, e.g., triage of normal cases (versus
non-normal), lesion detection, and lesion segmentation.

Contrast-enhanced mammography (CEM) is a relatively new modality that has gained
significant attention in the field of breast imaging [8-12]. CEM combines the advantages
of digital mammography and the functional information of contrast-enhanced imaging to
provide high-quality information about breast tissue [13]. A typical CEM exam starts with
the administration of an intravenous injection of an iodinated contrast material, followed by
multi-view image acquisitions of both breasts using low-energy (LE) and high-energy (HE)
X-ray beams. The LE images are comparable to standard mammograms, which provide
morphological information of the breast structures. In addition, LE and HE images are
combined to provide a third image, named the recombined image (REC), which highlights
the iodine contrast uptake and associated angiogenesis phenomenon, indicating potential
areas of malignancy. Compared to mammography alone, CEM has been shown to improve
sensitivity and specificity for breast cancer detection, particularly in women with dense
breast tissue [14].

The development of artificial intelligence and computer-aided diagnostics (CAD) for
CEM offers the potential to enhance diagnostic quality and workflow. Developing tools
for lesion and patient-level classification, as well as detecting specific radiological signs,
presents a significant opportunity to help clinicians.

2. Related Works on CEM-AI

In the field of CEM, current advancements in artificial intelligence for CAD are pri-
marily focused on lesion classification to predict pathology results (e.g., cancer vs. no
cancer, invasive vs. non-invasive cancer). However, due to the limited size of the available
databases, typically containing a few hundred patients, most approaches rely on manually
identifying and extracting regions of interest (ROI) for classification. These ROIs are then
used to extract handcrafted features (such as radiomics [15-18]) or deep learning features
(obtained from a convolutional neural network [19,20]), which are subsequently fed into
machine learning algorithms (e.g., support vector machine, linear discriminant analysis,
multi-layer perceptron, etc.) to perform classification. Such analyses require the suspicious
area to be manually detected and extracted by the user. In certain scenarios, a manual pixel
segmentation of the contrast uptake may be necessary [19,21]. Without manual extraction
of the region of interest, DL-based breast classification has been recently studied in the
literature. Li et al. developed a DL architecture with attention mechanism to classify a breast
malignancy using all available views of the patient exam [22]. This study was developed
from 122 patients.

Already developed in the field of contrast-enhanced MRI [23,24], its application to
CEM has only recently been explored in the literature. Existing studies in this area have used
various state-of-the-art DL architectures for detection and segmentation tasks, but they have
been limited by small datasets. In their paper [25], Khaled et al. used a Mask-RCNN [26]
architecture to detect and segment breast lesions based on a dataset of 326 patients. In a
previous study [27], a detection algorithm was applied for the detection of lesions (benign
and malignant) from a dataset of 536 patients. A major limitation of the two previous studies
is the small number of patients in the dataset. In a recent publication from Zheng et al. [28],
1912 Asian patients where enrolled in a DL segmentation and classification study based on
a Faster-RCNN [29] architecture. With promising results, this work excluded the presence
of multiple, bilateral, and non-mass lesions and lesions seen only in one view that may
represent complex cases. The evaluation of the impact of the image inputs and performance
regarding breast clinical factors such as background parenchymal enhancement was not
explored. Based on the segmentation of lesions, a complementary analysis of this study is
to evaluate lesion detection metrics (e.g., number of false positive).
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In this paper, we present a novel deep-learning contrast-enhanced mammography
(CEM) CAD algorithm designed for the detection and classification of breast lesions. This
work introduces several contributions. First, a large CEM dataset consisting of 1673 cases
and 7443 pairs of low-energy (LE) and recombined (REC) images containing diverse lesion
characteristics was used for training, validation, and testing the CAD model.

Secondly, the CAD model’s performance was evaluated using different clinically
relevant image inputs, comparing the use of recombined image alone versus a combination
of Low Energy and recombined images. This assessment allowed the optimization of the
model’s effectiveness for detecting and classifying breast lesions.

The optimized CAD model’s performance was compared to state-of-the-art clini-
cal diagnostic performance conducted by radiologists. This comparison highlighted the
effectiveness of the CAD algorithm as an advanced tool for breast lesion diagnosis.

Finally, a comprehensive evaluation of the CAD algorithm was conducted for differ-
ent background parenchymal enhancement (BPE) sub-classes, providing a more detailed
analysis of the model’s performance under various BPE conditions. The utilization of a
large dataset, diverse lesion sizes and types, and the evaluation under various BPE con-
ditions enhance the robustness and applicability of the CAD model for improved breast
cancer diagnosis.

3. Materials

This retrospective study leverages two distinct CEM datasets containing 1673 patients,
7443 image pairs (low-energy and recombined).

*  The first dataset was obtained from Baheya Foundation For Early Detection and Treat-
ment of Breast Cancer and included CEM DICOM images, radiology, pathology, and
follow-up reports, as well as clinical information, including breast density, BPE, patient
age, lesion type, and lesion location annotations (boxes) provided by radiologists.

*  The second dataset was collected from various institutions and consisted of CEM
DICOM images, pathology outcome, and lesion location annotations (boxes) provided
by radiologists or GE HealthCare (GEHC) CEM experts.

3.1. Clinical CEM Database from Baheya

1087 patients were enrolled in this retrospective study from December 2019 to December
2022. All data were acquired at Baheya Foundation For Early Detection And Treatment of
Breast Cancer, Giza, Egypt. The study protocol was approved by the Institutional Review
Board and informed written consent was obtained for the use of the enrolled individuals. Ex-
aminations were performed with a Senographe Pristina™ (GE Healthcare, Chicago, IL, USA).

Each patient case consisted of RAW and processed CEM images, including LE images,
HE images, and REC images, on at least four standard views (right/left, cranio-caudal
(CC), and mediolateral oblique (MLO)). Radiology reports containing CEM BIRADS and
pathology reports were included in cases where biopsy was performed. The pathology
outcome of every lesion in the dataset have been confirmed by biopsy. Non-biopsied cases,
rated BIRADS 1-2, are assumed to be benign/normal. The number of normal/benign,
benign biopsied, and malignant cases are, respectively, 136, 199, and 752 at the patient level.

A group of experienced radiologists from Baheya, who are specialized in breast
imaging and CEM, conducted lesion location annotation using the patients” complete
medical records. The annotation process consists in marking rectangular boxes or ellipses
on the biopsied areas of each view. To standardize the annotations, all ellipses were treated
as circumscribed rectangular boxes.

3.2. Second CEM Datasets

The second CEM dataset contains 586 patients with 2510 recombined images collected
from different hospitals and acquired with various imaging systems (Senographe DS™,
Essential™ and Pristina™ from GE Healthcare, Chicago, IL, USA).
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Each patient case consisted of RAW and processed CEM images of left/right views,
mainly with both CC and MLO and associated pathology outcome. Other relevant clinical
data were punctually available, such as pathology reports. The pathology outcome of every
lesion in the dataset was confirmed by biopsy. Non-biopsied cases, rated BIRADS 1-2,
are assumed to be benign/normal. The number of non-biopsied, biopsied benign, and
malignant cases are, respectively, 191, 149, and 246 at the patient level.

Radiologists conducted enhanced lesion location annotation using all the clinical data
available for each case.

3.3. Dataset Summary and Split

A summary of all collected cases can be found in Table 1.

Table 1. CEM dataset and pathology results. The presented values are the number of patients.
The wording “images” refers to a pair of low-energy and recombined information. * proven by
tissue diagnosis.

Pathology Results

Institution Number of Patients  Acquisition System
Non-Biopsied  Benign*  Malignant *

Baheya Foundation For
Early Detection And Treatment 1087 (4933 images) Pristina 136 (13%) 199 (18%) 752 (69%)
Of Breast Cancer (Egypt)
Peking University
First Hospital & . . o o o
Shanghai First People’s 244 (976 images) Essential /DS 35 (14%) 64 (26%) 145 (60%)
Hospital (China)
University of . . o o o
Washington (US) 187 (790 images) Essential 153 (81%) 30 (2%) 4 (81%)
Beth Israel Deaconess . . o o o
Medical Center (US) 50 (211 images) Essential 2 (4%) 24 (48%) 24 (48%)
Hospital del Mar (Spain) 40 (234 images) Pristina 0 (0%) 15 (38%) 25 (62%)
University of . L o o o
Cambridge (UK) 39 (156 images) Pristina 0 (0%) 11 (28%) 28 (72%)
CBIS—Carolina Breast 26 (143 images) Pristina 1 (5%) 5 (19%) 20 (77%)

Imaging Specialists (US)

To train the DL CEM CAD algorithm, the dataset was split into three parts, namely
train, validation, and test sets. The test set consists of 150 cases (655 pairs of LE and REC
images). This test set was selected to include only Baheya’s dataset, firstly because this
dataset has richer clinical CEM information and secondly because all annotations have
been performed by CEM expert radiologists. The test set was stratified based on the
pathology outcome, with 75 malignant cases, 50 benign biopsied cases, and 25 normal
cases. It is important to note that the contralateral breast may exhibit a finding. The
pathology per breast is therefore 75 malignant breasts, 66 benign biopsied breasts and
159 non-biopsied breasts. A summary of all clinical information for the test set is shown
in Table 2. The table shows clinical information at the case level, including breast density,
BPE, and radiological BIRADS, as described in the CEM BIRADS lexicon [30]. The Table 2
also includes annotation length. This length represents the size of the entire disease and
not each individual cancer nodule.

The remaining dataset was split into a train set of 787 patients and a validation set
of 150 patients. They were stratified in the same way as the test set, i.e., based on the
pathology outcome (malignant cases, benign biopsied cases, and normal cases).
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Table 2. Clinical information on the test set, according to BIRADS lexicon [30].

Age [Year] Mean =+ Std (Min-Max) 49 + 10 (27-80)

A 5/150

Breast composition (per case) B 86/150
P P C 53/150
D 6/150

minimal 28/150

mild 75/150

BPE (per case) moderate 39/150
marked 8/150

1 107/300

2 48/300

BIRADS (per breast) 3 44/300
4 60/300

5 41/300

Non-biopsied 159/300

Pathology (per breast) Benign-biopsied 66/300
Malignant 75/300

Annotation length [mm] mean =+ std (min—-max) 35 £25 (6-170)

4. Methods
4.1. Deep Learning Model

The proposed CEM CAD model is based on a YOLOVS5 architecture which is a single-

stage object detection deep learning mode [31,32]. The YOLOVS5 architecture has three
main components:

A backbone network: a feature extraction network that takes the input images and
extracts high-level features. The input image is progressively down-sampled, while
the number of channels increases, resulting in feature maps with reduced spatial
dimensions and increased depth. The backbone architecture is a CSPDarknet [33,34]
and size depends on the model scale chosen. The different model sizes are refereed
to as “small”, “medium”, “large”, summarized by the indexes “s”, “m”, and “1”,
when considering, respectively 53, 71, and 89 convolutional layers and 256, 512, and
512 output channels.

A neck: a pyramidal architecture used to merge features from different levels of the
backbone network. The YOLOv5 model uses a PAN (path aggregation network [35])
neck to combine feature maps of different resolutions obtained from the backbone
and generates a fused multi-scale representation. The multi-scale characteristics of
this backbone ensure an optimized detection of all the lesion sizes and aspect ratios.
The final merged multi-scale feature map size before the head is, for the “s”, “m”, “1”
models, respectively, 26 x 26 x 512,26 x 26 x 1024, and 40 x 40 x 1024.

A head, which is responsible for performing object detection on the features extracted
by the backbone network. The YOLOv5 model uses a YOLO head that predicts
bounding boxes, and class probabilities for each cell. For our application: the final
layer is composed on 3 classes related to the clinical outcome: malignant, biopsied
benign, and non-biopsied findings. The ground-truth labels for those classes are
obtained from the radiologist annotation, supported by the radiology/pathology
reports. While trained on those 3 classes, in the proposed study, only the malignant
class results will be quantified as the CAD goal is to detect cancers.

After a series of experiments, the distance intersection over union (DIoU) was selected

as a loss function [36] for this study. DIoU encourages more accurate localization of objects.
It combines the intersection over union (IoU) and the distance to the center of the ground-
truth boxes. The IoU determines the ratio of the overlap area between the detected and
ground truth bounding boxes to their union area. The IoU loss alone is difficult to optimize
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during the first epoch when the model is not trained enough as the intersections between
the ground truth and detected box may be null with zero gradient. On the opposite side, the
distance term provides a wider convex potential. Gradient-based optimization algorithms
are more likely to converge to the global minimum, resulting in improved training and
better localization accuracy. The Lpjoy loss function is defined as

2 gt
Loy =1 —ToU + %, )

where p denotes the Euclidean distance between the coordinates of the predicted and
ground-truth boxes’ centers: respectively, x and x8'. c is the diagonal length of a rectangular
box circumscribed to the predicted and ground-truth detections. Our experiments showed
that the DIoU loss function leads to better convergence than the traditional IoU loss
function. The DIoU loss was evaluated towards other similar losses (e.g., IoU, complete
IoU, generalized IoU) and provided better results on all metrics and convergence speed. In
addition to this detection loss, the classification loss is a cross-entropy loss, which evaluates
the correctness of predicted class probabilities.

To mitigate the challenge of limited datasets, two approaches were employed: data
augmentation and transfer learning. In particular, data augmentation strategies suitable
for breast images were applied, which included horizontal image flips, global intensity
transforms (saturation, brightness changes), and dedicated breast geometrical realistic
transforms [37]. The realistic breast geometric transforms represent a set of displacement
fields mimicking the motion between multiple acquisitions of the same breast. Those
transformations create homotopic breasts with enhanced variability while preserving the
breast texture and the pathology outcome. The model weights were pre-trained on Image-
Net and subsequently fine-tuned on the lesion detection task. The pre-trained generic
model can be found in the Github repository: https://github.com/ultralytics/yolov5
accessed on 26 June 2023.

Finally, two inference techniques were leveraged to improve the accuracy and robust-
ness of the predictions: test time augmentation (TTA) and model ensembling is shown in
Table 3. TTA involves duplicating the input image and applying invarience/equivarience
such as scales and flips to each copy before combining all detections obtained from the du-
plicates. Model ensembling consists in training multiple models with different architectures
on the same dataset and averaging the outputs. Five models with different hyperparameter
choices were trained on the same datasets and averaged to give our final CEM CAD model.

Table 3. Trained models for the ensembling.

Model Batch-Size
YOLOvV5s-(a) 12
YOLOv5s-(b) 12
YOLOv5m-(a) 8
YOLOv5m-(b) 8
YOLOVS51 6

The model has been trained to classify, from a single view input image, three distinct
categories: cancer, benign biopsied lesions, and non-biopsied findings. However, the
scope of this paper is limited to evaluating the model’s performance in detecting cancer
exclusively. Therefore, only the score associated to the cancer category is then considered
for this study. Following the inference, a class-agnostic non-maximum suppression (NMS)
technique is implemented to decrease the amount of overlapping detections.

Stochastic gradient descent (SGD) was used for optimization with a batch size set
to 12 images to fit the 24Gb—Quadro RTX-6000 GPU memory. A complete training took
approximately 500 iterations to reach convergence in 8-12 h training time.
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RAW LE and HE CEM images were recombined using the latest available recombina-
tion algorithm: SenoBright™ HD with NIRA giving an optimal CEM quality recombination
images [38].

In this study, we evaluated the CEM CAD performance considering various inputs sce-
nario:
¢ RECimage only;
¢ LE and REC images, as performed by radiologists during the standard clinical practice.

4.2. Evaluation Metrics

The evaluation of the CEM CAD can be performed at different levels [39]: (1) cancer
detection metrics and (2) breast classification metrics.

4.2.1. Detection Metrics (Lesion Level)

To validate the detection of a ROI, an acceptance criterion based on the Intersection
over Union (IoU) between the detected cancer class and the ground truth cancers has
been used. This criterion allowed us to assess the accuracy of the detection by measuring
the spatial overlap between the predicted bounding boxes and the actual ground truth
bounding boxes. The threshold is set to IoUreshold = 0.1 and allows us to compensate
slight annotation inconsistencies [40]. All detections below this threshold are not consid-
ered positive.

¢ FROC and AUFROC—The results for the enhancing cancer detection are evaluated
with FROC (free receiver operating characteristic) curves considering the sensitivity
for the detection of cancer boxes (Se/, defined per lesion) with respect to the number
of false positives per image (FPR).
The different results will be quantified using an area under the normalized FROC
curve, AUFROC((), up to a certain FPR threshold .

AUFROC(Z) = % /0 “ 5el(FPR) dFPR, ?)

ranging in [0, 1]. To ensure comparability, the { threshold for different computations
must be identical. The standard value taken for the results section is { = 0.3. This
metric is used to evaluate the effectiveness of a CAD system in reducing unneces-
sary biopsies of benign lesions. For this metric, the sensitivity is computed at the
lesion level.

*  Quality of the detections—The IoU quantify the spatial accuracy to accept a detection.
The threshold value depends on the imaging modality, on the initial annotation
variability, and on the final expected accuracy of the output. The detection results at
different IoU thresholds will be presented.

*  Detection heatmap—A heatmap was generated to show the probability of detection.
This heatmap displays all detections (without NMS) using a Gaussian function with
anisotropic characteristic lengths that are equal to the size of the rectangular detection.
The amplitudes of these Gaussian functions are the confidence scores. Areas with a
high probability of being cancerous are depicted in red values, while areas with a high
probability of being benign are depicted in blue.

4.2.2. Breast Classification Metrics (Breast Level)

The suspicion score predicted for each detection enables a broader classification at
the patient, breast, or image level. The suspicion score for each breast is determined based
on the highest score of the most suspicious detected box across all available breast views.
To evaluate this classification, an ROC curve has been built to measure sensitivity Se’ and
specificity Sp? (with the index b denoting the breast level). The CEM CAD performance was
compared with those from radiologists in CEM diagnostic clinical review papers [41,42].
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The evaluated metric will be the standard area under the receiver operating characteristic
(AUROCQ):

1
AUROC = / Seb(1-Sp") dsp?. @3)
0
For this metric, bootstraping was used to compute the 95% confidence interval (CI).

5. Results
5.1. Evaluation of Different Inputs Channels Impact

The cancer detection and breast classification results for different input images (LE and
REC images, and REC only) are presented in Figure 1. The thin lines represent individual
models, whereas the ensemble model performance is represented in thick lines.

The ensemble model’s AUFROC (0.3) for cancer detection, presented in Figure 1a,
is 0.733 (red curve) and 0.853 (black curve) for REC only and the LE and REC coupling,
respectively.

For breast classification, presented in Figure 1b, the CEM CAD’s AUROC is 0.916
[CI-95%: 0.886-0.945] (red curve) and 0.964 [CI-95%: 0.946-0.979] (black curve) for REC
only and the coupling of LE and REC, respectively.

For both evaluation metrics (at lesion level and breast level), the best performance is
obtained when considering both LE and REC images as inputs for the CAD model. The
addition of the LE information allows increasing the cancer sensitivity results of around
0.1 over the whole FROC curve. Therefore, we used LE and REC images as inputs for all
results presented below.

08 0.8
S 06 06
wvi
7] E=]
- -7}
E (%]
2
w 04 0.4
v
e 50
0.2 0.2 ® 100
= LE and Rec = LE and Rec ® 300
—— Rec —— Rec . 800
0.0 T T T T T 0.0 T T B I
0.00 0.05 010 015 0.20 0.25 0.30 0.0 0.2 0.4 06 0.8 1.0
FPR [per image] 1-Sp?
(a) FROC (b) ROC

Figure 1. Impact of the image information (a) FROC curves with different input channels and
(b) ROC curves with different input channels. The thin lines represent individual models, whereas
the ensemble model performance is represented in thick lines. The disks represent radiologists’
diagnostic results from [41,42]. The size of the disk represents the size of the the clinical dataset.

5.2. Enhancing Cancer Detection Results (Lesion Level)

Once the CAD detects a box as a potential cancer, it is essential to determine the
likelihood of it being a true cancer. Figure 2 presents the percentage of cases in which the
detected box corresponds to a ground truth cancer with respect to the sensitivity at the
lesion detection level. Additionally, the figure displays the class of the detected box if it
is not a true cancer. The orange curve represents benign biopsied lesions, while the black
curve represents unsuspicious detection (non-biopsied texture).
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— Others
40
20
02 03 04 05 06 07 08 09 10
Se

Figure 2. Ground-truth probability for the detected cancer boxes with respect to the cancer detection
sensitivity Se!. The thin lines represent individual models, whereas the ensemble model performance
is represented in thick lines.

For sensitivity under 0.5, all false positives are benign biopsied lesions. In the range of
Se between 0.65 and 0.92, the false positives are equally represented by benign biopsied
lesions and other findings. When the cancer sensitivity increases after 0.92, the CAD detects
mainly unsuspicious (non-biopsied) textures as the dark curve highly increases.

The CEM CAD results for two patients (eight treated views) are presented in Figure 3.
Red and green boxes represent ground-truth cancers and benign lesions. Blue boxes are
the CEM CAD cancer detection with the CAD suspicion scores ranging in [0-1]. While
no CC/MLO consistency is imposed, the same lesion detection is found in the two views
(similar distance-to-nipple and lesion sizes). For the patient presented on the bottom, two
areas are detected in the RCC view, while those identified by a radiologist are treated as a
single, large box.

5.2.1. Detection Heatmap

The heatmap (Figure 4), presented for various patient breasts, shows the areas detected
by the algorithm, where red indicates high probability of cancer and blue indicates high
probability of benignity. The algorithm identified different areas, including a large contrast
uptake in (a) and (b) highlighted in red, axillary nodes in (a), (c), and (e) shown in blue,
and a benign contrast uptake in the upper quadrant in (c). The area of suspicion in (d) is
very large and matches with the large disease.

5.2.2. Detected IoU

The IoU threshold plays an important role in assessing if a detected area is correctly
located or not. Figure 5 shows the FROC curves at different IoU thresholds. With a higher
acceptance threshold, the sensitivity at the lesion level decreases. The AUFROC (0.3) for an
IoU threshold of [0.01, 0.05, 0.1, 0.15, 0.2, 0.3] are [0.874, 0.871, 0.853, 0.814, 0.779, 0.726],
respectively. Two curves are highlighted, with an IoU threshold of 0.05 (red curve) and
0.1 (plain black curve). At an IoU threshold of 0.1, the mean IoU of the detected lesion is
high (around 0.44); hence, the lesion surfaces are well detected. This corresponds to, for
example, large, clearly malignant contrast uptakes.
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Low energy

Recombined

Recombined

Figure 3. CEM CAD detection results (blue boxes) and detection scores for two patients” CEM exams.
The first lines correspond to the low energy images and the second line to the recombined images.
Red and green boxes represent ground-truth cancers and benign lesions, respectively.

(a) (c) (d) (e)

Figure 4. Detection heatmap for different images. Red areas (in (a,b,d)) represents high probability

(b)

of cancer, while blue areas (in (a,c,e)) represent high probability of benign finding.

With a sensitivity of 0.90, the trained model in this study performed cancer detection
at 0.085 false positives per image at an IoU threshold of 0.05 (compensating for annotation
inconsistency) or 0.128 false positives per image for an IoU threshold of 0.1.
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Figure 5. FROC curves considering different IoU thresholds.

The IoU threshold does not impact the breast classification and ROC curves as the
box acceptance is not included in the breast classification strategy. The output of such
inconsistencies introduces many false positives and false negatives, as shown in Figure 6.
In this figure, the two small detected boxes in the left cranio-caudal view (depicted by the
arrows) have an IoU with the ground truth smaller than 0.03 and are thus considered as
false positives with the discussed IoU threshold.

Low energy

Recombined

Ny o7

0.26

Figure 6. Example of detection inconsistency with the annotation. The red and blue boxes are,
respectively, ground-truth cancer annotation and CAD detected areas. In this cases, the small
detected enhancing areas in the left cranio-caudal view are considered as two false positives.

5.3. Breast Classification Results (Breast-Level)

Breast classification results are presented in Figure 1b. The CEM CAD’s AUROC for
the final ensembling model is 0.964 [CI-95%: 0.946-0.979] (black curve). The AUROCs
for the five models are 0.967, 0.968, 0.969, 0.974, 0.966, respectively, for models “5s-(a)”,
Il5s_(b)/ll Il5m_(a)/’, I/Sm_(b)//l 1151//.
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Se' [per lesion]

The disks, corresponding to radiologists” diagnostic results, are extracted from clinical
review papers [41,42]). The size of the disk represents the size of the the clinical dataset.
The median specificity for the breast classification in the 24 clinical studies is 0.744. At
this fixed specificity, the sensibility of the AI model considering LE and REC for the breast
classification is Se” = 0.988. As a comparison, the sensitivities reported in the reviews are,
respectively, for the min/median/max: 0.543/0.952/1.00.

5.4. Evaluation of the BPE Impact

The detection and classification results can be split in two sub-categories of back-
ground parenchymal enhancement level: low (104 cases—437 images) and high (46 cases—
197 images), corresponding, respectively, to the grades minimal/mild and moderate/marked.
The results for low (104 cases, 437 images) and high (46 cases, 197 images) BPE grades are
presented in Figure 7.

The FROC and ROC curves for low (104 cases, 437 images) and high (46 cases,
197 images) BPE levels are presented in Figure 6. The model’s AUFROC(0.3) for can-
cer detection is 0.891 (red curve) and 0.712 (blue curve) for low and high BPE, respectively.
The AUROC for breast classification is 0.986 (0.976—0.995) (red curve) and 0.919 (0.866—0.962)
(blue curve) for low and high BPE, respectively. These results show that the algorithm’s
performance is lower for high BPE compared to low BPE.

1.0 1.0
— low BPE
— high BPE
—— alldata
0.8 0.8
06 0.6
E=]
&
04 0.4
02 — lowBPE 0.2
— high BPE
— alldata
0.0 0.0 T T T T
0.00 005 010 015 020 025 030 035 040 0.0 0.2 0.4 0.6 0.8 1.0
FPR [perimage] 1-5p”
(a) FROC (b) ROC

Figure 7. (a) FROC curve and (b) ROC curve for different categories of BPE. Red: low BPE (minimal
and moderate grades). Blue: high BPE (moderate and marked grades).

All detection and classification results are summarized in Table 4. The comparison of
the performance with other published CEM-CAD models can be performed. The results
are compared with previous CAD development with an equivalent architecture [27]. The
new proposed method outperforms all previous obtained metrics. It is difficult to compare
with the results from [25] as the authors presented pixel (segmentation) metrics and no
metrics at the lesion level. For the breast classification metric, the results are in the range of
the model developed by Zheng et al. [28]. In their paper, they obtained an AUROC of 0.947
(0.916—0.978), evaluated on their internal testing set with an Asian population.
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Table 4. CEM CAD results.

Model AUROC AUROC—95% CI SpP@Se® =0.90 AUFROC (0.3) FPR@Se'’ = 0.90
YOLOv5s-(a) 0.967 0.951-0.983 0.919 0.839 0.148
YOLOV5s-(b) 0.968 0.953-0.983 0.927 0.827 0.230
YOLOv5m-(a) 0.969 0.953-0.984 0.925 0.848 0.148
YOLOv5m-(b) 0.974 0.949-0.982 0.949 0.877 0.080

YOLOVS5I 0.966 0.951-0.982 0.929 0.855 0.110

proposed CEM CAD 0.964 0.946-0.979 0.934 0.853 0.128

midrule low-BPE 0.986 0.976-0.995 0.966 0.891 0.080

high-BPE 0.919 0.866-0.962 0.795 0.712 0.416

REC only 0.916 0.866-0.945 0.861 0.733 0.837

Jailin et al. [27] 0.930 - 0.790 0.632 0.410
Zheng et al. [28] 0.947 0.916-0.978 - - -

6. Discussion
6.1. Input Data Impact

This study shows that, as radiologists do, leveraging REC and LE image channels
improves the performance of the CEM CAD. In addition, this results is in line with the
development of region-of-interest CEM classification models [43]. The low-energy images
complement the recombined images and and enable better discrimination of cancers.

6.2. Lesion Detection and Breast Classification

The results presented in Table 4 show that the different models used for ensembling
have similar performance on cancer detection and breast classification, indicating that
the choice of architecture has a limited impact on the results. The ensembling does not
improve the metrics (AUROC, AUFROC, and the confidence interval) compared to each
individual model. This suggests that the learnt content may be similar. The obtained results
validate the chosen size of the 150-case test dataset [44] (high AUC: AUC > 0.9, small AUC
difference between the tests: <0.05 and five algorithms).

The heatmaps presented in Figure 4 show different areas detected as benign and
malignant. With this representation, the model successfully identifies lymph nodes, benign
lesions, as well as cancers.

One main difficulty in this work lies in the consistency of the lesion annotation. The
IoU threshold for detection acceptance with the ground truth has a significant impact on
the metrics, as shown in Figure 5. A low IoU compensates for slight inconsistencies in
data annotation as data come from various sites with different annotators. For instance, a
multi-focal carcinoma can be identified by a large box or by annotating each individual
nodule. While being very close to the main lesion, those detected nodules could be merged
and count as a single, larger detection.

The results of the proposed model outperform previously published detection CEM-
CAD and could be linked to a larger training dataset. For the breast classification, the
proposed CAD model obtained similar performance to Zheng et al. [28] yet considered
complex cases such as multiple, bilateral, and non-mass lesions and lesions seen only in
one view. Comparing metrics in detail with results from other papers may be challenging
due to significant differences in the datasets. These variations are on diverse populations,
clinical characteristics, and inclusion/exclusion criteria. Consequently, direct comparisons
between studies may not be straightforward or yield precise conclusions. This empha-
sizes the importance of conducting studies with standardized protocols and larger, more
representative cohorts to ensure more robust and reliable comparisons.
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6.3. BPE Impact

The study showed that the BPE level impacts CEM CAD results. This is in line with
previous clinical studies which suggested that increased BPE on CEM may lead to increases
in false-positive rates [45]. In diagnostics, distinguishing between BPE and lesion contrast
uptake is challenging [46]. Therefore, it is important to collect data that include high BPE
cases, which are more difficult to diagnose. Due to the low number of cases in the marked
and minimal BIRADS categories, the study was unable to split the data into these four
categories. It is therefore crucial to consider BPE when evaluating the performance of CEM
CAD. Future research should focus on optimizing the system for high BPE cases.

6.4. Limitations and Improvement Opportunities

The developed study has several limitations and improvement opportunities. First,
this study was performed with mainly trained and fully evaluated data coming from a
unique site (Baheya Foundation). This particularity may generate a dataset/annotation
bias in the results when applied to other sites. Therefore, collecting data from more than
one site will ensure the model generalizes on various populations. Additionally, merging
multiple site data, such as multiple patients, lesions, and clinical scenarios, can further
improve the performance of the CEM CAD.

The data utilized in this study were annotated by a single group of experienced ra-
diologists, which could introduce annotation bias. To address this concern and reduce
reader variability, it is essential to annotate each case with multiple radiologists. Imple-
menting a consensus/merging strategy to obtain a ground-truth annotation would be a
necessary step.

One assumption in this study is that all non-biopsied areas are assumed to be be-
nign/normal (hence negative for malignancy). This is a strong hypothesis as a non-detected
cancer by radiologists could have been detected by the Al To exclude the possibility of
a malignant lesion developing, a standard consists in excluding all cases without avail-
able (at least) 6-month negative follow-ups. In the current dataset, more than half of the
non-biopsied cases have a negative follow-up; however, this is not the case for all instances.

The recent development of full-field digital mammography (FFDM) detection CAD
systems could complement this work [47]. FFDM data are available in much larger quanti-
ties than CEM data. Those FFDM-CAD have demonstrated high efficiencies and could be
applied as a baseline on the LE images of CEM exams. The FFDM-CAD could hence be
applied to the LE image and coupled with the proposed CEM CAD model. The results of
this study could improved the discrimination of enhancing malignant and benign lesions,
especially on micro-calcifications.

Finally, the current algorithm is applied to each image independently without con-
sidering the whole exam information. The recent development of multi-view CAD in
FFDM has demonstrated significant improvements in results, from a simple average of the
outputs [28] to more complex multi-view architectures [48] leveraging the consistency in
texture and lesion characteristics between the CC/MLO and L/R views. Exploring this
consistency in contrast-enhanced mammography (CEM) will help to reduce false positives.

7. Conclusions

In this study, a deep learning model for enhancing cancer detection in contrast-
enhanced mammography images are introduced. The model was trained, validated, and
tested using an important CEM dataset comprising 1673 patients, totaling 7443 images.
These images were collected from different hospitals and acquired through various imaging
systems from GEHC.

The proposed detection model is based on the YOLOV5 architecture, trained with data
augmentation, and uses inference optimization strategies. First, our analysis demonstrated
that the best results where obtained when using both LE and HE images as inputs for the
CEM CAD model. Diverse metrics were employed to evaluate the efficiency of the lesion
detection and breast classification. The trained model achieved breast classification with an
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AUROC of 0.964 and was able to identify each individual cancer at a sensitivity of 0.9 and
0.128 false positives per image. These results outperform previous published papers and
are comparable with the radiologists” efficiency reported in the literature. Finally, the BPE
level impact investigation highlighted the strong influence of BPE on the CEM CAD results
for diagnostic applications.

Different opportunities have been identified to further improve our CEM CAD model
performance, such as collecting more high BPE images, increasing model robustness to
annotation inconsistency, or implementing a multi-view strategy. Overall, the model devel-
oped in this study has the potential to assist radiologists in detecting and characterizing
complex contrast uptake and classifying breast suspicion. With promising results, we aim
to evaluate shortly the clinical impact of a CEM CAD in a diagnostic setting.
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