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Abstract: Background: Lung cancer is one of the most fatal cancers worldwide, and malignant tumors
are characterized by the growth of abnormal cells in the tissues of lungs. Usually, symptoms of lung
cancer do not appear until it is already at an advanced stage. The proper segmentation of cancerous
lesions in CT images is the primary method of detection towards achieving a completely automated
diagnostic system. Method: In this work, we developed an improved hybrid neural network via the
fusion of two architectures, MobileNetV2 and UNET, for the semantic segmentation of malignant
lung tumors from CT images. The transfer learning technique was employed and the pre-trained
MobileNetV2 was utilized as an encoder of a conventional UNET model for feature extraction.
The proposed network is an efficient segmentation approach that performs lightweight filtering
to reduce computation and pointwise convolution for building more features. Skip connections
were established with the Relu activation function for improving model convergence to connect the
encoder layers of MobileNetv2 to decoder layers in UNET that allow the concatenation of feature
maps with different resolutions from the encoder to decoder. Furthermore, the model was trained
and fine-tuned on the training dataset acquired from the Medical Segmentation Decathlon (MSD)
2018 Challenge. Results: The proposed network was tested and evaluated on 25% of the dataset
obtained from the MSD, and it achieved a dice score of 0.8793, recall of 0.8602 and precision of 0.93. It
is pertinent to mention that our technique outperforms the current available networks, which have
several phases of training and testing.

Keywords: deep learning; medical imaging; CT; UNET; MobileNetV2; lung cancer; pulmonary nodule

1. Introduction

Computer tomography (CT) is considered one of the best imaging modalities and has
become the standard modality for analyzing and assessing tumors in lungs. The accurate
segmentation of cancerous nodules from CT scan images is very important, as it provides
necessary information that strongly associates with the early diagnosis of lung cancer and
enhances the possibility of patients’ survival [1]. Lung cancer is one of the most fatal cancers
worldwide, and malignant tumors are characterized by the growth of abnormal cells in the
tissues of lungs [2,3]. Usually, symptoms of lung cancer do not appear until it is already at
an advanced stage [4]. A timely diagnosis of malignant lung tumor sub-regions becomes
essential for the effective treatment of patients. The Medical Segmentation Decathlon (MSD)
is a platform used to analyze and evaluate the development of deep learning models for
generalizable 3D semantic segmentation. It provides 3D CT scan images of lung cancer and
corresponding annotated ground truths publicly available for the evaluation of models’
robustness. The given CT scans are used for training as well as validating the developed
model for the segmentation task.
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Qureshi et al. [5] reviewed the semantic-based segmentation methods, existing chal-
lenges and their emerging trends. The authors of that study offer insights into the devel-
opment of machine learning and deep learning mechanisms, along with their strengths
and weaknesses. The paper provides a comprehensive overview of recent advancements
in semantic segmentation techniques; additionally, it presents a thorough investigation
into the effectiveness of different architectures for medical image segmentation. Moreover,
it helped the research community by highlighting the benefits, existing challenges and
potential future directions.

Traditional methods generally demand handcrafted features, for instance, pixel thresh-
olding, voxel clustering and morphological features [6]. These approaches to medical
image segmentation also revolve around edge detection, active contours and template
matching techniques [7]. Therefore, deep-learning-based classifiers (DLCs) have changed
the research objectives from traditional image processing techniques for feature engineering
to network architecture design for obtaining high accuracy. Moreover, transfer learning [8]
has established the most practical paradigms in the field of semantic segmentation [9]
and image classification [10]. It is a way of utilizing knowledge acquired from a source
domain while solving one supervised learning task and employing it to another related
target domain. A. A. Mukhlif et al. [11] discussed the significance of accurately segmenting
and evaluating the region of interest in medical imaging for disease screening and decision
making. The research specifically explored the lung section segmentation from chest X-ray
images, training the UNET with one-fold and two-fold training processes. The investigation
concluded that the proposed approach achieved superior results in the two-fold training
compared to other methods considered in this study. In another study, the authors [9]
highlighted the limitation of a CNN to efficiently handle irregular image orientations. To
address this problem, a new hybrid deep learning architecture known as the STNCNN was
proposed by integrating the space transformer network (STN) with a CNN. The developed
model was implemented on a dataset from the Kaggle repository and achieved promising
accuracy, outperforming vanilla grey, vanilla RGB and the hybrid CNN.

Due to the heterogeneity of tumors in terms of size, shape and appearance, tumor
detection remains a challenge. The automated segmentation of lung tumors from CT scan
images can assist medical practitioners in providing an early diagnosis for the further
monitoring of disease progression. Classical methods of automatic tumor segmentation
mainly depend on feature engineering, which requires the extraction of features from input
images for further training of the classifier [10]. However, U-NET, a convolutional neural
network, set a new benchmark in biomedical image segmentation and is considered as
one of the most advanced techniques for the accurate pattern classification of tumors, as
it automatically learns the relevant features [12]. Z Kong et al. [11] presented the hybrid
model of MobileNetv2 and UNET for the precise segmentation of liver regions from a
liver CT scan dataset. The approach involved introducing random noise to the generator’s
input and replacing the fully connected layer with a probability matrix to enhance the
discriminator’s sensitivity. The proposed algorithm achieved a dice similarity coefficient of
88.7, surpassing the performance of the standard UNET algorithm.

In this work, we present a deep-learning-based architecture for the semantic segmenta-
tion of malignant lung tumors from computed tomographic (CT) images. In our proposed
technique, we made the following contributions:

• We utilized a pre-trained MobileNetV2, retaining the convolutional layers, as the
encoder of the classical UNET for generating more stable segmentation maps. The
decoder part consists of up-sample layers and convolutional layers that recover the
spatial resolution and refine the segmentation results.

• Skip connections were established with the Relu activation function for improving the
model convergence to connect the encoder layers of MobileNetV2 to the decoder layers
in UNet, which allows the concatenation of feature maps with different resolutions
from the encoder to decoder. Thus, the decoder leverages both low-level and high-level
features for accurate segmentation.



Bioengineering 2023, 10, 981 3 of 13

• Finally, we added a 1 × 1 convolution layer at the end of the decoder to reduce the
number of channels and to obtain the number of output classes, such as tumor and
background.

• The devised network was further trained and fine-tuned with optimized hyper-
parameters on the training dataset obtained from the Medical Segmentation Decathlon
(MSD) 2018 Challenge.

• The results indicate that the proposed approach is robust and significantly improved
the segmentation accuracy.

The rest of the paper is organized as follows: Section 2 of this paper indicates the
literature covering the machine learning and deep learning techniques used in this domain.
Section 3 elaborates a detailed explanation of the proposed methods and Section 4 focuses
on the results and discussion, in which the obtained results from the suggested algorithm
are discussed and presented.

2. Background

The precise assessment of a lung tumor is essential to scrutinize its malignancy and
the probability of lung cancer. Wang et al. [13] proposed a support vector machine (SVM)
based on the three-dimensional matrix pattern method to avoid the loss of local and structural
information. The three-dimensional volume of tumors took the whole region of interest
(ROI) for analysis and fed it as an input image for the training of the algorithm, and the
model was not able to classify between benign and malignant tumor. However, the lung
parenchyma segmentation technique using the fast marching method was adopted in [14] to
extract candidate nodules from segmented lung parenchyma. Afterwards, a random forest
(RF) algorithm was employed for the classification between benign and malignant tumors.

Mukhlif et al. [15] highlighted the need for smart systems to aid clinicians in the early
detection of breast cancer, where the authors aimed to address the non-medical nature of
ImageNet features by incorporating unclassified medical images of the same disease to
mitigate the reliance on ImageNet. Therefore, the proposed approach employed a modified
Xception model to classify histological images of breast cancer into four categories, and
achieved high performance compared to previous studies in this field. On the other hand,
S Lu et al. [16] aimed to develop a system for automatically identifying COVID-19 in chest
CT images using artificial intelligence. The researchers utilized transfer learning to obtain
image-level representations (ILRs) based on a deep CNN. They proposed a neighboring aware
representation (NAR) to capture neighboring relationships between ILR vectors. Based on
such representations, they introduced a novel COVID-19 classification architecture known as
NAGNN that outperformed the state-of-the-art methods in terms of generalizability.

S M Naqi et al. opted for a strategy of employing multiple ML techniques for the
detection of lung cancer and compared the obtained results. Geometric texture and 3D
component connectivity was analyzed by novel hybrid 3D nodule detection, and based
upon the extracted feature, classification was performed by K-Nearest Neighbors (KNN),
SVM and AdaBoost. The evaluation of AdaBoost was performed using a dataset acquired
from the Lung Image Database Consortium (LIDC) [17].

W. Choi and T. Choi [18] suggested an automatic approach for the identification of a
lung tumor on the basis of a feature descriptor which then differentiated by the 3D shape
of the tumor. Multi-scale dot enhancement filtering is a technique utilized for segmenting
lung volume. Afterwards, potential nodule candidates were extracted and refined by
using an iterative edge elimination algorithm. Finally, an SVM classifier was trained to
differentiate nodules and non-nodules. M. Usman et al. [19] devised an approach that
consists of two stages: the first stage provides an initial estimation of a tumor by performing
patch-wise exploration along the axial axis using an adaptive ROI algorithm. In the second
stage, the extracted region is further investigated for the existence of a malignant tumor
along the coronal and sagittal axes.

The algorithm proposed by A. Setio et al. [20] was composed of three candidate de-
tectors specially designed for the detection of cancerous lesions to enhance the detection
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sensitivity of lesions. The nodule candidates were computed and processed by ConvNets
by averaging the position of the tumor and its probability. U Kamal et al. proposed the
recurrent 3D-DenseUNet, an architecture for the segmentation of the volume of interest
from lung CT scans. The suggested approach comprised a 3D encoder block and recurrent
block of ConvLSTM layers to bring out fine-grained spatio-temporal details and later recon-
struct the volumetric segmentation mask by introducing a 3D decoder block. S Lu et al. [21]
proposed a novel method for detecting abnormal brain regions in MRI images using a
pre-trained AlexNet model. The authors modified a pre-trained model by adding batch
normalization layers and replaced the last layers with an extreme learning machine. Fur-
thermore, the extreme learning machine was optimized utilizing a chaotic bat algorithm
to enhance the classification performance, which demonstrated state-of-the-art results in
abnormal brain region detection.

Random transformation induces deliberate changes and can be used to create varied
images from available images to enhance the size of a dataset for training the classifier.
Deep convolutional neural networks (CNNs) have performed exceptionally well on com-
puter vision tasks. Overfitting happens when a network understands a function with
high variance. However, data augmentation increases the data size, along with the class-
preserving transformation and standards of the training dataset, ultimately strengthening
the generalization ability of deep learning models [22].

Tri Dao et al. [23] established a theoretical framework for understanding data aug-
mentation schemes. The Markov process is a general model of augmentation where
kernels appear spontaneously in the model. Data augmentations can be approximated
by first-order feature averaging and second-order variance regularization components.
They also analyzed the methods of augmentation that modify the models’ learning ability.
Nonetheless, data augmentation enhances the training dataset size by geometric and color
transformations and adversarial training.

Deep Learning Techniques

Deep learning architectures give exceptional results on tasks of semantic segmentation
as compared with classical machine learning and context-based computer vision methods.
M. Havaei et al. [24] presented a deep neural networks (DNN) for brain tumor segmentation
to fully automate the approach, in which local features and global contextual features were
utilized simultaneously to enhance the robustness of the network. The model outperformed
on the BRATS dataset compared to state-of-the-art approaches. T. Brosch et al. [25] put
forward a novel segmentation framework that relies on deep 3D convolutional encoder
networks along with shortcut connections and employed it to segment out the lesions from
magnetic resonance images (MRI).

The suggested network mainly comprised two inter-connected pathways, a convolu-
tional path, which ascertains more abstract and prominent image features, and a deconvo-
lution path, which anticipates segmentation at the voxel level. The model was validated on
the publicly available MICCAI 2008 dataset with promising results. Xiaomeng Li et al. [26]
concentrated on a Hybrid Densely Connected UNET, which was comprised of a 2D Dense-
UNet for the extraction of features and a 3D counterpart for accumulating volumetric
contexts to segment out the liver tumor. Fabian Isensee et al. [27] introduced the robust
no-new-Net (nnU-Net) framework, where the Relu activation function is replaced by leaky
Relu and instance normalization is used instead of batch normalization. Furthermore, they
evaluated the model using the Medical Segmentation Decathlon Challenge (MSD) dataset
and achieved the highest mean dice score.

Çiçek et. al. [28] presented an architecture for volumetric segmentation where a network
from Ronneberger et al [29]. was extended by replacing all two-dimensional operations with
three-dimensional counterparts. The suggested network was trained from scratch and data
augmentation schemes were also implemented during training. The performance of the
network was tested on the complex 3D structure of Xenopus Kidney and accomplished good
results. Transfer learning enables the new model to benefit from previous knowledge by
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leveraging the learned features and representations; therefore, A A Mukhlif et al. [30] discussed
the applications of transfer learning in various domains, particularly image processing and
interpretation. They also revealed the prevalent use of pre-trained models from the ImageNet
dataset in applications such as skin cancer, breast cancer and diabetic retinopathy classification.
Along with that, the authors further investigated the problems in melanoma and breast cancer
datasets, and potential solutions were suggested. In another study, A A Mukhlif et al. [31]
discussed the limitations of transfer learning in the medical domain due to the mismatch
between the source and target problem. To address this issue, the study proposed a novel
approach known as dual transfer learning (DTL) that focused on the convergence of patterns
between two domains. The proposed approach employed four pre-trained models utilizing
two datasets: skin cancer images and breast cancer images. The final layers of the models
were fine-tuned on enough unclassified images of the same disease and a small number
of classified images from the target task. The experimental results demonstrated that the
proposed approach improved the performance of all models.

3. Materials and Methods
3.1. Dataset

The dataset for training, validation and evaluation of the proposed algorithm was
obtained from the Medical Segmentation Decathlon Challenge (MSD). The 3-dimensional
CT image dataset, acquired from The Cancer Imaging Archive (TCIA), was made available
to the public through the Medical Segmentation Decathlon Challenge (MSD). Briefly,
96 preoperative thin-section CT images were obtained with the following parameters:
automatic tube current modulation range, 100–700 mA; helical pitch, 0.9–1.0; tube rotation
speed, 0.5 s; section thickness, <1.5 mm; 120 kVp; and a sharp reconstruction kernel [32].
The training set used here comprises 64 heterogeneous CT images with accurately annotated
ground truths, which we further split into training, validation and test sets to analyze the
validity of the proposed architecture.

Each CT scan volume has a dimension of 512 × 512 × X, where X denotes the variability
in voxel size of each CT scan. From these CT volumes, the segmentation of the tumor sub-
region was performed. Therefore, the dataset was processed to overcome the inconsistency
of the voxel of each 3D scan by splitting into 2D images, wherein lung nodules also had
huge variations in tumor size and morphological characteristics. Different 2D slices from
3D CT scans and their corresponding ground truths are shown in Figure 1 as example
images from the training set. We did not adopt datasets other than the mentioned dataset
in the experiments, and precise segmentation results from the suggested model were
then compared to the existing state-of-the-art networks. We provide a further detailed
explanation on the methods utilized to process the dataset in the following section.
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3.2. Methodology

In this section, we begin by describing the architecture that we employed. MobileNetV2
is usually adapted for resource-constrained environments to accurately solve the problem of
semantic segmentation and has the advantage of improving segmentation results. We propose
a computationally lightweight network with fewer trainable parameters, and it achieves a
perfect balance between performance results and implementation efficiency. A 2D image
containing the nodule was provided as an input to detect the presence of lesions using an
algorithm. The output of the network was a segmentation map, from which a dice score
coefficient was calculated. We provide further details on the pipeline that has several phases
in the subsequent sections.

Preprocessing

Image normalization: We converted the 3D computed tomographic (CT) images to
2D and resized them to 256 × 256 to reduce the size of the CT slices owing to memory
consideration. Furthermore, the images were normalized to minimize poor contrast issues
before feeding them into the model for training. The following min–max approach rescaled
the feature in the range of 0 and 1.

Inormalized =
I − Imin

Imax − Imin
(1)

Data Augmentation: When training the neural network with limited training data,
special attention must be paid to minimize overfitting. Augmentations induce deliberate
changes and hence can be used to create varied images from the available image dataset.
Greater variation in training data ensures model generalization. Images are randomly
augmented, which reduces the possibility of modeling to learn inherent patterns in data.
Augmentations as illustrated in Figure 2. such as CLAHE, rotate, blur, random contrast,
random sized crop and Gaussian blur are applied on data during runtime to circumvent
overfitting and to enhance the segmentation accuracy.
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employed to enhance the dataset size and elevate the model’s generalizability during the training
phase.

3.3. Network Architecture

The encoder–decoder-based architecture is a classical U-NET with MobileNetV2 as
the pre-trained encoder; however, U-NET is a fundamental convolutional neural network
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(CNN), initially developed by Olaf Ronneberger et al. [29] for biomedical image analysis,
and has received appreciation in the medical imaging community. On the other side, Mo-
bileNetV2 [33,34] introduced lightweight convolutions in the encoder part of the network
and achieved highly accurate results with much fewer parameters. Additionally, skip
connections were established with the Relu activation function to increase the model’s
convergence to connect encoder layers to decoder layers, which further allowed the concate-
nation of feature maps with different spatial resolutions. The encoder takes an image as the
input of the model and extracts necessary features and relevant information, whereas the
decoder learns to generate the corresponding predictions (probability maps). Furthermore,
skip connections in the down-sampling path are concatenated with feature maps in the
up-sampling path to provide local information to global information.

3.4. Model Training

We trained the model for 90 epochs with a patch size of 256 × 256 and batch size of 8.
Fine-tuned hyperparameters are demonstrated in Table 1. We used dice loss, as it performs
better and gives more preference to true positives compared to Jaccard loss and binary
cross-entropy loss. Binary cross-entropy loss saturates too quicky owing to large black
pixel areas in medical images. Pre-trained weights were initialized and trained on the large
ImageNet dataset; thus, the hybrid model leveraged the learned generic image features.
The learning rate is reduced by a factor of 0.01 if the validation loss does not decrease
continuously for four epochs. Moreover, training would be stopped if the validation dice
loss remained unchanged up to 10 epochs. Along with that, an Adam optimizer was
used to update the model’s weights to enhance model’s learnability. Moreover, a shortcut
connection was incorporated to enable the flow of the gradients, improve feature reuse and
enhance network performance Moreover, the overview of the model layout is highlighted
in Figure 3.
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Figure 3. A structural visualization of the network architecture, where the encoder exhibited on the
left side is MobileNetV2 and the U-NET decoder is shown on the right side. Input of patch size
256 × 256 was given into the model. Convolutional units were used with batch normalization and
Relu function activations. Up-sampling along with concatenated feature channels were employed to
obtain the output of the same spatial size as that of the input.
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Table 1. Hyperparameters used for CNN training.

Name Value

Input size 255 × 255
Batch size 8

Learning rate 1 × 10–4

Epoch
Activation head

90
sigmoid

Optimizer Adam
Loss function Ldice

3.5. Evaluation Parameters

We used the following performance evaluation matrices to measure the robustness of
the classifier.

3.5.1. Dice similarity Coefficient (DSC)

The DSC is the degree of overlap of the predicted segmentation with reference seg-
mentation [20,22]. The DSC (shown in Equation (2)) value range is [0, 1], where 1 and 0
indicate perfect agreement and no overlap, respectively. The formula comprehension of the
dice coefficient is given below.

DSC =
2TP

2TP + FP + FN
(2)

3.5.2. Dice Loss (DL)

The loss function calculates the degree of inconsistency between the predicted value of
the model and the ground truth value. We employed the simple dice coefficient loss function
that is the negation of the dice score coefficient, used in this experiment to determine the
measure of intersection between regions.

Loss = Ldice = 1 − DSC (3)

3.5.3. Recall and Precision

Recall and precision together were the measures used to evaluate the effectiveness of
the classification model. Recall is basically the proportion of correct positive classification
from the cases that are positive. True positives are the data points identified as positive by
the classifier that are correct. And false negatives are data points the model classifies as
negatives that are positives and are incorrect.

Recall =
True Positive

Predicted Results
=

nTP
nTP + nFN

(4)

Precision is the ratio between the true positives and all the positives, and also expounds
the proportion of the relevant instances among all retrieved instances.

Precision =
True Positive

Actual Results
=

nTP
nTP + nFP

(5)

4. Results

We present the prediction results from our devised segmentation model, evaluated
using the MSD-2018 lung tumor segmentation dataset. We used U-NET architecture by
integrating the down-sampling path of the U-NET with a pre-trained MobileNetV2 encoder
that was trained on a large ImageNet dataset. The prediction maps generated from the
proposed network are shown in Figure 4. The dice score achieved by the network is
0.8793 and the recall and precision of model are 0.8602 and 0.9322, respectively. Moreover,
the distribution of the dice score coefficient of each patient is illustrated in a histogram
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(shown in Figure 5), and the average dice score that we achieved is 0.8793. Therefore,
the proposed method trained the deep neural network and validated it with the Medical
Segmentation Decathlon (MSD) lung CT scan dataset, showing competitive results as
compared with the state-of-the-art methods.
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Result Comparison with Existing Methods

In this section, we present the prediction results from our segmentation model evalu-
ated using the MSD-2018 lung tumor segmentation dataset and compare our results with
various state-of-the-art deep learning methods (shown in Table 2) that are validated on a
lung CT scan dataset. Table 2 depicts the results of the mentioned techniques in terms of
the dice score coefficient (DSC). These approaches utilized complex pipelines of training
and achieved comparable results, whereas our framework is computationally light and
gives better accuracy and performed reasonably well in capturing the whole nodule shape.
We confirmed the effectiveness and efficiency of our fine-tuned model with extensive
experiments, and it can be applied to other medical segmentation tasks with required
modifications suited to the task.

Table 2. Dice score coefficient (DSC) comparison with different architectures.

Approach DSC (%)

Central Focused CNN [35] 0.821
Multichannel ROI based on Deep Structured Algorithm [36] 0.7701

Multi-Crop CNN [37] 0.7751
Multi-View Deep CNN [38] 0.7767

Cascaded Dual-Pathway Residual Network [39] 0.8158
Unsupervised Metaheuristic [40] 0.8235

Proposed Method 0.8793

5. Conclusions and Discussion

This study has addressed the critical challenge of lung cancer detection and diagnosis
through the development of an innovative hybrid neural network. By using the strengths
of MobileNetV2 and UNET architectures, we have achieved remarkable strides in the
semantic segmentation of malignant lung tumors from CT images.

The urgency of early lung cancer detection cannot be overstated, as symptoms typi-
cally manifest at advanced stages. Our proposed network’s ability to accurately segment
cancerous lesions within CT images marks a pivotal advancement toward a comprehensive
automated diagnostic system. This initial step is essential for enhancing patient outcomes
through timely interventions. The adoption of transfer learning, specifically integrating the
pre-trained MobileNetV2 as the encoder, underscores the potency of leveraging existing
knowledge to expedite model training and enhance feature extraction. This integration not
only bolsters the model’s efficiency but also capitalizes on the MobileNetV2’s lightweight
characteristics, optimizing computational resources.

The model’s segmentation efficiency is a standout feature, attributed to its adept
utilization of lightweight filtering and pointwise convolutions. This strategic approach
streamlines computations without compromising feature richness, which is crucial for
accurate segmentation. The incorporation of skip connections, augmented by the Relu
activation function, facilitates seamless information flow between encoder and decoder
layers. This design innovation contributes to the improved model convergence and overall
performance.

Our model’s performance, validated through testing on a subset of the MSD dataset,
demonstrated a dice score of 0.8793, recall of 0.8602 and precision of 0.93. These results
underscore the effectiveness of our approach, outperforming existing networks that neces-
sitate multiple training and testing phases [41]. Our technique’s ability to achieve superior
segmentation accuracy with a single model training phase holds significant promise for
expediting the diagnostic process.

The impact of our research extends beyond segmentation accuracy. By enabling the
early and precise identification of malignant lung tumors, our methodology has the potential
to transform clinical decision making and patient management. Rapid and accurate tumor
segmentation aids clinicians in assessing disease progression and tailoring treatment strategies,
ultimately enhancing patient care.
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6. Limitations and Future Prospects

Within the scope of this study, specific limitations warrant consideration. Our pro-
posed segmentation method underwent evaluation solely on the validation set of the chal-
lenge. To ascertain its robustness, extending testing to diverse medical image segmentation
tasks, independent of the challenge dataset, would be imperative. While post-processing
of our segmentation results was not exhaustive, exploring the integration of Conditional
Random Fields (CRF) [42] holds potential for enhancing segmentation accuracy. Further-
more, the susceptibility to overfitting, particularly with limited or imbalanced training data,
could affect model performance. The augmentation of data during training can mitigate
such concerns, preventing the undue memorization of training data.

In the future, comprehensive research endeavors are necessary to forge robust computer-
aided detection (CAD) models or optimize existing networks. These advancements stand to
empower clinicians in achieving accurate and timely lung tumor detection and quantitative
assessment. Importantly, our segmentation approach remains impartial, deriving essential
features exclusively from training data without preconceived assumptions about suspicious
lesions. This enables its applicability across various 2D pathological segmentation tasks when
compatible data are available. Furthermore, our proposed framework exhibits adaptability
and can be readily refined. For instance, the integration of a multi-scale Gaussian distribution
into CT images could enhance the feature evolution process. In our forthcoming work, we
intend to adapt the model architecture to a 3D convolutional neural network to explore its
performance in a broader spectrum of medical imaging tasks.

Author Contributions: Conceptualization, Z.R. and S.A.; Methodology, Z.R. and M.S.I.; Data Cura-
tion, Z.R. and S.A.; Writing—Original Draft Preparation, Z.R. and B.K.; Writing—Review and Editing,
B.K., S.A. and S.K.; Visualization, S.A., B.K. and S.K.; Supervision, S.A. and M.S.I. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data are available in the paper.

Acknowledgments: The authors would like to thank Health @ InnoHK (Hong Kong Centre for
Cerebro-Cardiovascular Health Engineering (COCHE)), the Center for Eye and Vision Research,
Shatin, Hong Kong, SAR, China, and Mälardalen University, Sweden, for providing a feasible
environment to perform the experiments and document the data.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Manikandan, T.; Devi, B.; Helanvidhya, T. A Computer-Aided Diagnosis System for Lung Cancer Detection with Automatic

Region Growing, Multistage Feature Selection and Neural Network Classifier. Int. J. Innov. Technol. Explor. Eng. 2019, 9, 409–413.
2. Drozdzal, M.; Chartrand, G.; Vorontsov, E.; Shakeri, M.; Di Jorio, L.; Tang, A.; Romero, A.; Bengio, Y.; Pal, C.; Kadoury, S. Learning

normalized inputs for iterative estimation in medical image segmentation. Med. Image Anal. 2018, 44, 1–13. [CrossRef] [PubMed]
3. Kamal, U.; Rafi, A.M.; Hoque, R.; Wu, J.; Hasan, M.K. Lung cancer tumor region segmentation using recurrent 3D-denseunet. In

Proceedings of the Thoracic Image Analysis: Second International Workshop, TIA 2020, Held in Conjunction with MICCAI 2020,
Lima, Peru, 8 October 2020; Springer International Publishing: Berlin/Heidelberg, Germany; pp. 36–47.

4. Niranjana, G.; Ponnavaikko, M. A review on image processing methods in detecting lung cancer using CT images. In Proceedings
of the 2017 International Conference on Technical Advancements in Computers and Communications (ICTACC), Melmaurvathur,
India, 10–11 April 2017; pp. 18–25.

5. Qureshi, I.; Yan, J.; Abbas, Q.; Shaheed, K.; Riaz, A.B.; Wahid, A.; Khan, M.W.J.; Szczuko, P. Medical image segmentation using
deep semantic-based methods: A review of techniques, applications and emerging trends. Inf. Fusion 2022, 90, 316–352.

6. Wang, R.; Lei, T.; Cui, R.; Zhang, B.; Meng, H.; Nandi, A.K. Medical image segmentation using deep learning: A survey. IET
Image Process. 2022, 16, 1243–1267. [CrossRef]

7. Zhou, Z.; Sodha, V.; Rahman Siddiquee, M.M.; Feng, R.; Tajbakhsh, N.; Gotway, M.B.; Liang, J. Models genesis: Generic autodidactic
models for 3D medical image analysis. In Proceedings of the Medical Image Computing and Computer Assisted Intervention—MICCAI
2019: 22nd International Conference, Shenzhen, China, 13–17 October 2019; Proceedings Part IV 22. pp. 384–393.

https://doi.org/10.1016/j.media.2017.11.005
https://www.ncbi.nlm.nih.gov/pubmed/29169029
https://doi.org/10.1049/ipr2.12419


Bioengineering 2023, 10, 981 12 of 13

8. Van Opbroek, A.; Achterberg, H.C.; Vernooij, M.W.; De Bruijne, M. Transfer learning for image segmentation by combining image
weighting and kernel learning. IEEE Trans. Med. Imaging 2018, 38, 213–224. [CrossRef]

9. Singh, G.A.P.; Gupta, P. Performance analysis of various machine learning-based approaches for detection and classification of
lung cancer in humans. Neural Comput. Appl. 2019, 31, 6863–6877. [CrossRef]

10. Anthimopoulos, M.; Christodoulidis, S.; Ebner, L.; Christe, A.; Mougiakakou, S. Lung pattern classification for interstitial lung
diseases using a deep convolutional neural network. IEEE Trans. Med. Imaging 2016, 35, 1207–1216. [CrossRef]

11. Kong, Z.; Zhang, M.; Zhu, W.; Yi, Y.; Wang, T.; Zhang, B. Data enhancement based on M2-Unet for liver segmentation in
Computed Tomography. Biomed. Signal Process. Control 2023, 79, 104032. [CrossRef]

12. Wang, Q.; Kang, W.; Wu, C.; Wang, B. Computer-aided detection of lung nodules by SVM based on 3D matrix patterns. Clin.
Imaging 2013, 37, 62–69. [CrossRef]

13. Hossain, S.; Najeeb, S.; Shahriyar, A.; Abdullah, Z.R.; Haque, M.A. A pipeline for lung tumor detection and segmentation from
CT scans using dilated convolutional neural networks. In Proceedings of the 2019 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP 2019), Brighton, UK, 12–17 May 2019; pp. 1348–1352.

14. Valente, I.R.S.; Cortez, P.C.; Neto, E.C.; Soares, J.M.; de Albuquerque, V.H.C.; Tavares, J.M.R. Automatic 3D pulmonary nodule
detection in CT images: A survey. Comput. Methods Programs Biomed. 2016, 124, 91–107. [CrossRef]

15. Mukhlif, A.A.; Al-Khateeb, B.; Mohammed, M. Classification of breast cancer images using new transfer learning techniques.
Iraqi J. Comput. Sci. Math. 2023, 4, 167–180.

16. Lu, S.; Zhu, Z.; Gorriz, J.M.; Wang, S.H.; Zhang, Y.D. NAGNN: Classification of COVID-19 based on neighboring aware
representation from deep graph neural network. Int. J. Intell. Syst. 2022, 37, 1572–1598. [CrossRef]

17. Naqi, S.M.; Sharif, M.; Lali, I.U. A 3D nodule candidate detection method supported by hybrid features to reduce false positives
in lung nodule detection. Multimed. Tools Appl. 2019, 78, 26287–26311. [CrossRef]

18. Choi, W.-J.; Choi, T.-S. Automated pulmonary nodule detection based on three-dimensional shape-based feature descriptor.
Comput. Methods Programs Biomed. 2014, 113, 37–54. [CrossRef]

19. Usman, M.; Lee, B.-D.; Byon, S.-S.; Kim, S.-H.; Lee, B.-I.; Shin, Y.-G. Volumetric lung nodule segmentation using adaptive roi with
multi-view residual learning. Sci. Rep. 2020, 10, 12839. [CrossRef] [PubMed]

20. Setio, A.A.A.; Ciompi, F.; Litjens, G.; Gerke, P.; Jacobs, C.; Van Riel, S.J.; Wille, M.M.W.; Naqibullah, M.; Sánchez, C.I.; Van
Ginneken, B. Pulmonary nodule detection in CT images: False positive reduction using multi-view convolutional networks. IEEE
Trans. Med. Imaging 2016, 35, 1160–1169. [CrossRef]

21. Lu, S.; Wang, S.-H.; Zhang, Y.-D. Detection of abnormal brain in MRI via improved AlexNet and ELM optimized by chaotic bat
algorithm. Neural Comput. Appl. 2021, 33, 10799–10811. [CrossRef]

22. Shorten, C.; Khoshgoftaar, T.M. A survey on image data augmentation for deep learning. J. Big Data 2019, 6, 1–48.
23. Dao, T.; Gu, A.; Ratner, A.; Smith, V.; De Sa, C.; Ré, C. A kernel theory of modern data augmentation. In Proceedings of the

International Conference on Machine Learning, Honolulu, HI, USA, 23–29 July 2023; pp. 1528–1537.
24. Havaei, M.; Davy, A.; Warde-Farley, D.; Biard, A.; Courville, A.; Bengio, Y.; Pal, C.; Jodoin, P.-M.; Larochelle, H. Brain tumor

segmentation with deep neural networks. Med. Image Anal. 2017, 35, 18–31. [CrossRef]
25. Brosch, T.; Tang, L.Y.; Yoo, Y.; Li, D.K.; Traboulsee, A.; Tam, R. Deep 3D convolutional encoder networks with shortcuts for

multiscale feature integration applied to multiple sclerosis lesion segmentation. IEEE Trans. Med. Imaging 2016, 35, 1229–1239.
[CrossRef]

26. Li, X.; Chen, H.; Qi, X.; Dou, Q.; Fu, C.-W.; Heng, P.-A. H-DenseUNet: Hybrid densely connected UNet for liver and tumor
segmentation from CT volumes. IEEE Trans. Med. Imaging 2018, 37, 2663–2674. [PubMed]

27. Isensee, F.; Petersen, J.; Klein, A.; Zimmerer, D.; Jaeger, P.F.; Kohl, S.A.A.; Wasserthal, J.; Koehler, G.; Norajitra, T.; Wirkert, S.J.;
et al. nnU-Net: Self-adapting Framework for U-Net-Based Medical Image Segmentation. arXiv 2018, arXiv:1809.10486.

28. Çiçek, Ö.; Abdulkadir, A.; Lienkamp, S.S.; Brox, T.; Ronneberger, O. 3D U-Net: Learning dense volumetric segmentation from
sparse annotation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2016: 19th
International Conference, Athens, Greece, 17–21 October 2016; Proceedings Part II 19. pp. 424–432.

29. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of
the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015: 18th International Conference, Munich,
Germany, 5–9 October 2015; Proceedings Part III 18. pp. 234–241.

30. Mukhlif, A.A.; Al-Khateeb, B.; Mohammed, M.A. An extensive review of state-of-the-art transfer learning techniques used in
medical imaging: Open issues and challenges. J. Intell. Syst. 2022, 31, 1085–1111.

31. Mukhlif, A.A.; Al-Khateeb, B.; Mohammed, M.A. Incorporating a Novel Dual Transfer Learning Approach for Medical Images.
Sensors 2023, 23, 570. [PubMed]

32. Simpson, A.L.; Antonelli, M.; Bakas, S.; Bilello, M.; Farahani, K.; Van Ginneken, B.; Kopp-Schneider, A.; Landman, B.A.; Litjens,
G.; Menze, B. A large annotated medical image dataset for the development and evaluation of segmentation algorithms. arXiv
2019, arXiv:1902.09063.

33. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–24 June 2022; pp. 4510–4520.

34. Littman, A.J.; Thornquist, M.D.; White, E.; Jackson, L.A.; Goodman, G.E.; Vaughan, T.L. Prior lung disease and risk of lung cancer
in a large prospective study. Cancer Causes Control 2004, 15, 819–827. [CrossRef]

https://doi.org/10.1109/TMI.2018.2859478
https://doi.org/10.1007/s00521-018-3518-x
https://doi.org/10.1109/TMI.2016.2535865
https://doi.org/10.1016/j.bspc.2022.104032
https://doi.org/10.1016/j.clinimag.2012.02.003
https://doi.org/10.1016/j.cmpb.2015.10.006
https://doi.org/10.1002/int.22686
https://doi.org/10.1007/s11042-019-07819-3
https://doi.org/10.1016/j.cmpb.2013.08.015
https://doi.org/10.1038/s41598-020-69817-y
https://www.ncbi.nlm.nih.gov/pubmed/32732963
https://doi.org/10.1109/TMI.2016.2536809
https://doi.org/10.1007/s00521-020-05082-4
https://doi.org/10.1016/j.media.2016.05.004
https://doi.org/10.1109/TMI.2016.2528821
https://www.ncbi.nlm.nih.gov/pubmed/29994201
https://www.ncbi.nlm.nih.gov/pubmed/36679370
https://doi.org/10.1023/B:CACO.0000043432.71626.45


Bioengineering 2023, 10, 981 13 of 13

35. Wang, S.; Zhou, M.; Liu, Z.; Liu, Z.; Gu, D.; Zang, Y.; Dong, D.; Gevaert, O.; Tian, J. Central focused convolutional neural networks:
Developing a data-driven model for lung nodule segmentation. Med. Image Anal. 2017, 40, 172–183.

36. Sun, W.; Zheng, B.; Qian, W. Automatic feature learning using multichannel ROI based on deep structured algorithms for
computerized lung cancer diagnosis. Comput. Biol. Med. 2017, 89, 530–539.

37. Shen, W.; Zhou, M.; Yang, F.; Yu, D.; Dong, D.; Yang, C.; Zang, Y.; Tian, J. Multi-crop convolutional neural networks for lung
nodule malignancy suspiciousness classification. Pattern Recognit. 2017, 61, 663–673.

38. Wang, S.; Zhou, M.; Gevaert, O.; Tang, Z.; Dong, D.; Liu, Z.; Jie, T. A multi-view deep convolutional neural networks for lung
nodule segmentation. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC), Jeju, Republic of Korea, 11–15 July 2017; pp. 1752–1755.

39. Liu, H.; Cao, H.; Song, E.; Ma, G.; Xu, X.; Jin, R.; Jin, Y.; Hung, C.-C. A cascaded dual-pathway residual network for lung nodule
segmentation in CT images. Phys. Medica 2019, 63, 112–121.

40. Shakibapour, E.; Cunha, A.; Aresta, G.; Mendonça, A.M.; Campilho, A. An unsupervised metaheuristic search approach for
segmentation and volume measurement of pulmonary nodules in lung CT scans. Expert Syst. Appl. 2019, 119, 415–428. [CrossRef]

41. Mahbod, A.; Tschandl, P.; Langs, G.; Ecker, R.; Ellinger, I. The effects of skin lesion segmentation on the performance of
dermatoscopic image classification. Comput. Methods Programs Biomed. 2020, 197, 105725. [PubMed]

42. Monteiro, M.; Figueiredo, M.A.; Oliveira, A.L. Conditional random fields as recurrent neural networks for 3d medical imaging
segmentation. arXiv 2018, arXiv:1807.07464.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.eswa.2018.11.010
https://www.ncbi.nlm.nih.gov/pubmed/32882594

	Introduction 
	Background 
	Materials and Methods 
	Dataset 
	Methodology 
	Network Architecture 
	Model Training 
	Evaluation Parameters 
	Dice similarity Coefficient (DSC) 
	Dice Loss (DL) 
	Recall and Precision 


	Results 
	Conclusions and Discussion 
	Limitations and Future Prospects 
	References

