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Abstract: Recent research has achieved a great classification rate for separating healthy people from
those with Parkinson’s disease (PD) using speech and the voice. However, these studies have pri‑
marily treated early and advanced stages of PD as equal entities, neglecting the distinctive speech
impairments and other symptoms that vary across the different stages of the disease. To address
this limitation, and improve diagnostic precision, this study assesses the selected acoustic features
of dysphonia, as they relate to PD and the Hoehn and Yahr stages, by combining various preprocess‑
ing techniques and multiple classification algorithms, to create a comprehensive and robust solution
for classification tasks. The dysphonia features extracted from the three sustained Korean vowels
/아/(a), /이/(i), and /우/(u) exhibit diversity and strong correlations. To address this issue, the anal‑
ysis of variance F‑Value feature selection classifier from scikit‑learn was employed, to identify the
topmost relevant features. Additionally, to overcome the class imbalance problem, the synthetic mi‑
nority over‑sampling technique was utilized. To ensure fair comparisons, and mitigate the influence
of individual classifiers, four commonly used machine learning classifiers, namely random forest
(RF), support vector machine (SVM), k‑nearest neighbor (kNN), and multi‑layer perceptron (MLP),
were employed. This approach enables a comprehensive evaluation of the feature extraction meth‑
ods, and minimizes the variance in the final classification models. The proposed hybrid machine
learning pipeline using the acoustic features of sustained vowels efficiently detects the early and
mid‑advanced stages of PD with a detection accuracy of 95.48%, and with a detection accuracy of
86.62% for the 4‑stage, and a detection accuracy of 89.48% for the 3‑stage classification of PD. This
study successfully demonstrates the significance of utilizing the diverse acoustic features of dyspho‑
nia in the classification of PD and its stages.

Keywords: voice biomarkers; multistage Parkinson’s disease; dysphonia features; machine learning
classifiers

1. Introduction
Parkinson’s disease (PD) is one of the most common neurodegenerative disorders, af‑

ter Alzheimer’s disease [1]. At the initial stage of PD, symptoms typically include speech
problems, tremors, and memory loss. As the disease progresses, patients may find it diffi‑
cult to walk, run, communicate, and perform basic daily tasks [2]. The inability to reverse
or cure the disease is its worst characteristic [3]; therefore, every effort has been made to
discover it early, and take preventive steps to reduce its negative consequences. Recent
studies suggest that there are currently more than 10 million people globally affected by
PD [4], and it is expected to become a significant cause of mortality among the elderly
population by 2040.

There is increasing evidence suggesting that individuals with PD may experience
voice/speech problems during the prodromal phase [5–9], and such symptoms often persist
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into the early stages of the disease. As a result, the analysis of speech signals offers a greater
possibility of detecting Parkinson’s in its early stages, and speech analysis can be used as
a non‑invasive and cost‑effective tool in the early detection and monitoring of PD [10]. Re‑
cent studies on PD telediagnosis have focused on identifying vocal impairments through
sustained vowel phonation, or running speech, in subjects [11–23]. These studies have em‑
ployed various speech‑signal‑processing algorithms to extract clinically relevant data for
the assessment of PD. The features derived from these data were then used to train learn‑
ing algorithms, to build reliable decision support systems. Some studies have proposed
the use of artificial neural networks to distinguish healthy individuals from those with PD,
while others have suggested the use of simple speech‑signal‑processing algorithms.

For example, Sakar et al. [11] were the first to introduce the tunable Q‑factor wavelet
transform (TQWT) to extract features from the voice signals of PD patients. Using ensem‑
ble learning approaches that combine different machine learning classifiers, their results
demonstrate that TQWT performs comparably better than state‑of‑the‑art speech‑signal‑
processing algorithms in PD classification. Avuçlu et al. [12] employed multiple classifiers
to detect PD, using 22 vocal features from 195 sound samples in various training and testing
instances. They utilized signal‑processing techniques to extract important features from
the acoustic signals of subjects with Parkinson’s, and control subjects. Bourouhou et al. [13]
also evaluated a variety of classifiers to identify people who might have PD. Similarly,
Zhang et al. [14] used naive Bayes, as well as other machine learning methods, to identify
the presence of PD. Meghraoui et al. [15] suggested using Bernoulli and Multinomial Naive
Bayes (BMNB) with harmonicity, pitch, and pulse features to identify PD. Braga et al. [16]
proposed a methodology to detect early signs of PD through free speech in uncontrolled
background conditions, using signal‑ and speech‑processing techniques integrated with
machine learning algorithms with a very high accuracy. Nilashi et al. [17] employed a new
hybrid intelligent system for predicting PD progression, using noise removal, clustering,
and prediction methods. They used the adaptive neuro‑fuzzy inference system and sup‑
port vector regression to predict PD progression. Dao et al. [18] proposed an approach
that uses grey wolf optimization for feature selection, and the light gradient‑boosting ma‑
chine for classification. Kadiri et al. [19] presented a technique for identifying PD by uti‑
lizing SVM with single‑frequency filtering cepstral coefficients and shifted delta cepstral
features derived from the voice signals of both Parkinson’s patients, and control subjects.
Jie et al. [20] employed a deep learning algorithm to learn from PD speech data. They
used an embedded deep stack group sparse autoencoder for deep feature learning, and
the resulting features were combined with the original speech features. Gunduz et al. [21]
proposed two frameworks, based on convolutional neural networks, to classify PD using
vocal features. The frameworks differ in how they combine feature sets. Deep features
successfully distinguish PD patients from healthy individuals, and improve the classifier
performance. While the results may appear impressive, their approach does not seem prac‑
tical for several reasons. All these previous works focused on binary classification, treating
the early and advanced stages of PD equally. However, the multistage classification of PD
to assess new characteristics for neurocognitive assessment is important. It involves di‑
viding patients into different stages, based on symptom severity, and developing separate
classification models for each stage. Considering the different stages of PD and their asso‑
ciated symptoms, this approach could enable better treatment outcomes.

Only a few studies have investigated the use of a multistage classification in PD.
For example, Hsu et al. [24] utilized photon emission computed tomography, and
Ricciardi et al. [25] employed a three‑dimensional gait analysis in their research into the
multistage classification of PD. However, it is important to uncover whether voice/speech
acoustic characteristics can be useful in a multistage classification. Suppa et al. [26] eval‑
uated voice changes using machine learning algorithms in patients with PD at different
stages of the disease, while receiving OFF and ON therapy. However, this research aimed
to investigate the impact of the disease severity on the voice, to explore the effect of L‑Dopa
medication on groups of patients at the early stage (H&Y≤ 2), and the mid–advanced stage
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(H&Y > 2). Similarly, Templeton et al. [27] conducted a study utilizing various neurocog‑
nitive functional tests, including speech, to classify individuals into the early stages (H&Y
Stages 1 and 2) and advanced stages (H&Y Stages 3, 4, and 5) of PD. However, none of the
approaches focused on a multistage classification. Instead, they were limited to a binary
classification, specifically classifying between two groups of disease severity.

Therefore, the objective of this study is to use a hybrid machine learning pipeline
(HMLP) to evaluate new characteristics obtained from neurocognitive assessments, also
known as digital biomarkers, in relation to PD and its stages (H&Y Stages 1–5) [22]. The
proposed HMLP was used in stage classification, to effectively classify the stages of PD as
they are in.

The main contributions of this article are as follows:
(i) A speech corpus of three sustained Korean vowels has been created (InhaPD) from

Parkinson’s patients who were recruited at Inha University Hospital.
(ii) A feature bank consisting of 43 acoustic features has been collaboratively created, us‑

ing baseline features, vocal‑fold features, and time–frequency features. The analysis
of variance (ANOVA) F‑Value feature selection classifier from scikit‑learn was em‑
ployed, to identify the top 20 most relevant features, resulting in a more effective and
efficient feature subset.

(iii) To address the dataset imbalance, we introduced a synthetic minority over‑sampling
technique (SMOTE) that generates new samples in the minority class and its neigh‑
boring samples, effectively balancing the distribution of classes, and reducing bias in
the classification.

(iv) A 10‑fold cross‑validation is performed for eachmodel, using StratifiedKFold, demon‑
strating the robustness and effectiveness of our system compared to other recent ap‑
proaches to stage classification.

(v) The evaluation of the classification included the measuring accuracy, precision, re‑
call, F1 score, and the area under the curve (AUC). This evaluation aimed to test the
hypothesis proposing that a HMLP analysis of sustained vowels could effectively dif‑
ferentiate individuals with different stages of the disease.
The remainder of this paper is structured as follows. Section 2 explains our methodol‑

ogy, and the architecture of the proposed framework. Section 3 presents the experimental
results. Section 4 discusses the findings and limitations of the research, and Section 5 con‑
cludes the paper.

2. Methodology
Currently, there is a lack of a standardized methodology that has undergone suffi‑

cient validation through clinical trials [23]. The primary focus of this research was not to
develop a machine learning algorithm solely aimed at achieving the highest accuracy in
automatically detecting PD. Instead, the study aimed to isolate multiple factors, and carry
out experiments to determine whether these factors might lead to overly optimistic out‑
comes in the multistage classification of PD. The details of each part can be found in the
subsequent sections.

2.1. Methods
This study examines speech signals, and extracts relevant features to correlate with re‑

sponses, including several classes of PD. The disease detection model, depicted in Figure 1,
involves multiple steps, from voice recording to the final classification. The primary steps
include data collection, feature extraction and selection, model training for classification,
and validation. The performance metrics of the classifier are evaluated, to determine the
success of the detection system.
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Figure 1. Overview of the proposed PD classification system.

2.2. Dataset
In the areas of expanding datasets to include a larger corpus, and discovering novel

objective biomarkers [28], a new corpus has been created, named InhaPD. The voice data
for InhaPD were obtained from Parkinson’s patients who were recruited at Inha University
Hospital, Incheon, South Korea. We enrolled a total of 101 individuals diagnosed with PD,
who were between the ages of 43 and 81 years, with an average age of 68.11 ± 6.83 years. In
all cases, the participants were native Korean speakers. None of the participants reported
any respiratory disorders, hearing loss, or non‑neurological disorders that may affect their
vocal cords. All participants provided written informed consent, which was authorized by
the institutional ethics committee. The clinical diagnosis of PD was based on the UK PD
Society Brain Bank Diagnostic Criteria [29]. The symptoms and signs linked to Parkinson’s
disease were evaluated and scored utilizing the H&Y scale [22]. Table 1 gives a compre‑
hensive overview of the demographic details of the PD patients, including their gender,
age, age onset, disease duration, and H&Y stage. The full data set can be found in the
Supplementary Materials.

Table 1. Demographic information of InhaPD.

PD Stages

Whole Group H&Y 1 H&Y 2 H&Y 2.5 H&Y 3

Number 101 23 49 12 17

Gender
Male 60 13 28 11 8

Female 41 10 21 1 9

Age
avg 68.11 67.08 67.57 71.08 69
std 6.83 7 7.15 3.89 7.1

min 43 49 43 65 54
max 81 81 80 80 79

Age onset
avg 62.86 65.47 62.59 65.41 58.29
std 7.79 7.09 7.75 5.23 8.61

min 41 47 41 59 43
max 78 78 76 75 71

Disease duration
avg 5.33 1.86 5 5.75 10.7
std 4.14 1.01 3.29 2.98 4.35

min 1 1 1 1 1
max 18 4 15 11 18

NB. avg (average), std (standard deviation), min (minimum), max (maximum).

2.3. Voice Recordings
Consumer‑focused devices, such as smartphones or tablets, offer an alternative that

is widely available to patients, and has the potential to provide objective, frequent, and
sensitive assessments. Additionally, the remote monitoring of PD using smart devices is
gaining popularity, and numerous recent studies have explored the use of mobile devices
for voice recording in PD research. For instance, Omberg et al. [30] used an iPhone for their



Bioengineering 2023, 10, 984 5 of 15

voice recordings, while Farago et al. [31] employed Android smartphone devices (model
not specified). On the other hand, Asci et al. [32] utilized various smartphones available on
the market (Apple®, Samsung®, Huawei®, Xiaomi®, and Asus®). Lipsmeier et al. [33] used
a Samsung Galaxy S3 mini; similarly, Vaiciukynas et al. [34] used a Samsung Galaxy Note 3,
and Benba et al. [35] used a sound card in a desktop computer. These studies suggest that
mobile devices can be a feasible and reliable alternative to traditional recording equipment
for voice recording in Parkinson’s disease research.

In this study, the recordings were conducted in the inspection room of the hospital,
using a Samsung Galaxy Tab S7 FE placed approximately 30 cm away from the mouth. The
recording was not performed in an anechoic chamber, so a low level of ambient noise was
present. The noise, however, was not significant enough to interfere with the analysis of the
voice recordings. Similar to the approach followed by Omberg et al. [30] and Asci et al. [32],
we also saved our voice samples in a compressed audio file format. The voice samples were
recorded in mp3 format, with a sampling rate of 48 kHz, and a 32‑bit sample size.

To obtain the voice recordings, participants were instructed to perform specific speech
tasks using their normal voice intensity, pitch, and quality. The speech tasks included the
sustained production of three Korean vowels, namely, /아/(a), /이/(i), and /우/(u). Each
subject was recorded producing these vowels for a minimum of 10 s, resulting in a total of
nine voice recordings for each subject (three samples for each vowel). The recorded Korean
vowels were equivalent to the English /a/, /i/, and /u/, correspondingly.

2.4. Acoustic Measures
The research focusing on the impact of PD on the phonatory system mainly investi‑

gates the dysfunctions observed in the structures and muscles responsible for phonation.
These include the diaphragm, muscles associated with the larynx, the vocal folds, and the
resonant cavities above the glottis. Utilizing sustained vowels can produce simple acoustic
patterns that have the potential to yield consistent and dependable assessments of voice
quality [28]. These acoustic measures can be directly acquired using software and libraries
that are readily accessible in the literature [30,36]. In this study, a set of 43 widely known
acoustic measures were extracted for each vowel. All these features and their definitions
are listed in Table 2.

Table 2. A summary of the feature sets used in this study.

Feature Name Definitions Symbol

F0 (mean) Mean of the fundamental frequency meanF0

F0 (median) Median of the fundamental frequency medianF0

F0 (stdv.) Standard deviation of the fundamental frequency stdevF0

F 1–4 (mean) Mean of the formant frequencies F1 to F4 f1‑4_mean

F 1–4 (median) Median of the formant frequencies F1 to F4 f1‑4_median

Jitter (%) Measure of the average absolute difference between consecutive periods, divided by
the average period localJitter

Jitter (abs) Measure of the cycle‑to‑cycle variation in the fundamental frequency, typically
expressed in seconds absJitter

Jitter: RAP Measure of the average absolute difference between a period and the average of that
period and its two neighboring periods, divided by the average period length rapJitter

Jitter: PPQ5 Measure of the average absolute difference between a period and the average of that
period and its four closest neighboring periods, divided by the average period length ppq5Jitter

Jitter: DDP Measure of the average absolute difference between consecutive differences of
consecutive periods, divided by the average period length ddpJitter



Bioengineering 2023, 10, 984 6 of 15

Table 2. Cont.

Feature Name Definitions Symbol

Jitter: mean Mean of the jitter meanJt

Jitter: median Median of the jitter medianJt

Jitter: PCA Two‑factor principal components analysis (PCA) on jitter jitterPCA

Shimmer (%) Measure of the average absolute difference between the amplitudes of consecutive
periods, divided by the average amplitude, expressed as a percentage localShimmer

Shimmer (dB) Measure of the average absolute base‑10 logarithm of the difference between the
amplitudes of consecutive periods, multiplied by 20 dbShimmer

Shimmer: APQ3 Measure of the variability in the amplitude of a speech signal, as measured from the
amplitude of a single period to the average amplitude of its three closest neighbors apq3Sh

Shimmer: APQ5 Measure of the variability in the amplitude of a speech signal, as measured from the
amplitude of a single period to the average amplitude of its five closest neighbors apq5Sh

Shimmer: APQ11 Measure of the variability in the amplitude of a speech signal, as measured from the
amplitude of a single period to the average amplitude of its eleven closest neighbors apq11Sh

Shimmer: DDA Measure of the variability in the amplitude of a speech signal, as measured from the
consecutive differences between the amplitudes of consecutive periods ddaSh

Shimmer: mean Mean of the shimmer meanSh

Shimmer: median Median of the shimmer medianSh

Shimmer: PCA Two‑factor PCA on shimmer shimmerPCA

HNR Amplitude of the tonal relative to the noise components. hnr

MFCC 1–4 Mel‑frequency cepstrum band 1 to 4 mfcc1‑4

MFCC jitter 1–4 Positive change in mel‑frequency cepstrum band 1 to 4 over time mfccJt1‑4

pF Formant position pF

F_Disp Dispersion of formant frequency fdisp

avgF Average formant avgFormant

Fitch_vlt Fitch vocal tract length fitch_vtl

delta_F Cumulated variation of formants delta_f

vtl_delta_F Cumulated variation of vocal tract length vtl_delta_f

Gender Gender information of each subject (male, female) gender

Among these measures, all F0 features, all F1–4 features, all the jitter features, all the
shimmer features, HNR, pF, F_Disp, avgF, Fitch_vtl, delta_F, and vtl_delta_F were ob‑
tained from Parselmouth 0.3.3 [37], which is a Python library for Praat software [36]. The
mel‑frequency cepstrum related features, for example, MFCC 1–4, and MFCC jitter 1–4,
were obtained using MATLAB, as mentioned in [30].

2.5. Feature Selection
Most experiments, especially those involving larger corpora where the dimension‑

ality of the feature vectors exceeded the number of recordings, utilized dimensionality‑
reduction techniques. For instance, Ozbolt et al. [23] used principal component analysis
for dimensionality reduction in their study, utilizing the scikit‑learn Python module. They
also employed the ANOVA F‑Value feature selection classifier from the scikit‑learn Selec‑
tKBest module [38], to identify the most informative features for PD detection, selecting 10,
30, 50, or 70 features. In our case, k is set to 20, meaning that the top 20 features with the
highest F‑test scores were selected. Considering a total of 43 extracted acoustic features,
along with the inclusion of gender information as an additional feature, the study utilized
a set of 44 features for evaluation. Notably, no dimensionality‑reduction techniques were
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applied in this regard. The ranking of the 20 selected features for the multistage (stage 1
to 3) classification is depicted in Figure 2. It should be noted that the feature ranking may
vary for different classifications, as different stages of PD might have varying acoustic char‑
acteristics. However, it is important to emphasize that feature ranking is not the primary
focus of this research; rather, it is utilized for analysis and classification purposes.
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2.6. Data Balancing
Class imbalance is a common concern in clinical data, where there is a substantial

difference in the number of patients and control group samples. This imbalance can create
challenges in a machine learning classification, leading to a biased accuracy that favors the
majority class. To address this issue, Chawla et al. [39] introduced the synthetic minority
over‑sampling technique (SMOTE), which generates new samples in the minority class
and its neighboring samples, effectively balancing the class distribution, and mitigating
classification bias. In this study, we also employed SMOTE to address our class‑imbalance
problem concerning the different stages of PD.

2.7. Machine Learning Algorithms and Hyperparameters
After selecting the top‑ranked features, and addressing the issue of data imbalance,

this study employed four commonly used machine learning classifiers from the scikit‑learn
Python module [38]: RF, SVM, kNN, and MLP. These groups of algorithms are common,
due to their high model interpretability, effective minimization of misclassification, and
strong diagnostic performance. While many studies do use DNN, simpler models are often
preferred, due to the limited size of the available datasets [23].

Random forest (RF) is an ensemble learning algorithm that combines multiple deci‑
sion trees to improve the performance and reduce overfitting. It works by randomly se‑
lecting a subset of features and samples to build each tree, and then aggregating the pre‑
dictions of all the trees to make the final decision.

Support vector machine (SVM) is a supervised learning algorithm that can be used in
both regression and classification tasks. It is particularly useful for datasets with complex
features, and can handle both linear and nonlinear data. SVM works by finding the best
separating hyperplane that maximizes the margin between the different classes.

K‑nearest neighbor (kNN) is a simple and intuitive algorithm that can be used both
in classification and in regression tasks. It works by finding the k‑closest neighbors of a
new sample, and then assigning it to the most common class among those neighbors. The
value of k is usually chosen through cross‑validation.
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Multi‑layer perceptron (MLP) is a type of artificial neural network that consists of
multiple layers of interconnected nodes, also known as neurons. Each neuron applies a
nonlinear activation function to the weighted sum of its inputs, allowing the network to
learn complex relationships between the input features and the target variable.

A 10‑fold cross‑validation is performed for each model, using StratifiedKFold from
the scikit‑learn Python module. In 10‑fold cross‑validation, the data are divided into ten
subsets, and each subset is used as a validation set exactly once, while the remaining nine
subsets are used as the training set. This process is repeated ten times, with each of the
ten subsets used exactly once, as the validation data. GridSearchCV is also used to find
the best hyperparameters for each model, through searching the specified hyperparame‑
ter grid, and evaluating the model performance using cross‑validation. The performance
metrics are calculated for each fold, and the average performance metrics are reported for
each model.

2.8. Performance Metrics
Choosing the appropriate metrics is crucial, because they affect the way in which per‑

formance is measured and compared. For instance, accuracy can be a useful metric when
the classes are balanced but, when the classes are imbalanced, it can be misleading. In such
cases, metrics such as precision, recall, F1 score, confusion matrix, and AUC can provide
a better understanding of the model’s performance [40].

Accuracy measures the overall correctness of the model’s predictions. Precision (also
known as the positive predictive value (PPV)) quantifies the proportion of correctly classi‑
fied positive samples (PD stages) out of the total predicted positive samples, while recall
(also known as sensitivity) measures the proportion of correctly classified positive sam‑
ples out of the total actual positive samples. The F1 score provides a balanced measure, by
taking into account both precision and recall.

To summarize the model’s performance, a confusion matrix is commonly utilized. It
consists of four components: true positives (TP), true negatives (TN), false positives (FP),
and false negatives (FN). True positives represent cases where the model correctly predicts
the positive class, or the correct stage of PD. True negatives refer to cases where the model
correctly predicts the negative class, or correctly identifies a different PD stage. False posi‑
tives occur when the model incorrectly predicts a positive class, or wrongly identifies a PD
stage, while false negatives refer to cases where the model incorrectly predicts a negative
class, or fails to identify a PD stage.

These performance metrics, including accuracy, precision, recall, and the F1 score,
along with the confusion matrix, provide valuable insights into the algorithm’s effective‑
ness in classifying different stages of Parkinson’s disease. Additionally, AUC is a com‑
monly used metric that quantifies the classifier’s discrimination ability in ranking and as‑
signing higher probabilities to positive instances, compared to negative instances.

3. Results
This section presents the results obtained using the Parkinson’s disease (PD) datasets

defined in Section 2.2. The machine learning classifiers used in this study included random
forest (RF), support vector machine (SVM), k‑nearest neighbor (kNN), and multi‑layer per‑
ceptron (MLP). After preprocessing the dataset, which involved feature selection and data
balancing techniques, we obtained the best hyperparameters for each model, and evalu‑
ated their performance. The best hyperparameters for each algorithm have also been listed
in the tables. Five evaluation metrics were used: accuracy, precision, recall, F1 score, and
AUC. We evaluated the results in two subsequent sections, namely Sections 3.1 and 3.2,
using the binary and multistage approaches, respectively.

3.1. Binary Classification
The classification of disease stages, specifically distinguishing between early‑stage

(H&Y Stages 1 and 2) and mid‑stage (H&Y Stage 3) Parkinson’s disease, was conducted
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for all individuals with PD. Table 3 reports the measured metrics for the classification be‑
tween individuals in the early stage and mid‑stages of PD. SVM demonstrates the highest
accuracy of 95.48%, and an F1 score of 0.9528, kNN produces the highest precision of 0.9956,
and RF yields the highest recall of 0.9322, and an AUC score of 0.9873. However, MLP’s
performance is relatively weaker, compared to the other models in the binary classification.
Figure 3 resembles their corresponding confusion matrix.

Table 3. Performance on the proposed HMLP models for HY ≤ 2 vs. HY > 2 classification.

Model Best Hyperparameters Average
Accuracy

Average
Precision

Average
Recall

Average F1
Score

Average
AUC

RF {‘max_depth’: None, ‘min_samples_split’: 2,
‘n_estimators’: 200} 0.9448 0.9575 0.9322 0.9438 0.9873

SVM {‘C’: 50, ‘gamma’: ‘scale’} 0.9548 0.9914 0.9176 0.9528 0.9846

kNN {‘n_neighbors’: 3,
‘weights’: ‘distance’} 0.9162 0.9956 0.8364 0.908 0.9694

MLP
{‘activation’: ‘relu’, ‘hidden_layer_sizes’:

(1000, 500, 200), ‘learning_rate’: ‘constant’,
‘max_iter’: 3000, ‘solver’: ‘adam’}

0.9369 0.963 0.9097 0.9348 0.9785
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Figure 3 represents the confusion matrix for the proposed HMLP models for HY ≤ 2
vs. HY > 2 classification. The confusion matrix also supports the analysis in Table 3.

Suppa et al. [26] and Templeton et al. [27] conducted an analysis comparing individ‑
uals with HY ≤ 2 (H&Y stages 1 and 2) to those with HY > 2 (H&Y stage 3 and/or more)
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in their respective research studies. Table 4 presents a comparative analysis of the results,
highlighting the superior performance of our proposed HMLP approach utilizing the SVM
algorithm. The results indicate that our approach achieved a higher accuracy, precision,
and AUC, compared to the referenced studies. Notably, none of the studies were able to
attain an accuracy level of 90% or higher.

Table 4. Comparison of the results for HY ≤ 2 vs. HY > 2 classification.

Comparisons Accuracy Precision
(PPV)

Recall
(Sensitivity) AUC Algorithm Authors

HY ≤ 2
vs.

HY > 2

0.9548 0.9914 0.9176 0.9848 SVM Proposed HMLP

0.880 0.889 0.872 0.934 SVM and ANN Suppa et al. [26]

0.8947 0.9286 0.9286 ‑ CART Templeton et al. [27]
N.B.: HY≤ 2 (early‑stage patients with PD, H&Y Stage≤ 2), HY > 2 (mid–advanced‑stage patients with PD, H&Y
Stage > 2), SVM (support vector machine), ANN (artificial neural network), CART (classification and regression
tree), (‑) not available.

3.2. Multistage Classification
The analysis mentioned above falls into the category of a binary classification. How‑

ever, the primary objective of this study was to perform a multistage classification of PD.
As a result, the classification of the disease stages (i.e., determining the stage of PD) was
conducted for all individuals with Parkinson’s. The performance metrics in Table 5 corre‑
spond with the 4‑stage classification, whereas Table 6 corresponds to the 3‑stage classifica‑
tion. Figures 4 and 5 represent their corresponding confusion matrices, respectively.
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Figure 4 represents the confusion matrix for the proposed HMLP models for 4‑stage
(stage 1, 2, 2.5, and 3) classification. The confusion matrix also supports the analysis in
Table 5.

Figure 5 represents the confusion matrix for the proposed HMLP models for a 3‑stage
(stage 1, 2, and 3) classification. The confusion matrix also supports the analysis in Table 6.

In all scenarios, the accuracy of the multistage classification was consistently lower
compared to binary classification, with accuracy levels reaching approximately 90%. Nev‑
ertheless, it is important to highlight that MLP, despite exhibiting a lower performance
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in the binary classification, surpassed all the other algorithms in the multistage classifica‑
tion tasks.

Table 6. Performance on the proposed HMLP models for 3‑stage (stage 1, 2, and 3) classification.

Model Best Hyperparameters Average
Accuracy

Average
Precision

Average
Recall

Average F1
Score

Average
AUC

RF {‘max_depth’: None, ‘min_samples_split’: 2,
‘n_estimators’: 200} 0.8868 0.8887 0.8868 0.886 0.9764

SVM {‘C’: 50, ‘gamma’: ‘scale’} 0.8764 0.8819 0.8764 0.8739 0.9603

kNN {‘n_neighbors’: 3,
‘weights’: ‘distance’} 0.8752 0.8898 0.8752 0.8695 0.9533

MLP
{‘activation’: ‘relu’, ‘hidden_layer_sizes’:

(1000, 500, 200), ‘learning_rate’: ‘constant’,
‘max_iter’: 3000, ‘solver’: ‘adam’}

0.8948 0.8964 0.8948 0.8933 0.9602

4. Discussion
The primary objective of this research was not to develop a machine learning algo‑

rithm solely focused on achieving the highest accuracy in the multistage classification of
Parkinson’s disease (PD). Instead, the study aimed to isolate multiple factors, and conduct
experiments to determine whether these factors might lead to overly optimistic results in
the multistage classification of PD. Using voice biomarkers in machine learning methods,
we aim to explore a non‑invasive and cost‑effective diagnostic tool for better treatment
outcomes, to improve the quality of the patient’s life.

Furthermore, machine‑learning‑based voice analysis may also hold potential for as‑
sessing the effectiveness of symptomatic treatments for PD. By comparing the pre‑ and
post‑treatment voice characteristics, machine learning algorithms can potentially deter‑
mine whether a treatment has improved the patient’s motor function and overall quality
of life. Recent advancements in speech analysis methodologies have shown promising
results. We proposed a hybrid machine learning pipeline consisting of four commonly
used ML classifiers, using the acoustic features of sustained Korean vowels, and found that
the hybrid model outperforms the baseline models. We achieved an accuracy of 86.62%,
89.48%, and 95.48% for the 4‑stage, 3‑stage, and 2‑stage classification of PD, respectively,
which was higher than state‑of‑the‑art methods. However, the multistage accuracy of our
model may be limited by the size of the dataset used in the evaluation. Using a larger
dataset could improve the model’s ability to generalize and classify the stages of PD more
effectively. Previous studies have investigated the multistage classification of Parkinson’s
disease using invasive methods, such as photon emission computed tomography [24] and
three‑dimensional gait analysis [25]. However, it is crucial to determine the potential of
non‑invasive methods, specifically voice/speech acoustic characteristics, in a multistage
classification. Suppa et al. [26] examined voice changes in patients with Parkinson’s dis‑
ease using machine learning algorithms, specifically investigating the impact of the disease
severity on the voice and the effect of L‑Dopa medication on patients at the early stage
(H&Y ≤ 2) and the mid–advanced stage (H&Y > 2). Similarly, Templeton et al. [27] con‑
ducted a study utilizing neurocognitive functional tests, including speech, to classify indi‑
viduals into the early stages (H&Y Stages 1 and 2) and the advanced stages (H&Y Stages 3,
4, and 5) of PD. However, both studies were focused on a binary classification, and did not
address a multistage classification that distinguished between multiple levels of disease
severity. In summary, our study presents a reliable model for detecting PD and its stages
with higher accuracy, precision, recall, F1 score, and AUC rates.

Overall, the usefulness of machine‑learning‑based voice analysis in PD should be fur‑
ther explored and discussed. It should be noted that there are several limitations to the
present study. Firstly, as we did not record vocal samples from each patient sequentially,
it is possible that there may be daily fluctuations in the vocal characteristics in PD that
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we were unable to capture. Moreover, in terms of clinical–instrumental correlations, it is
important to acknowledge that machine learning analysis requires a large number of data.
Furthermore, the relationship between specific aspects of hypokinetic dysarthria in PD
(such as hypophonia, mono‑pitch, and mono‑loudness speech), and the specific voice fea‑
tures selected by the machine learning algorithm, remains uncertain, and requires further
investigation. While k‑fold cross‑validation offers advantages, such as optimizing the use
of limited data, and ensuring model robustness across multiple subsets, there is the inher‑
ent risk of overfitting when the entire dataset is used. It is vital to understand that, while
cross‑validation might produce optimistic results, these may not always mirror the real‑
world performance in a new, independent cohort. Relying exclusively on cross‑validation
results could lead to inflated expectations. An alternative, more conservative method in‑
volves partitioning the dataset into distinct training and testing sets. This holdout method
minimizes the overfitting impact by evaluating the model’s performance on an untouched
test set. In contrast, using a holdout dataset offers a more genuine glimpse into how the
model is likely to fare when presented with new, real‑world data, despite our data limita‑
tions necessitating the use of cross‑validation. To develop a dependable dataset for detect‑
ing PD using acoustic features, it is essential to consider some other factors, including the
gender and age balance, the quality of the microphone, noise, robustness, the number of
subjects, the disease severity, and the impact of PD medication.

The current understanding of speech disorders in PD is primarily based on perceptual
speech assessment. The computerized analysis of speech or the voice has been suggested
for the diagnosis and monitoring of PD. Despite the potential advantages of voice analy‑
sis in PD, it has not been widely adopted in standard clinical practice yet [10]. Besides,
machine learning models for detecting Parkinson’s disease are usually evaluated based on
standard machine learning parameters, such as accuracy, precision, recall, F1 score, and
AUC rates. However, these parameters may not accurately reflect the clinical effectiveness
and anticipated positive adjustments to patient treatment. Additionally, doctors require
training on how to utilize AI‑powered diagnostic tools, as some of these parameters can
be complex to interpret.

5. Conclusions
We anticipate that machine‑learning‑based voice analysis could serve as a novel dis‑

ease biomarker in the near future, facilitating the clinical management of PD. Furthermore,
we believe that our study could encourage the future use of machine learning voice analy‑
sis in PD telemedicine approaches, including home‑based applications. We also speculate
that future studies with a more sensible dataset may report a higher multistage accuracy
than that reported in this study.
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