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Abstract: Rest tremor (RT) is observed in subjects with Parkinson’s disease (PD) and Essential Tremor
(ET). Electromyography (EMG) studies have shown that PD subjects exhibit alternating contractions
of antagonistic muscles involved in tremors, while the contraction pattern of antagonistic muscles
is synchronous in ET subjects. Therefore, the RT pattern can be used as a potential biomarker for
differentiating PD from ET subjects. In this study, we developed a new wearable device and method
for differentiating alternating from a synchronous RT pattern using inertial data. The novelty of
our approach relies on the fact that the evaluation of synchronous or alternating tremor patterns
using inertial sensors has never been described so far, and current approaches to evaluate the tremor
patterns are based on surface EMG, which may be difficult to carry out for non-specialized operators.
This new device, named “RT-Ring”, is based on a six-axis inertial measurement unit and a Bluetooth
Low-Energy microprocessor, and can be worn on a finger of the tremulous hand. A mobile app
guides the operator through the whole acquisition process of inertial data from the hand with RT,
and the prediction of tremor patterns is performed on a remote server through machine learning
(ML) models. We used two decision tree-based algorithms, XGBoost and Random Forest, which were
trained on features extracted from inertial data and achieved a classification accuracy of 92% and
89%, respectively, in differentiating alternating from synchronous tremor segments in the validation
set. Finally, the classification response (alternating or synchronous RT pattern) is shown to the
operator on the mobile app within a few seconds. This study is the first to demonstrate that different
electromyographic tremor patterns have their counterparts in terms of rhythmic movement features,
thus making inertial data suitable for predicting the muscular contraction pattern of tremors.

Keywords: tremor pattern; inertial signals; wearable device; machine learning; pattern prediction

1. Introduction

Tremor is the most common movement disorder and is defined as an involuntary,
rhythmic, oscillatory movement of a body part, often involving the hands [1]. Differential
diagnosis of tremor mainly comprises Parkinson’s disease (PD) and essential tremor (ET),
which are the two most common causes of upper limb tremor [1-4].

Electrophysiological tremor analysis allows an objective and reproducible charac-
terization of tremor features, which can help clinicians in the differential diagnosis [5,6].
Among the various tremor features, the contraction pattern of the antagonistic forearm
muscles has shown the highest diagnostic value in previous studies, outperforming tremor
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amplitude or frequency, especially when tremor analysis was employed in patients with
rest tremor (RT) [7].

The evaluation of rest tremor pattern is usually performed through visual inspection
of tremor recordings by neurologists or neurophysiologists expert in tremor analysis [7,8].
In addition, a quantitative method also exists [9] to confirm the visual assessment of the
pattern, based on the calculation of the tremor phase, which reflects the shift between
contraction bursts of antagonist muscles; the pattern is synchronous (S) when bursts are
“in phase” (low phase values) and alternating (A) when bursts are phase-shifted (high
phase values). These methods are equally valid. However, both are based on the surface
EMG tremor analysis, which requires an electromyograph and profound technical expertise
(correct positioning of the electrodes, trace acquisition, visual interpretation of the tremor
recordings, or quantitative phase analysis). For this reason, to date, the analysis of tremor
patterns and phases has been performed mainly in centers that have access to technological
and human resources. In Figure 1, example tremor EMG signals are shown, acquired
by an electromyograph, from two different patients: the signal in Figure 1A refers to an
alternating tremor pattern, while the signal in Figure 1B is an example of a synchronous
tremor activation pattern.

A Alternating pattern B Synchronous pattern
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flexor
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Figure 1. Examples of tremor activation patterns in electromyography (EMG) signals from antagonist
muscles of the forearm: (A) alternating pattern, when flexor and extensor tremor bursts are phase-
shifted; and (B) synchronous pattern, when flexor and extensor tremor bursts are in phase. Muscle
bursts occur periodically; their repetition frequency is the characteristic frequency of tremor.

In the last years, there has been an increasing demand for more accessible tools and
techniques that could assist not only specialists but also general practitioners in screening
for neurological disorders characterized by tremor symptoms. In a first attempt to export
the technology used in electrophysiology laboratories into outpatient settings, we have
recently developed a wearable mobile device, termed “nEMG” [10], in the form of a wrist-
watch-like support, with two pairs of surface electrodes that record the contraction of
the antagonist muscles in the forearm. The recorded data are accessed through a mobile
application. This technique closely resembles the process of recording tremors using
sEMG. Despite its portability advantage, which allows its use also and in the absence of an
electromyograph, the tEMG device still requires the use of surface electrodes for muscle
recording, and needs dedicated expertise for the correct application of electrodes on the
forearm antagonist muscles and for setting various acquisition parameters (signal-to-noise
threshold, duration of the recording, etc.).

The need for simpler and cost-effective approaches in tremor analysis has led to the
development of many wearable devices based on inertial sensors, which do not require
any specific expertise (differently from EMG-based approaches) and can also be used to
evaluate tremors at home or in primary-care centers. Most of the proposed solutions so
far have focused on detecting tremor frequency and power, which are of great value for
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assessing tremor severity. On the other hand, there is a lack of simple devices assessing the
phase or pattern of tremors using inertial sensors and signals [11].

The objectives of this study were as follows:

To develop a new low-cost miniaturized wearable device, termed “RT-ring”, which can
be placed on a finger of the hand with RT to acquire inertial (accelerometric and gyroscopic)
data of tremors.

By analyzing the inertial data collected with the RT-Ring experimental prototype, and
employing ML algorithms to identify combinations of inertial features that can accurately
differentiate between alternating and synchronous tremor patterns.

This is a proof-of-concept study testing the feasibility of predicting the muscular
contraction pattern of rest tremor using inertial data only, in the absence of surface elec-
tromyography. The use of Machine Learning (ML) and Artificial Intelligence (AI) has been
of great help in the last decades to automate complex tasks and improve performances
in various fields, including in industrial [12] and biomedical [13] applications. Rhythmic
muscle activation in the forearm can be regarded as the motor source of periodic, tremulous
movements of the hand. Therefore, it is reasonable to look for information about different
activation patterns of the motor source by analyzing through ML algorithms the movement
of the hand as detected by inertial sensors. This approach has never been described so
far and would allow an easier evaluation of tremor patterns, even by operators without
EMG expertise.

2. Materials and Methods

The overall architecture of the proposed hardware and software solution is graphically
reported in Figure 2a, while the block diagram of the RT-Ring device is shown in Figure 2b.
Acceleration and gyroscopic rate samples were acquired using an inertial measurement unit
(IMU) included into the RT-Ring and sent over Bluetooth Low Energy (BLE) communication
to a smartphone running a dedicated mobile app. The mobile app preprocesses and stores
the data into binary files. Then, these files are sent over the Internet, through a TCP
connection to a backend server, where data are processed and classified using pre-trained
machine learning (ML) models. The classification response (alternating or synchronous RT
pattern) is sent back to the mobile app and the result is shown to the user.

Following are the details of each hardware and software component of the overall system.

2.1. Development of the Wearable Device

The Printed Circuit Board (PCB) design of RT-Ring was based on the Nordic Semicon-
ductors’ nRF52840 microcontroller, a multiprotocol Bluetooth 5.3 System-On-Chip (SOC),
packed in the ISP-1807 module by Insight SiP. This module integrates an nRF52840 micro-
controller together with 32 MHz and 32 KHz external crystal clocks and an RF antenna
in an 8.0 x 8.0 x 1.0 mm package. The microcontroller receives inertial data from an
ST Microelectronics LSM6DSL 6-axis inertial measurement unit (IMU) through an 12C
bus. The LSM6DSL sensor exhibits 3 accelerometric axes and 3 gyroscopic axes. The PCB
board is also equipped with a low drop-out (LDO) voltage regulator, a battery charge
controller, a fuel gauge, and soft button controller coupled with a normally open (NO)
single pole—single throw (SPST) button. The top and bottom PCB layouts of the device are
shown in Figure 3a and 3b, respectively.

The assembled PCB is sized 1.5 x 1.5 mm (Figure 3c) and is powered by a 65 mAh
Lithium-Polymer battery. Both the PCB and the rechargeable battery are housed in a
3D-printed plastic case and a Velcro strap is used to fix the device on the middle finger of
the hand affected with tremor, as shown in Figure 3d.
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Figure 2. (a) Overall signal generation and processing system architecture: signals generated by
RT-Ring are acquired by a mobile app and then sent to the backend server through a TCP connection
over the mobile network. Processing output is then sent back to the mobile app. (b) Block diagram
of the RT-Ring wearable device: the core of the device is represented by the ST Microelectronics
LM6DSL 6-axis Inertial Measurement Unit (IMU) and by the ISP1807 module, incorporating a
nRF52840 microcontroller, with 32 KHz and 32 MHz crystal clocks and BLE antenna. An MCP73831
charge controller provides charging current from USB interface to a 65 mAh Lithium-Polymer batter;
an RT9193 Low Dropout regulator converts 3.7 V battery output to 1.8 V and delivers power to all
other components. Power delivery is activated by a LTC2955 soft button controller. A MAX17048
digital fuel gauge accurately measures battery charge and communicates with the microcontroller.

(9 (d)
Figure 3. Layout of the PCB: (a) Top layer, with (1) ISP-1807 module, (2) ST LSM6DSL IMU, (3) (op-
tional) protection diodes for DO and D1 USB lines, (4) LDO voltage regulator, and (5) battery charge
controller; (b) bottom layer, with (1) USB socket, (2) pushbutton, (3) soft-button controller, and (4) fuel
gauge; (c) assembled PCB with battery; (d) device worn on a patient’s middle finger. PCB: Printed
Circuit Board; IMU: Inertial Measurement Unit; USB: Universal Serial Bus; LDO: Low Drop-Out.
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2.2. Firmware and Mobile App

The nRF52840 microcontroller is flashed with Nordic’s SoftDevice, version 6.1.1, imple-
menting the Bluetooth Low Energy (BLE) stack, and with a modified bootloader allowing
for Over-the-Air (OTA) Device Firmware Update (DFU). The application firmware was
developed using the Arduino Integrated Development Environment (IDE). The .hex file
produced by the compiler was merged into an OTA-DFU zip package using the nrfutil
programming tool.

The application firmware implements a finite state machine and a set of commands
used to interact with the device in order to:

Read the device inclination in terms of pitch and roll angles, with an output data rate
of 2 samples/s;

Read scaled acceleration and angular velocity data from all sensing axes, with a default
output data rate of 100 sample/s, a default acceleration range of -2 G, and a default angular
velocity range of £500 deg/s;

Configure sensor ranges and output data rate;

Check battery charge status;

Force reboot of the microcontroller in bootloader mode.

Commands and data are exchanged through the UART characteristic of the BLE
wireless communication protocol, using a mobile app named e-RT-Ring. The mobile app
was developed using the NET MAUI programming framework and allows the user to
control the device and acquire data. The files recorded from the mobile app are then sent
over the Internet to a remote server, where a backend application processes the data and
sends back responses to the mobile client. The backend microservice was developed in the
Python programming language, using the Flask framework.

2.3. Data Acquisition and Processing

The RT-Ring device was positioned on the middle finger of the hand with rest tremor
of each subject, on the third phalanx in a proximal position, as shown in Figure 3d. The
mobile app guided the operator during the inertial data acquisition, ensuring that the hand
with tremor was at rest and with a proper inclination before each recording. Surface EMG
signals from the extensor carpi radialis and flexor carpi ulnaris muscles were acquired
simultaneously to the inertial data to assess the RT pattern in each recording segment. All
surface EMG procedures were performed as previously described [14,15]. A total of 200
recording segments (of 10 s each) were recorded from 40 rest tremor patients. Five 10 s
recording segments were acquired from each patient.

As rest tremor is mainly expressed in the 4-8 Hz frequency range [1], the signals were
bandpass filtered in the 2-10 Hz band using a 4th order, two-pass zero-phase Butterworth
filter, in order to encompass all possible tremor oscillations.

Next, a periodicity check was performed on each recording segment to assess the
actual presence of tremor information in the collected samples. This check was performed
both in time and frequency domain, on the dominant acceleration axis, i.e., on the axis
with the highest amplitude. Then, each segment was accepted for processing if there was a
magnitude peak in the range 3-8 Hz and the number of zero-crossings was at least half the
expected number of zero-crossings of a sine wave at fyes, With fyeq being the frequency of
such magnitude peak. The traces that did not respect these criteria were discarded.

After this quality check, 168 segments were selected for processing. EMG traces corre-
sponding to these inertial recording segments were visually inspected by two independent
raters (a neurologist and a technician expert in tremor analysis), and the RT contraction
patterns were classified as “A” (alternating) or “S” (synchronous); a third rater evaluated
the traces in case of discrepancy. Ninety-one segments were labeled as “A” and 77 seg-
ments were labeled as “S” according to visual inspection of RT pattern on corresponding
EMG recordings.

In Figure 4, inertial signals acquired from 2 tremulous subjects with different patterns
are shown. Figure 4a—d show inertial signals from a subject with alternating tremor pattern



Bioengineering 2023, 10, 1025

6 of 16

(a—b unfiltered and c—d filtered), while signals from a subject with synchronous tremor
pattern are shown in Figure 4e-h (e—f unfiltered and g-h filtered).
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Figure 4. Signals acquired by RT-Ring from two subjects with different tremor activation patterns:
(a) raw accelerations, (b) raw angular velocities, (c) filtered accelerations, and (d) filtered angular
velocities from a subject with alternating tremor pattern; (e) raw accelerations, (f) raw angular veloc-
ities, (g) filtered accelerations, and (h) filtered angular velocities from a subject with synchronous
tremor pattern. Filtered signals have been processed using a 4th order, two-pass, zero-phase Butter-
worth filter.

For each recording segment, extracted inertial data included time and frequency do-
main features. The IMU included into the RT-ring recorded 6 different signals: ay, ay, a,
accelerations, expressed in (g), and wy, wy,, w; angular rates, expressed in (deg /s). By con-
sidering a typical flexo-extension movement as mainly involving the i and z accelerometric
axes and the x gyroscopic axis, the following frequency and time domain features were
computed from the ay, a;, and wy signals:

Tremor frequency from single axes power spectral densities (PSD) and from a,-a; cross
power spectral density (cPSD);

Pearson’s correlation coefficient between a, and a, axes;

Power spectral amplitudes at tremor frequency, evaluated on a,-a, cPSD and on w, PSD;

Powers and bandwidths of 3 dB;

ay-a; magnitude squared coherence;

One-second coherence, defined as the mean of second-by-second ratios between 3 dB
power and total power;

Peak-to-peak amplitudes from all axes;

The sum of the first two harmonics on 4, axis;

Detail d3, dy, d1, and approximation a3 coefficients were computed from ‘db2’, 3 levels,
wavelet decomposition on each sensing axis.
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Power spectral densities and cross-power spectral densities were computed using
MATLAB/Octave pwelch and cpsd functions, with 3 s Hanning windowing, 75% overlap,
and 2'¢ FFT points. The same parameters were used for the computation of magnitude
squared coherence by means of the mscohere function. Wavelet decomposition was per-
formed using the Large Time/Frequency Analysis Toolbox (LTFAT) for MATLAB/Octave.

A total of 63 features were computed for “A” and “S” segments. All the features
were compared using either Student’s t-test or Wilcoxon rank sum test, after checking
for normality using the Shapiro-Wilk test. All p values were corrected according to
Benjamini—-Hochberg method for false discovery rate (FDR). The significance level was set
atp =0.05.

2.4. Machine Learning Algorithms

We used machine learning (ML) algorithms based on inertial data to estimate the
tremor pattern. The visually inspected pattern of RT on EMG traces was used as refer-
ence standard, and the performance of two ML algorithms, Random Forest (RF) [16] and
Extreme Gradient Boosting (XGB]) [17], in distinguishing recording segments with alter-
nating pattern from those with synchronous pattern, was assessed using combinations of
inertial features.

The dataset of 168 recording segments was split into two random, 50% subsets of
84 segments each with a balanced percentage of alternating and synchronous segments.
The first subset was used to train the ML models, and the second independent dataset was
used as a testing set to calculate the classification performance of the models.

As a first step, inertial features from the training set were sorted in descending order,
according to their importance as measured by RF and XGB algorithms. Then, RF and XGB
models were trained to perform a 80-20%, 5-fold cross-validation, with hyperparameters
tuning. Classification performances of trained models in predicting alternating (A) or
synchronous (S) patterns were then assessed on the independent testing set. The tuning of
hyperparameters is reported in Table 1.

Table 1. Hyperparameters tuning of Random Forest and eXtreme Gradient Boosting models.

Model Hyperparameters Definition
RE Miry = 1 Number of' variables randomly sampled as candidates
at each split
Nrounds = 300 Maximum number of iterations/trees to grow
Max.depth = 4 Depth of the tree
Eta =0.05 Learning rate
XGBoost Gamma = 0.0 Regularisation (preventing overfitting)
Col.sample_by_tree = 0.4 Controls the number of features supplied to a tree
Child_weight =1 Leaf threshold for stopping tree splitting
Subsample = 0.75 Controls the number of samples supplied to a tree

RF: Random Forest; XGBoost: eXtreme Gradient Boosting.

Processing and feature extraction were performed in GNU Octave and R programming
languages. ML models were trained using the R Classification And REgression Training
(caret) library [18].

2.5. Backend Application

Finally, the best-performing RF and XGB models were selected and embedded in a
software tool, designed as a web microservice. This tool was installed on a remote server,
to work as an application backend. The backend application was developed in the Python
programming language using the Flask framework and implemented a threaded execution
to serve multiple incoming requests at the same time.

A block diagram of the whole preprocessing, training, and validation process is shown
in Figure 5.
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Figure 5. Block diagrams of (a) preprocessing and Machine Learning process for the evaluation of

performance
evaluation

optimal models; (b) processing of a single segment on the backend server.

The whole preprocessing and ML training and testing process (Figure 5a) allowed
us to train the best-performing RF and XGB models and to evaluate their classification
performances. The backend server application (Figure 5b) takes a single segment as input
and utilizes one of the best models evaluated in the training phase to obtain a classification
response. This response is sent to the mobile application, or a “fail” message is sent if the
frequency check is not passed.

3. Results

Means and standard deviations and comparisons of computed features are shown in
Table 2.

Table 2. Frequency domain, time domain, and time-frequency domain inertial features used in
machine learning models for the classification between Synchronous and Alternating tremor patterns.

Features
Description Syl})cj::;;ous Al;)zr:t\::;ng p-Value
ay-a; cross-spectral frequency (Hz) 5.63 = 0.69 4.96 = 0.65 <0.001 #
ay-az cross-spectral amplitude (m?2/s*/Hz) 0.38 £ 1.03 10.70 + 18.32 <0.001 #
wy spectral amplitude ((°/ s)?2/Hz) 338 £ 1619 13656 =+ 23240 <0.001 #
ay-a; magnitude squared coherence 0.81 +0.27 0.96 £+ 0.09 <0.001 #
ay-az axes correlation 0.55 £+ 0.64 0.93 +0.15 <0.001 #
ay-a; phase difference (°) 45.35 £ 54.50 11.84 + 17.36 <0.001 #
3 dB power, ay-a; cross-spectrum (m?/s%) 0.18 +£0.49 4.80 + 8.34 <0.001

Wy 156 + 693 6144 + 10628 <0.001
3 dB powers (m?/s*) ay 0.26 + 0.91 4.95 4+ 9.04 <0.001

a, 0.14 £ 0.30 6.18 £ 11.81 <0.001
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Table 2. Cont.

Features
- Synchronous Alternating
Description Pattern Pattern p-Value
3 dB bandwidth, a,-a; cross-spectrum (Hz) 0.65 + 0.24 0.57 +0.09 0.016 #
Wy 0.74 £ 0.33 0.58 +0.14 0.001
3 dB bandwidths (Hz) ay 0.72 +0.29 0.59 +£0.14 0.001
a; 0.68 & 0.26 0.57 & 0.08 0.003 #
. 0, 4 ay 0.39 + 0.73 2.46 +2.45 <0.001
yz spectral amplitudes (m”/s*/Hz) o 0.36 + 0.52 2.88 + 2.83 <0.001 #
Mean 1 s coherence, ay-az Cross spectrum 0.71 £ 0.07 0.75 £+ 0.04 <0.001 #
Mean 1 s coherence, wy spectrum 0.72 + 0.05 0.76 + 0.02 <0.001 #
Var. 1 s coherence, y-z cross spectrum 0.04 +0.05 0.01 £ 0.02 <0.001 #
Var. 1 s coherence, wy spectrum 0.04 +0.03 0.01 + 0.02 <0.001 #
Skew. 1 s coherence, ay-a; cross spectrum —0.47 £ 0.74 —-0.37 £0.72 0.582 #
Skew. 1 s coherence, wy spectrum —0.38 £ 0.72 —0.324+0.71 0.631 *
Kurt. 1 s coherence, ay-az Cross spectrum 2.46 + 1.00 246 +£1.01 0.962 #
Kurt. 1 s coherence, wy spectrum 2.48 +1.06 2.40 £+ 0.80 0.881 #
ay 5.52 £ 0.84 497 +£0.73 <0.001 #
ay 5.63 +0.71 4.96 £ 0.65 <0.001 #
#
Single-axis frequencies (Hz) a; 5.61 + 0.65 495 + 0.65 <0.001 i
Wy 5.57 £0.78 491 £+ 0.63 <0.001
w, 5.51 4 0.86 497 +0.81 <0.001 #
w;, 5.63 £ 0.66 498 +0.73 <0.001 #
Single-axis accelerometer peak-to-peak ay 93.38 + 149.64 355.73 + 349.61 <0.001 #
. 85.64 + 132.39 521.64 + 517.66 <0.001 #
litudes (mG ty
amplitudes (mG) 0 7769 £90.18  594.47 + 562.86 <0.001 #
Vectorial magnitude of peak-to-peak 157.76 -+ 212.64 919.24 & 782.95 <0.001 #
accelerometer amplitudes (mG) ’ ’ ’ ’ '
Sinele-axis evroscope peak-to-peak Wy 17.54 + 32.72 180.59 + 174.16 <0.001 #
R desg(?,' 79 pep P wy 2643 + 56.13 7624 + 8157 <0.001
P - 31.97 + 66.05 84.77 + 82.09 <0.001
Vectorial magnitude of peak-to-peak 49.07 + 9055 294,69 -+ 196.97 <0.001 #
gyroscope amplitudes (°/s) ’ ’ ' ’ '
Sum of first 2 harmonics on axis a, #
(m?/s*/Hz) 0.12 £ 0.26 5.66 + 10.58 <0.001
ay, wavelet approx. coefficient (m/ s?) ag 7.17 + 3.36 9.61 +5.08 0.004 #
ds 0.62 £+ 0.82 2.39 +2.04 <0.001 #
ay, wavelet detail coefficients (m/s?) dy 024 +0.24 1.04 £ 1.02 <0.001
dq 0.10 £ 0.09 0.46 + 0.57 <0.001 #
ay, wavelet approx. coefficient (m/ %) a3 24.54 +2.62 22.90 4= 5.54 0.158 #
ds 0.83 + 0.79 3.11 +2.44 <0.001
ay, wavelet detail coefficients (m/ s?) dy 0.48 +0.27 1.10 £ 0.96 <0.001 #
dq 0.26 +£0.13 0.45 + 0.42 0.001 #
a,, wavelet approx. coefficient (m/ s2) as 792 +5.13 12.83 + 6.32 <0.001 #
ds 0.58 + 0.55 355 +2091 <0.001
a,, wavelet detail coefficients (m/s?) d, 0.22 +£0.16 127 +£1.27 <0.001

d; 0.10 £ 0.07 0.52 £ 0.75 <0.001 #
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Table 2. Cont.

Features
o Synchronous Alternating

Description Pattern Pattern p-Value

wy, wavelet approx. coefficient (°/s) az 19.61 £ 30.67 162.47 4+ 149.40 <0.001 #
ds 12.11 £ 19.61 100.66 £ 92.52 <0.001 #

wy, wavelet detail coefficients (°/s) dy 3.65 + 6.04 29.83 +33.77 <0.001 #
dq 1.16 £2.34 8.61 +12.26 <0.001 #

wy, wavelet approx. coefficient (°/s) ag 31.61 £+ 40.73 76.36 + 77.29 <0.001 #
ds 17.28 £ 33.33 52.65 + 51.71 <0.001 #

wy, wavelet detail coefficients (°/s) dy 5.14 +8.72 20.67 +23.12 <0.001 #
dq 1.32 £2.13 7.20 +9.89 <0.001 #

w,, wavelet approx. coefficient (°/s) as 28.76 £ 48.37 80.76 £ 75.45 <0.001 #
ds 20.86 + 41.14 51.00 + 44.17 <0.001 #

w,, wavelet detail coefficients (°/s) dy 5.55 + 10.08 15.75 + 13.79 <0.001 #
dq 1.30 +£2.30 473 +5.17 <0.001 #

# Wilcoxon rank sum test, * Student’s t-test, p values adjusted according to Benjamini-Hochberg FDR correc-
tion method.

After FDR correction, 58 out of 63 features were significantly different between the
“A” and “S” segments. Before training ML models, two inertial feature sets were defined:
FRF = {fRF(l), fRF(2)/ ooy fRF(N)} and FXGB = { fXGB(l), fXGB(Z), eeoy fXGB(N)}, including all
the initial features sorted by decreasing importance metrics computed by RF and XGB
algorithms, respectively. The RF models were trained on all sorted subsets of Frg, starting
with the first feature and then adding one feature at a time. Similarly, XGB models were
trained on all sorted subsets of Fxgg.

The model with the highest testing classification accuracy was selected as the best-
performing model for RF and XGB, respectively. The best-performing RF model was trained
on the first 6 features of Frg, while the best XGB model was trained on the first 13 features
of Fxgp. Optimal feature subsets, together with their computed importance, for RF and
XGB models are shown in Figure 6a and 6b, respectively.

(a) Random Forest (b) XGBoost
di_az yzx_P3db_ref _
d3_az d3_az _
yzx_P3db_ref yzx_coh_1s_ref -
a3_az -
d2_az d1_wx -
yzx_tremor_amplitude_ref -
yzx_tremor_amplitude_ref yzx_bw_3db_ref -
a3_ay -
a3 az a3 wx -
d2_wx -
0 50 100 0.00 0.05 0.10 0.15
MeanDecreaseAccuracy importance

Figure 6. Importance of optimal features subsets used for training Random Forest (a) and XGBoost
(b) best models.

Overall accuracy, Cohen’s kappa, sensitivity, specificity, positive predictive value
(ppv), and negative predictive value (npv), measured in the training dataset (5-fold cross-
validation) and in the independent testing dataset, are reported in Table 3. Performance
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metrics (accuracy, kappa, sensitivity, and specificity) of all training folds are reported in
Table 4.

Table 3. Classification performances in training and testing datasets for RF and XGB models.

Model Metric Training Testing
accuracy 0.88 (0.87-0.90) 0.92 (0.83-0.97)
kappa 0.76 0.83
sensitivity 0.89 0.96
Random Forest specificity 0.88 0.87
ppv 0.89 0.90
npv 0.87 0.94
accuracy 0.89 (0.86-0.92) 0.89 (0.80-0.95)
kappa 0.79 0.78
sensitivity 0.89 0.96
XGBoost specificity 0.90 0.82
ppv 091 0.86
npv 0.88 0.94

Cohen’s kappa showed a substantial reliability (kappa > 0.60) of the classifiers when
compared to random guessing.

Overall performances of the two models are comparable, even though RF performs
slightly better than XGB. Moreover, the RF model used a smaller number of features.

The training Receiver Operating Characteristic (ROC) curves evaluated from the 5-fold
80-20% cross-validation are shown in Figure 7a,b. Figure 7c shows the calibration plots,
assessing the agreement between predictions and observations, while the testing ROC
curves are shown in Figure 7d.

Table 4. Performance metrics of ML models in all training folds.

Model Fold Accuracy Kappa Sensitivity Specificity
1 0.94 0.88 0.90 1.00
2 0.82 0.65 0.78 0.88
3 0.87 0.73 1.00 0.72
4 0.91 0.82 1.00 0.81
5 0.87 0.74 0.78 0.97
6 0.91 0.82 0.89 0.94
7 0.85 0.69 0.90 0.79
8 0.71 0.41 0.67 0.75
9 0.97 0.94 1.00 0.94
10 0.91 0.82 1.00 0.81
11 0.82 0.64 0.89 0.75
12 0.97 0.94 1.00 0.94
13 0.91 0.82 0.85 1.00
Random forest 14 0.76 0.53 0.67 0.88
15 0.94 0.88 1.00 0.88
16 0.91 0.82 0.85 1.00
17 0.76 0.52 0.89 0.63
18 0.90 0.79 0.92 0.88
19 1.00 1.00 1.00 1.00
20 0.84 0.68 0.78 0.91
21 0.84 0.67 0.83 0.86
22 0.85 0.71 0.83 0.88
23 0.94 0.88 1.00 0.88
24 0.94 0.88 0.89 1.00
25 0.88 0.76 0.89 0.88
mean 0.88 0.76 0.89 0.88

std. dev. 0.07 0.14 0.10 0.10
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Table 4. Cont.
Model Fold Accuracy Kappa Sensitivity Specificity
1 0.91 0.82 0.97 0.84
2 0.90 0.79 0.86 0.94
3 0.90 0.79 0.87 0.93
4 0.88 0.76 0.87 0.90
5 0.90 0.80 0.84 0.97
6 0.96 091 0.95 0.97
7 0.88 0.76 0.86 091
8 0.90 0.79 0.89 0.90
9 0.90 0.79 0.89 0.90
10 0.90 0.79 0.89 0.90
11 0.91 0.82 0.89 0.94
12 0.90 0.79 0.86 0.94
13 0.87 0.73 0.86 0.88
XGBoost 14 0.84 0.67 0.84 0.84
15 0.87 0.73 0.86 0.87
16 0.88 0.76 0.86 0.90
17 0.90 0.79 0.86 0.94
18 0.90 0.79 0.89 0.91
19 0.90 0.79 0.92 0.87
20 0.90 0.79 0.92 0.87
21 0.93 0.85 0.95 0.90
22 0.90 0.79 0.89 0.90
23 0.90 0.80 0.89 0.92
24 0.88 0.76 0.89 0.88
25 0.76 0.53 0.78 0.75
mean 0.89 0.78 0.88 0.90
std. dev. 0.03 0.07 0.04 0.05
(a) Random Forest - training (b) XGBoost - training
025 AUC=0.91 025 AUC=0.95
(c) Calibration plots (d) Testing ROC curves
RF XGB —— 1.001
N 0.751
é % [ %o 50
% 0.254 = RF(AUC=0.96)
o =7 [ = XGBoost(AUC=0.97)
L T T T T A 0.001
0 = “ 0 & 10 1.00 075 050 0.25 0.00
Bin Midpoint specificity

Figure 7. (a) ROC curve from Random Forest training with 5-fold 80-20% cross-validation, mean
curve is plotted in green color, mean AUC is 0.91; (b) ROC curve from XGBoost training with 5-fold
80-20% cross-validation, mean curve is plotted in green color, mean AUC is 0.95; (c) calibration plots,
assessing the agreement between observations and predictions by the two classifier models; (d) ROC
curves evaluated on the testing set, showing AUC =0.96 and AUC = 0.97 for RF and XGB, respectively.
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The mean training Area Under the Curve (AUC) was 0.91 for Random Forest and 0.95
for XGBoost, respectively. On the testing dataset, Random Forest reached an AUC of 0.96,
while XGBoost had an AUC of 0.97.

The mean processing time for each segment is less than 5 s, including transfer time to
and from the backend server.

4. Discussion

In this study, we developed a new compact wearable device for the assessment of rest
tremor. This device is termed “RT-Ring” since it can be worn as a ring around a finger of the
hand with RT. The main aim of this miniaturized device is to estimate the tremor pattern
through machine learning technology using only inertial (accelerometric and gyroscopic)
data, in the absence of EMG.

There is great interest in assessing the RT pattern in tremulous disorders. Previous stud-
ies demonstrated a strong association between this RT feature and the presence/absence of
striatal dopaminergic damage, making the RT pattern of high relevance in the differential
diagnosis between Parkinsonian and non-Parkinsonian rest tremor syndromes. The surface
EMG is the only approach suitable to evaluate the tremor pattern since it is possible to
visualize the temporal shift of contraction burst of antagonistic muscles generating the
tremor. Unfortunately, surface EMG requires technology and expertise in tremor analysis,
making this approach suitable only for specialists with an interest in tremors. In the last
decade, there has been a growing effort to use inertial signals for medical purposes since
they can be acquired through MEMS accelerometers and gyroscopes, which can be easily
included into wearables or even mobile phones.

The main applications of inertial sensors in tremulous patients described so far in-
clude wearable solutions for detecting tremors [19-27] or quantitatively assessing tremor
severity [28-39]. Some devices have been tested in laboratory settings, with the aim
of supporting the clinical evaluation of tremors [19-24]; and others have been tested in
home-based settings with the aim of detecting tremors in the context of daily life [25-27],
with the potential usefulness of an early detection of tremulous disorders if employed for
large-scale population screening. Finally, there has been a growing interest in develop-
ing wearable devices to assess tremor severity at home [34-39], with obvious significant
advantages in monitoring the efficacy of therapies during the whole day, beyond the
clinical consultation [28,29,31,34].

A few devices based on inertial data have also been proposed to distinguish among
different causes of tremor [40-48], mainly between Parkinson’s disease (PD) and essential
tremor (ET), but there is still much room for improvement in this field. Most of the proposed
devices explored the characteristics of rest tremor in PD and postural tremor in ET [40-46],
which are different by definition, and a few studies focused on postural tremor in both
diseases [46,47] or a combination of different tremors [48], while studies focusing on tremor
at rest are lacking. In addition, these previous studies mainly explored the potential
usefulness of data based on tremor power or frequency [40—43,46,47] for the differential
diagnosis, and none of the described approaches aimed to estimate the tremor pattern
using inertial data.

Machine Learning and Artificial Intelligence have gained increasing importance in
dealing with classification and estimation problems [13], trying to find relationships be-
tween data that are not immediately seen by humans. By fitting mathematical models to
data, scientists and clinicians have been able to automatically perform diagnostic tasks
with significant accuracy. In the current study, we employed ML algorithms to estimate the
RT pattern using combinations of inertial tremor features, achieving excellent classification
performances (AUC above 0.90). The RF algorithm found 3 dB power and tremor spectral
amplitude on the reference gyroscopic axis (wy), together with wavelet decomposition
coefficients from accelerometric axis z, as the most informative features for discriminating
between alternating and synchronous tremor patterns. XGBoost confirmed the importance
of most of the features identified by RF, adding 3 dB bandwidth and 1 s coherence evaluated



Bioengineering 2023, 10, 1025

14 of 16

on wy, together with wavelet decomposition coefficients from wy, ay, and 4, thus confirm-
ing that such sensing axes are the most important in capturing tremor characteristics using
time—frequency information.

The main limitation of this study is the relatively low number of examined recording
segments, which makes this project a pilot study. Future validation studies on a larger
amount of data are needed to confirm the performance of the RT-Ring system in predicting
the RT pattern and further validate the feasibility of this approach.

5. Conclusions

The present work is the first attempt, to our knowledge, to characterize muscle behav-
iors, commonly assessed by electromyographic approaches, using inertial data and com-
bining such data into machine learning models. The excellent classification performances
reached by the classifiers, namely, AUC = 0.96, accuracy = 0.92 for RF; and AUC =0.97,
accuracy = 0.89 for XGB, demonstrated that different electromyographic tremor patterns
have their counterparts in terms of rhythmic movement features. This may allow the
replacement of expensive, complex, and time-consuming electromyographic examina-
tions with a simpler, cheaper, and faster (within a few seconds) evaluation through a tiny
wearable device.

We have carried on a full stack development process, from electronic design to the
Internet of Things, to devise and test a new wearable device (RT-Ring) and a software
system for the automatic characterization of rest tremor. The adoption of a MEMS inertial
measurement unit allowed us to design a miniaturized device, which can be easily worn
and used by non-specialized operators or even by patients. Future studies will include
the comparison of different ML algorithms, using automated tools for model tuning and
optimization [12], and the assessment of the RT-ring performance in distinguishing patients
with different rest tremor syndromes at the individual level.

6. Patents
Italian patent application no. 102021000019793 was filed on 2021/07/26.
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