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Abstract: Quadrupole mass spectrometers (QMS) are widely used for clinical diagnosis and chemical
analysis. To obtain the best experimental results, mass spectrometers must be calibrated to an ideal
setting before use. However, tuning the current QMS is challenging. Traditional tuning techniques
possess low automation levels and rely primarily on skilled engineers. Therefore, in this study,
we propose an innovative auto-tuning algorithm for QMS based on the improved particle swarm
optimization (PSO) algorithm to automatically find the optimal solution of QMS parameters and make
the QMS reach the optimal state. The improved PSO algorithm is combined with simulated annealing,
multiple inertia weights, dynamic boundaries, and other methods to prevent the traditional PSO
algorithm from the issue of a local optimal solution and premature convergence. According to
the characteristics of the mass spectrum peaks, a termination function is proposed to simplify the
termination conditions of the PSO algorithm and further improve the automation level of the mass
spectrometer. The results of auto-calibration testing of resolution and mass axis show that both
resolution and mass axis calibration could effectively meet the requirements of mass spectrometry
experiments. By the experiment of auto-optimization testing of lens and ion source parameters, these
parameters were all in the vicinity of the optimal solution, which achieved the expected performance.
Through numerous experiments, the reproducibility of the algorithm was established as meeting the
auto-tuning function of the QMS. The proposed method can automatically tune the mass spectrometer
from its non-optimal condition to the optimal one, which can effectively reduce the tuning difficulty
of QMS.

Keywords: quadrupole mass spectrometer; auto-tuning algorithm; improved particle swarm
optimization algorithm; inertia weights; dynamic boundaries

1. Introduction

The quadrupole mass spectrometer (QMS) is a highly efficient mass spectrometer with
excellent sensitivity and selectivity for various analytical applications [1,2], such as clini-
cal diagnosis, the identification and quantification of biomolecules [3], drug metabolism
studies [4], and environmental monitoring [5]. With the widespread use of QMS mass
spectrometers in recent years, users not only inquire about the higher sensitivity of the
instrument, but also pursue the intelligence and automation of the instrument, with an-
alytical experiments performed quickly [6]. Mass spectrometer tuning is the process of
optimizing the mass spectrometer parameters to achieve optimal experimental results be-
fore performing a sample analysis [7]. The goal of tuning is to obtain reasonable resolution
and accurate mass axes, as well as acceptable peak intensities.

However, the mass spectral resolution and spectral peak intensity conflict with each
other; that is, a higher resolution tends to degrade the intensity, while a higher intensity
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suppresses the resolution. Therefore, a trade-off between resolution and spectral peak
intensity must be made in tuning and ensuring that both are met to obtain better experi-
mental results. In addition, there is a degree of correlation between the resolution and mass
axis, and the purpose of tuning is to find a balance between them such that the instrument
can reach the optimal state.

Mass spectrometer tuning is divided into manual tuning and auto-tuning. In general,
manual tuning is difficult and time consuming in addition to having inconsistent standards.
Thus, auto-tuning is the current practice in mainstream instruments and is an important
function in modern mass spectrometers, which can make mass spectrometry more rapid,
accurate, and reliable, and help to improve the level of mass spectrometry automation. Cur-
rently, many studies focused on tuning mass spectrometry resolution in terms of automatic
tuning of mass spectrometers. By adjusting the direct current (DC) and alternating current
(AC) voltages applied to the quadrupole to change the resolution of the mass spectrometer,
Kenny [8] proposed a method for adjusting the DC and AC voltages of the quadrupole to
change the resolution of the mass spectrometer; however, the scheme design is not men-
tioned in this study. Syed et al. [9] proposed a ratiometric relationship between the DC and
AC voltages and the resolution of the mass spectrometer, but did not realize the function of
automatic resolution adjustment. Recently, Liu et al. [10] established an automatic mass
resolution tuning algorithm, which equipped a corresponding model for tuning through
the linear relationship between mass resolution and electrical parameters. However, the
model only tuned the resolution without tuning the mass axis and spectral peak intensity.
Moreover, the method often fails to achieve the optimal state of the instrument because of
its use of iterative algorithms that fall into a state of local optimal solutions.

Therefore, how to solve the optimal solution problem in auto-tuning became a hot
spot of concern. Automatic tuning methods based on heuristic optimization algorithms are
more suitable for multi-parameter optimization, such as genetic algorithms, particle swarm
optimization (PSO), and so on. The PSO algorithm is a heuristic optimization algorithm
based on group intelligence, which has the advantages of simple implementation, fast
convergence, and easy parallel computation, and is mostly used to solve combinatorial
optimization, mode decomposition, sensor networks, biomolecular research, and other
fields [11]. However, the traditional PSO algorithm has some limitations in optimization
problems with multi-peak functions, such as poor convergence of the population of particles
and poor global search ability of the algorithm [12–16]. To improve the performance of PSO
algorithms, there were many studies on improved PSO algorithms. J. Riget introduced the
attractive and repulsive PSO (ARPSO) in trying to overcome the problem of premature con-
vergence, which uses a diversity measure to control the swarm [12]. Yu et al. proposed an
enhanced PSO algorithm to enhance the convergence rate of iteration process [13]. Yu et al.
proposed a nonparametric model for a magnetorheological elastomer-based isolator based
on support vector regression (SVR), which employs a type of improved particle swarm
optimization to optimize the parameters in SVR and has a better generalization capacity
and better recognition accuracy than other conventional models [14]. F. Bergh proposed
the cooperative particle swarm optimizer by using multiple swarms to optimize differ-
ent components of the solution vector cooperatively to improve the performance of the
traditional PSO algorithm [15]. Yue et al. proposed a PSO-BOA optimization strategy
with applications in data classification [16]. The improvement of the traditional PSO algo-
rithm is mainly divided into multiple populations to search; using topological structure
to improve; combining with other evolutionary algorithms; improvement and change in
iterative formula of velocity and position, etc., which enhance the convergence rate and
search ability [15–19].

In this paper, we propose an improved particle swarm optimization (I-PSO) algorithm.
This method introduces a simulated annealing (SA) algorithm, boundary dynamics, and
improved multi-inertia weight selection, which improve the algorithm convergence rate
and prevent the particles from falling into the local optimum. Additionally, we propose
a QMS auto-tuning method based on an improved particle swarm optimization (I-PSO)
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algorithm. The I-PSO algorithm combined with simulated annealing and the multi-inertia
weight algorithm is used to auto-tune the QMS instrument and optimize the quality of the
spectra, which can make the QMS instrument reach the optimal state.

2. Methods
2.1. Standard PSO Algorithm and Simulated Annealing Algorithm

The PSO algorithm consists of M particles, each representing a potential solution.
When the particles move, they consider their best position in the history and the group’s
overall best position to gradually adjust their direction and speed toward the optimal
solution [20].

The equation for particle j to adjust the velocity is shown in Equation (1).

vj(n + 1) = wvj(n) + c1(pj(n)− xj(n)) + c2(gj(n)− xj(n)), j = 1 · · ·M (1)

Here, w is the inertia weight, and constants c1 and c2 are random numbers, pj(n) is
the historical best position of particle j, and gj(n) is the global best position of all particles.
Equation (2) expresses the position-updating process for particle j.

xj(n + 1) = xj(n) + vj(n + 1), j = 1 · · ·M (2)

Here, xj(n + 1) and vj(n + 1) represent the position coordinates and velocity vector,
respectively, at the time step n + 1.

The steps of the standard PSO algorithm [21] are as follows:
Input: Velocity boundary vmin, vmax, position boundary xmin, xmax,maximum number

of iterations N, and initial velocity is set to 0.
Step 1: Initialization: Randomly generate the positions of all particles x1(0) · · · xM(0),

and obtain the global best position g(0) at the current time. Proceed to Step 2.
Step 2: Calculate the velocity of each particle xj(n) at vj(n + 1) according to

Equation (1). If vj < vmin then vj = vmin; if vj > vmax then vj = vmax.
Step 3: Update the xj(n) position of each particle according to Equation (2),
if xj(n + 1) < xmin then xj(n + 1) = xmin,
if xj(n + 1) > xmax then xj(n + 1) = xmax. Go to Step 4.
Step 4: Calculating the global best position,

g(n + 1) = argmax
{

f (xj(i + 1)), j = 1 · · ·M, i = 0 · · · n
}

(3)

Step 5: Then check if the termination condition is met. If yes, terminate the algorithm.
Otherwise, return to Step 2.

Output: Global best position g(n).
The simulated annealing (SA) algorithm is a versatile global optimization algorithm

that works by exploring the solution space through random walks to find the best possible
solution [22,23]. Two main processes are involved in the SA algorithm: the Metropolis
algorithm and annealing process. The Metropolis algorithm is a randomized method that
determines whether to accept a new solution as the current solution to prevent it from
becoming stuck in a local optimal solution. The Metropolis algorithm criteria are expressed
by Equation (4).

Pij =

{
1

exp[ f (i)− f (j)
T ]

f (i) ≥ f (j)
f (i) < f (j)

(4)

Here, T is the temperature parameter and f (i) and f (j) are the internal energies of the
solid in states i and j, respectively.

When f (i) ≥ f (j), the SA algorithm accepts this new state with 100% probability.
Therefore, the SA method eventually converges to the global optimal solution [24].
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2.2. Improved PSO Algorithm

The standard PSO algorithm uses a constant inertial weight. If the inertia weight
is low, the algorithm can easily determine the global optimal solution within the initial
search space. However, if the optimal solution is outside this space, it may not be found.
Nevertheless, if the inertia weight is large, the algorithm behaves more as a global search
method and always searches for new areas. However, more iterations are required to reach
the global optimal solution. If the inertia weight is moderate, the algorithm has a higher
probability of finding the global optimal solution, but requires more iterations than in
the first case. To address these issues, researchers proposed a method for random inertia
weights. However, this method has high randomness [25–27]. In this study, a multi-inertia
weight selection method was proposed based on the random inertia weight method. Thus,
several inertia weights were added, several speeds were updated in each iteration, and
several new positions were obtained. The best model was selected for comparison.

This was achieved by transforming the constant inertia weights in Equation (1) into
a number of inertia weights that vary with the number of iterations. In each iteration,
the inertia weights traverse all the elements in the set of inertia weights and find the new
velocity corresponding to each element in the set of inertia weights. The set of inertia
weights in this study contained four elements that linear weight, exponential weight,
power weight and random weight. The mathematical form of the inertia weights are as
follows [27–29].

Linear weight(L):

w(n) = wmax −
n
N
(wmax − wmin) (5)

Here, wmax is the max value of the weight, wmin is the min value of the weight, N is
the iteration max value, n is the algorithm iterations.

Exponential weight (E):
w(n) = wmaxe−

n
N (6)

Here, wmax is the max value of the weight, N is the iteration max value, n is the
algorithm iterations.

Power weight (P):

w(n) = wmax − (wmax − wmin)
( n

N

)2
(7)

Here, wmax is the max value of the weight, wmin is the min value of the weight, N is
the iteration max value, n is the algorithm iterations.

Random weight(R):
w(n) = rand(wmin, wmax) (8)

Here, wmax is the max value of the weight, wmin is the min value of the weight, n is
the algorithm iterations.

Another drawback of the standard PSO algorithm is its slow convergence rate, es-
pecially in the vicinity of the optimal solution; studies showed that the PSO algorithm
tends to enter a stagnant state in the late evolutionary stage [30]. To resolve this problem,
a dynamic boundary correction method can be added to the standard PSO algorithm;
that is, the position boundary changes with the number of iterations. The advantage of
the proposed method is that it improves the operational efficiency of the algorithm by
weakening the oscillation amplitude when the algorithm converges, making it easier to
satisfy the termination condition when the algorithm evolves to a late stage [31].

The dynamic correction of its boundary is determined by changing the fixed position
boundary into a dynamic position boundary in Step 2 of the standard PSO algorithm.
In general, the range of the dynamic position boundary is subsequently narrowed for
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faster convergence. The dynamic update of the position boundaries is calculated using
Equations (9) and (10).

xmin =

{
pj(n)− α

∣∣pj(n)− xj(n)
∣∣ pj(n) 6= xj(n)

pj(n)− β
∣∣pj(n)

∣∣ pj(n) = xj(n)
(9)

xmax =

{
pj(n) + α

∣∣pj(n)− xj(n)
∣∣ pj(n) 6= xj(n)

pj(n) + β
∣∣pj(n)

∣∣ pj(n) = xj(n)
(10)

The probability of the particle jumping out of the local optimal solution is increased
by enhancing the search capability of the algorithm by adding SA to the above two im-
provements. The steps of the improved PSO (I-PSO) algorithm with the addition of SA,
boundary dynamics, and multiple inertial weights are as follows:

Input: Velocity boundary vmin, vmax, position boundary xmin, xmax, maximum number
of iterations N, initial velocity is set to 0, parameter α, β, SA parameters ε, η, and T.

Step 1: Initialize: Randomly generate the positions of all the particles x1(0) · · · xM(0)
and obtain the global best position g(0) at the current time. Proceed to Step 2.

Step 2: Update the position boundary xmin, xmax dynamically according to dynamic
boundary Equations (9) and (10).

Step 3: The velocity vj(n + 1) is calculated for each particle xj(n), as shown in
Equation (7); however, four weights need to be calculated separately.

vj(n + 1) = wvj(n) + c1(pj(n)− xj(n)) + c2(g(n)− xj(n)), j = 1 · · ·M (11)

Here, w = wΦ(n), Φ = {L, E, P, R} represents the four corresponding inertia weight
Equations (5), (6), (7) and (8), respectively. For convenience, the four calculated velocities
are denoted as vL

j , vE
j , vP

j , vR
j .

If vΦ
j < vmin then vΦ

j = vmin, else If vΦ
j > vmax then vΦ

j = vmax.
Step 4: Update the position of each particle xj(n), as shown in Equation (2). Accord-

ing to the four velocities obtained in Step 3, four new positions, denoted as xL
j (n + 1),

xE
j (n + 1), xP

j (n + 1), xR
j (n + 1), are obtained. Subsequently, the optimal solutions for the

four new positions were calculated.

xj(n + 1) = argmax
{

f (xΦ
j (n + 1)), Φ = {L, E, P, R}

}
(12)

If xj(n+ 1) < xmin then xj(n+ 1) = xmin, else if xj(n+ 1) > xmax then xj(n + 1) = xmax.
Go to Step 5.
Step 5: Calculate the global optimal position and particle history optimal position,

which are updated using the SA algorithm.

∆Ej = f (pj(n))− f (xj(n + 1))

∆E = f (g(n))−max
{

f (xj(n + 1)), j = 1 · · ·M
}

(13)

Based on this there are:

pj(n + 1) =

{
argmax

{
f (xj(i + 1)), i = 0 · · · n

}
e
−∆E

T > ε

f j(xj(n + 1)) e
−∆E

T ≤ ε
(14)

g(n + 1) =

{
argmax

{
f (xj(i + 1)), j = 1 · · ·M, i = 0 · · · n

}
e
−∆E

T > ε

argmax
{

f (xj(n + 1)), j = 1 · · ·M
}

e
−∆E

T ≤ ε
(15)

T = ηT, η < 1

Here, ε is a random number generated in a uniform distribution of [0, 1].
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If the termination condition is reached, reach the end; otherwise, return to Step 2.
Output: Global best position g(n).

2.3. Auto-Tuning Algorithm for QMS Based on Improved PSO Algorithm

The tuning of QMS aims to make the mass spectrometer work optimally, which
requires mass axis parameter calibration, resolution parameter (also known as the full
width at half maximum (FWHM)) adjustment, and optimization of lens and ion source
parameters for the mass spectrometer. The most commonly used QMS is the triple QMS,
the ion optical schematic of which is shown in Figure 1.
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Figure 1. Schematic diagram of the lens and ion source parameters of a triple quadrupole
mass spectrometer.

The mass axis of a QMS is determined by the linear proportionality between several
mass numbers and digital-to-analog converters (DACs). For convenience, we formed pairs
of mass numbers, DACs, and defined them as (MASS1,DAC1).... (MASSn,DACn). The
MAS–DAC curve can be adjusted by appropriately adjusting the DAC values. For example,
if DAC3 is adjusted, the linear relationships between (MASS2,DAC2) and (MASS3,DAC3),
(MASS3,DAC3) and (MASS4,DAC4) change. Similarly, the resolution is controlled by
several MASS-OFFSET pairs, and the relative MASS-OFFSET curves can be changed by
appropriately adjusting the corresponding offset values. The correspondence between the
mass and DAC and the correspondence between the mass and offset are shown in Figure 2.
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The lens parameters are a series of DC voltages acting on charged particles to obtain
more ions from the mass analyzer and detector. To achieve the highest transfer efficiency,
ion source parameters, which determine the ionization efficiency of the ion source, are
also important for mass spectrometry. With proper settings of the lens and ion source
parameters, the efficiency of material ionization and transport to the detector is significantly
increased, and a better response can be obtained. Therefore, the optimization of these two
types of parameters is crucial.
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Based on the aforementioned characteristics of quadrupole mass spectrometry, we
propose a termination condition evaluation function applicable to the improved PSO
algorithm, as shown in Equation (16).

f (x) =
λ1

I
+ λ2‖FW − TFW‖2 + λ3‖MASS− TMASS‖2, x = (x f , xlen, xm)

T (16)

Here, x f , xlen, and xm are the resolution parameter vector, lens and ion source pa-
rameter vector, and mass axis parameter vector, respectively; I is the mass spectral peak
intensity; FW and TFW are the current mass spectral peak FWHM and target FWHM of the
mass spectral peak, respectively; MASS and TMASS are the detected mass numbers of the
current mass spectral peak and target mass number of the mass spectral peak, respectively;
and λ1, λ2, and λ3 are non-negative constants. This evaluation function is also an important
basis for determining whether an instrument is in optimal condition. In general, without
any a priori knowledge, xs = argmin f (x) is the optimal value for any input parameter x,
and thus the instrument is in the best condition. For the condition with a priori knowledge,
a threshold value ε is set. The instrument is in the best condition when f (x) ≤ ε and the
parameter satisfying f (x) ≤ ε is the optimal parameter.

For a QMS, the tuning procedure encompasses three distinct stages: mass axis cali-
bration, resolution calibration, and parameter optimization. The parameter optimization
included lens parameter optimization and ion source parameter optimization. The initial
steps involved calibration of the mass axis and resolution, and it is worth noting that these
two aspects exhibited a limited correlation. During the execution, iterative alternation be-
tween the mass axis and resolution calibration was performed. Subsequently, the parameter
optimization process commenced and concluded when the intensity reached a predefined
threshold. At this point, the final values of the mass axis, resolution, and other parameters
were obtained, thereby completing the tuning process. A flowchart of the QMS auto-tuning
algorithm based on an improved PSO algorithm (I-PSO-Tune) is shown in Figure 3.

First, we discuss the mass axis calibration problem, where the mass axis control
parameter shows a linear relationship (R > 0.99) with the mass number, which we assume
to be of the form in Equation (17).

DACs = ωMASS + ζ (17)

Here, MASS is the mass number, DACs are the corresponding mass axis control
parameter values, ω is the slope, and ζ is the intercept, which should be zero under ideal
conditions. The correction equation for the mass axis is as in (18).

DACs(n) = DACs(n− 1) + ω(MASSd + MASS(n)) (18)

Here, DACs(n) is the DAC value obtained from the nth iteration, which is the DAC
value of the last time of DACs(n − 1), ω is the slope in Equation (18), MASSd is the
target mass number, that is, the mass number corresponding to the peak of the tuned
liquid spectrum, and MASS(n) is the mass number corresponding to the peak of the nth
detected spectrum.

Next, we discuss the resolution calibration problem. When adjusting the resolution of
N feature mass numbers simultaneously with whose OFFSET value presents certain corre-
lations, vectors comprising these N parameters are input to the improved PSO algorithm
model with the output as the new OFFSET value. Termination conditions for the mass axis
and resolution are shown in flowchart (I) as follows: set the parameters in Equation (12) to
λ1 = 0, λ2 > 0, and λ3 > 0.

Finally, we discuss the parameter optimization problem in which we set the termina-
tion condition (II) of the flowchart as follows: set the parameters in Equation (16) to λ1= IT ,
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λ2 = 0, and λ3 = 0, where IT is the mass spectrum response value. Thus, the iterative
stopping condition for parameter optimization is

‖ f (x(n))‖ ≤ ε, x(n) = (x f , xlen, xm)
T(n) or n = N. (19)

Here, λ1= IT , λ2 = 0 and λ3 = 0, and ε = 1.
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3. Results and Discussion
3.1. Benchmark Function Test

In order to test the performance of the I-PSO algorithm, we select the standard PSO
algorithm and I-PSO algorithm for a benchmark function test. In this, eight functions
are selected to test the algorithm performance. All eight test functions in CEC2017 are
evaluated as minimization problems and are classified as unimodal functions, simple
multimodal functions, hybrid functions, and composite functions [32]. The test functions
are shown in Table 1. The solution dimension of all test functions is 10, the population size
is set to 100, and the search space is [−100, 100], and all algorithms are run independently
on each test function 10 times, with the maximum number of iterations for each run being
[100, 1500].

Based on the above benchmark functions test results, it can be analyzed that I-PSO
makes it easier to jump out of the local optimum and reach the global optimum point
compared with the traditional PSO algorithm. The reason for this is that I-PSO adds
the multi-inertia weight approach and the simulated annealing algorithm in PSO. The
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multi-inertia weight approach can expand the search range of the algorithm to be able to
perceive more regions, while the SA algorithm provides the possibility of jumping out of
the local optimum, because of the addition of simulated annealing, the I-PSO has a certain
probability of rejecting the current optimum point, so as to achieve the purpose of jumping
out of the local optimum solution. In the experiment, the function with multiple extreme
points is selected, shaped as (E)F5~(H)F8 in Figure 4, and it can be seen that I-PSO can
reach its optimal point; however, the traditional PSO will fall into the local optimum.

Table 1. Test functions in CEC2017 [32].

Functions
Type Functions No. Functions Fi∗ = Fi(x∗)

Unimodal function F1
Shifted and rotated sum of different power function

f2(x) =
D
∑

i=1
|xi |

i+1 200

Simple multimodal functions

F2
Shifted and rotated rosenbrock’s function

f4(x) =
D−1
∑

i=1
(100(x2

i − xi+1)
2
+ (xi − 1)2)

400

F3
Shifted and rotated expanded Scaffer’s F6 function

f6(x) = g(x1, x2) + g(x2, x3) + · · ·+ g(xD−1, xD) + g(xD , x1)

g(x, y) = 0.5 + (sin2(
√

x2+y2)−0.5)

(1+0.001(x2+y2))
2

600

F4
Shifted and rotated Schwefel’s function

f10(x) = 418.9829× D−
D
∑

i=1
g(zi)

1000

Hybrid functions
F5 Hybrid function 5 (N = 4)

F(x) = g1(M1z1) + g2(M2z2) + · · ·+ gN(MNzN) + F∗(x), N = 4 1500

F6 Hybrid function 6 (N = 6)
F(x) = g1(M1z1) + g2(M2z2) + · · ·+ gN(MNzN) + F∗(x), N = 6 2000

Composition
Functions

F7
Composition function 5 (N = 5)

F(x) =
N
∑

i=1
{ωi

∗[λi gi(x) + biasi ]}+ F∗, N = 5
2500

F8
Composition function 8 (N = 6)

F(x) =
N
∑

i=1
{ωi

∗[λi gi(x) + biasi ]}+ F∗, N = 6
2800

3.2. Auto-Tuning Performance Test

From the flowchart of the QMS auto-tuning algorithm, auto-tuning can be divided into
two phases: calibration of the mass axis and resolution, and optimization of the lens and
ion source parameters. Thus, in the following experiments, we used a triple QMS (Tianjin
Guoke Medical Technology Development Co., Ltd., Tianjin, China), and the test sample
was a polypropylene glycol PPG2000 solution with a concentration of 0.002 mol/mL and
a relative molecular weight range of 20–1200. We tested these two stages, that is, the
automatic calibration experiment of the mass axis and resolution, and the optimization
experiment of the lens and ion source parameters, separately with correct and error-free
results. The two processes were then combined and 10 tests were performed.

3.2.1. Auto-Calibration Testing of Resolution and Mass Axis

To test optimization performance of the algorithm for the resolution and mass axis,
we selected low, medium, and high mass numbers, and conducted resolution and mass
axis tuning experiments simultaneously. Three mass numbers 59.05, 616.46, and 906.67 m/z
were selected to represent low-, medium-, and high-mass segments, respectively.

The QMS requires an FWHM (unit–mass resolution) range of 0.5 to 0.7 m/z for low
mass numbers, 0.6 to 0.8 m/z for medium mass numbers, and 0.6 to 0.85 m/z for high mass
numbers. The mass accuracy of the full-mass segment should be no more than 0.2 m/z.

The following settings were selected as the input parameters: velocity boundary
vmin = (−0.5,−60), vmax = (0.5, 60); parameter α = 0.1, β = 0.05; maximum number of
iterations N = 50; weight boundary wmin = (−8, 0), wmax = (8, 65535); initial velocity is
0; and SA parameters ε = 0.5, η = 0.9, and T = 80.
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The mass numbers were tested with values of 59.05, 616.46, and 906.67 m/z. The
FWHM and mass axis of each mass number were obtained from three different initial
positions, and calibration tests were performed until convergence to the required FWHM
and mass accuracy range. The experimental results are shown in Figure 5.
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After analyzing the data, the mass number 59.05 m/z, according to Figure 5A,D, three
experiments of resolution calibration and mass axis reached the optimization at the fifth,
third, and third iterations, the final output FWHMs were 0.5532, 0.5674, and 0.5297 m/z,
and the corresponding mass shifts were −0.0523, −0.1000, and −0.0008 m/z; the mass
number 616.46 m/z, according to Figure 5B,E, resolution calibration and mass axis of the
three experiments were optimized at the eighth, fifth, and fifth iterations, and the final
output FWHMs were 0.7399, 0.6738, and 0.7159 m/z, corresponding to mass shifts of
−0.0133, −0.1025, and −0.0000 m/z; and the mass number 906.67 m/z, the three resolution
calibration and mass axis experiments were optimized at the 8th, 4th, and 4th iterations,
and the final output FWHM values were 0.7093, 0.6978, and 0.7149 m/z, corresponding to
mass shifts of −0.0541, −0.0487, and −0.0463 m/z.

In the experimental procedure, we alternated between the resolution adjustment and
mass axis calibration. Termination condition (I) was successfully satisfied, resulting in
the final output values. The experiment demonstrated that both resolution and mass axis
calibration could effectively meet the requirements of mass spectrometry experiments,
regardless of the initial states (i.e., initial FWHM and mass axis). The difference observed
in the number of iterations primarily corresponded to the spectral peaks where the FWHM
and mass axis deviated significantly from the theoretical values. In such cases, a higher
number of iterations is necessary to converge toward the theoretical values, which align
with the fundamental principles of the algorithm.

3.2.2. Auto-Optimization Testing of Lens and Ion Source Parameters

The optimization of the mass spectrometry lens and ion source parameters is based on
the completion of the mass axis and resolution calibration, and we choose the output of one
of the groups in Section 3.1 (mass axis parameters and resolution) as the initial conditions
for the automatic optimization test of the lens and ion source parameters. In this test, we
chose to optimize the parameters for low, medium, and high mass numbers and tested the
mass numbers 59.05, 616.46, and 906.67 m/z, with a focus on the result of interest in the test
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being the spectral peak intensity. We set the passing intensity based on a priori knowledge,
and during this intensity, the optimal parameters were considered to be achieved.

In this experiment, we chose the Q1POS scan mode of the mass spectrometer for
testing, and four parameters were optimized; namely, curtain gas (CUR), atomization gas
(GS1), declustering voltage (DP), and entrance voltage (EP).

In this paper, we form a vector of four parameters of the mass spectrometry lens
and ion source parameters CUR, GS1, DP and EP, which we denote as (CUR,GS1,DP,EP),
and these four parameters are tensored into a four-dimensional space. Corresponding to
this four-dimensional space is Equation (12), which is in one-to-one correspondence. The
following algorithm will perform iterative experiments on the vectors (CUR,GS1,DP,EP)
of the four-dimensional space, expecting to obtain (CUR,GS1,DP,EP), which minimizes
Equation (12).

The following settings were defined for the input parameters: velocity boundary
vmin = (−5,−5,−1,−1), vmax = (5, 5, 1, 1), where vmin, vmax are the movement ranges of
the vectors (CUR, GS1, DP, EP); parameters α = 0.1, β = 0.05, that determine the move
step during the iteration of the vector (CUR,GS1,DP,EP); maximum number of iterations
N = 50; weight boundary wmin = (0, 0, 0, 2), wmax = (50, 90, 180, 15),where wmin, wmax are
the boundaries of the vector (CUR,GS1,DP,EP); initial velocity is 0; and SA parameters
ε = 0.5, η = 0.9, and T = 80. To test the performance of the lens and ion source parameter
auto-tuning algorithm, the experimental design started with different initial parameters
and was then tested for convergence to the required strength. The experimental results are
shown in Figure 6.
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After analysis, the Q1POS mode is optimized for four parameters, and the algorithm
is terminated for an average of six iterations in three experiments for each quality number.
The initial parameters of the three optimization tests for each quality number were different,
and the outputs of the three experiments were the same after auto-optimization, and they
were all in the vicinity of the optimal solution, which achieved the expected performance.

3.2.3. Performance and Stability Testing

To verify the performance and stability of the algorithm, we executed the I-PSO-Tune
auto-tuning algorithm several times and recorded experimental results. The experimental
design started from the same initial state (mass axis and resolution parameters, lens, and
ion source parameters) and was repeated 10 times; the results are shown in Table 2. The
output results should satisfy the FWHM range of a low mass number: 0.5~0.7 m/z, the
FWHM range of a medium mass number: 0.6~0.8 m/z, and the FWHM range of a high
mass number: 0.6~0.85 m/z. Mass accuracy in the full-mass segment should be no more
than 0.2 m/z.
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Table 2. Auto-tuning repeatability experiment.

NO.
Mass Shift (m/z) FWHM (m/z) Intensity (CPS, MCA = 5)

59.05 616.46 906.67 59.05 616.46 906.67 59.05 616.46 906.67

1 −0.0981 0.0955 −0.0528 0.6537 0.6742 0.6569 3.33 × 107 2.58 × 106 2.63 × 106

2 −0.0892 −0.1028 −0.0443 0.5950 0.6802 0.6900 3.13 × 107 2.98 × 106 2.64 × 106

3 −0.0962 0.0463 −0.0952 0.6970 0.6170 0.6575 3.19 × 107 1.93 × 106 2.78 × 106

4 −0.0500 0.0948 −0.1503 0.6259 0.6371 0.6170 3.26 × 107 2.36 × 106 2.22 × 106

5 −0.0513 0.0942 −0.0447 0.6497 0.6298 0.6615 3.37 × 107 2.37 × 106 2.71 × 106

6 −0.0489 0.0414 −0.1490 0.6239 0.7744 0.6063 3.32 × 107 2.74 × 106 2.47 × 106

7 −0.0483 0.0983 −0.0495 0.6180 0.7929 0.6132 3.06 × 107 2.77 × 106 2.54 × 106

8 0.0030 0.0419 −0.0510 0.5464 0.7758 0.6135 2.96 × 107 2.89 × 106 2.43 × 106

9 −0.0010 0.1471 −0.0541 0.6519 0.6950 0.6408 2.89 × 107 2.74 × 106 2.62 × 106

10 0.0003 0.2331 −0.0995 0.6340 0.6557 0.6177 2.96 × 107 2.61 × 106 2.33 × 106

As shown in Table 2, the auto-tuning algorithm for the QMS proposed in this study
can meet 100% of the mass axis and resolution calibration requirements for mass numbers
59.05 and 906.67 m/z, and the calibration success rate of the mass axis and resolution for
mass number 616.46 m/z is 90%, which suggests that the parameters of our algorithm need
to be further optimized. In contrast, lens and ion source parameter optimization met the
requirements, with coefficient of variation (CV) values of the 10 optimal intensities for mass
numbers 59.05, 616.46, and 906.67 m/z as 5.5, 11.9, and 6.8%, respectively. The high CV
value of 616.46 was due to one set of optimized intensities being low, which may be related
to the state of the mass spectrum and peak identification at that time as well as to the set a
priori threshold.

Figure 7 shows the spectral signal from the mass spectrometer before and after auto-
tuning. Before tuning, as shown in (A–C), the mass deviation was significant, the resolution
of the spectral peaks was poor, and the peak intensity was low. However, the spectrum im-
proved significantly after applying the auto-tuning algorithm proposed in this study, with
better peak position, resolution, and intensity, as shown in (D–F). This result validates the
effectiveness of the proposed algorithm in completing the instrument auto-tuning process.
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In summary, the auto-tuning algorithm for the QMS proposed in this study was
demonstrated to accomplish the instrument auto-tuning process. The proposed algorithm
offers several advantages.

(1) This algorithm improves the intelligence level of the instrument, and the auto-tuning
algorithm realizes the function of automatic optimization of the instrument compared
with the manual tuning of the instrument, which still requires experienced engineers.

(2) This algorithm realizes that the traditional iterative algorithm can easily fall into the
local optimal solution problem from a global perspective; thus, the instrument can be
automatically tuned to the real optimal state.

4. Conclusions

Traditional mass spectrometer tuning relies on experienced engineers and is time
consuming and inconsistent. Therefore, in this study, we propose an improved PSO auto-
tuning algorithm based on the PSO algorithm by adding SA, boundary dynamics, and
multiple inertia weights. The proposed algorithm solves the problem of the traditional
PSO algorithm, which easily falls into a local optimal solution; thus, it is more suitable
for quadrupole mass spectrometry auto-tuning. The experiments also showed that the
algorithm could automatically tune an unoptimized mass spectrometer to the optimal
state, and the repeatability of the algorithm was verified by repeating this experiment. The
auto-tuning algorithm introduced in this study can be applied to the auto-tuning of a QMS.

In this study, the innovative auto-tuning algorithm based on the improved PSO
algorithm is applied in QMS instruments to automatically adjust the parameters and make
the QMS reach the optimal state. In the further work, we will try to apply this auto-tuning
algorithm to other types of mass spectrometers, such as time-of-flight mass spectrometers,
ion trap mass spectrometers, etc., to continuously improve the stability and versatility of
the algorithm.
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