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Abstract: Super-resolution structured illumination microscopy (SR-SIM) is an optical fluorescence
microscopy method which is suitable for imaging a wide variety of cells and tissues in biological
and biomedical research. Typically, SIM methods use high spatial frequency illumination patterns
generated by laser interference. This approach provides high resolution but is limited to thin samples
such as cultured cells. Using a different strategy for processing raw data and coarser illumination
patterns, we imaged through a 150-micrometer-thick coronal section of a mouse brain expressing
GFP in a subset of neurons. The resolution reached 144 nm, an improvement of 1.7-fold beyond
conventional widefield imaging.
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1. Introduction

Recently developed methods for surpassing the diffraction limit in optical fluores-
cence microscopy include stimulated emission depletion microscopy (STED) [1], stochastic
optical reconstruction microscopy (STORM) [2], photoactivated localization microscopy
(PALM) [3], super-resolution optical fluctuation imaging (SOFI) [4], and structured illumi-
nation microscopy (SIM) [5,6]. These methods have had large impacts in many fields, with
super-resolution microscopy previously being used in many applications, including imag-
ing the a mouse brain using STED [7], STORM [8], and SIM approaches [9]. SIM methods
have been used in many situations, including the rapid imaging of clinical samples [10].

SIM is a method in which sets of images are acquired with shifting illumination
patterns. The subsequent processing of these image sets results in images with optical
sectioning, resolutions beyond the diffraction limit (super-resolution), or both [5,6,11–14].
Since its emergence over two decades ago [15], SIM has matured as an imaging technique,
with multiple proposed methods for generating the structured illumination patterns [12–25]
and processing the image data [6,13,26–30]. Compared to other super-resolution techniques,
the speed, high signal-to-noise ratio, and low excitation light intensities characteristic to
SIM make it a good choice for imaging a variety of samples in three dimensions. As shown
here, SIM is accomplished with a standard fluorescence microscope with some additional
required elements, whereas other approaches such as light-sheet microscopy require more
specialized setups. There is an increasing interest in the methods and applications of
SIM, with the field seeing many recent (2022–2023) improvements [31–37], including new
methods involving deep learning approaches [38,39].

The imaging method we used, maximum a posteriori probability SIM (MAP-SIM),
uses a Bayesian framework to reconstruct super-resolution SIM images [26,29,40]. This
method has advantages including flexibility in the range of SIM illumination patterns which
can be used and, in our case, the ability to use patterns with lower spatial frequencies.
This, in turn, allows imaging deeper into samples in which scattering degrades the high
spatial frequency patterns which are more commonly used in SIM. When the SIM pattern
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is out of focus, it blurs rapidly with increasing depth, producing a high intensity of out
of focus light. This results in reduced pattern contrast in the acquired images. Because of
this, traditional super-resolution SIM methods are typically limited to an imaging depth of
10–20 µm [41,42]. Here, we used MAP-SIM to image a fixed, optically cleared, ~150-µm-
thick mouse brain coronal slice expressing a neuronal GFP marker while achieving a lateral
resolution of 144 nm.

To overcome the challenges of imaging deeper into brain tissues, SIM has previously
been combined with two-photon excitation [16] or with adaptive optics for in vivo stud-
ies [43,44]. These methods have offered impressive results, but they do involve additional
costs and require additional optical devices and expertise, reducing the number of labs that
can use these approaches. Here, we used a simpler and more economical approach with a
non-laser light source and open-source software for SIM [45].

2. Methods

The sample used for this work was an optically cleared, green fluorescent protein
(GFP) -labeled coronal mouse brain slice. The slice was approximately 150 µm thick and
was obtained from SunJin Lab (Hsinchu City, Taiwan). The supplier used a Thy1-GFP
mouse strain, and they stated that the sample was prepared as follows:

1. cardiac perfusion with cold, freshly prepared 4% paraformaldehyde (PFA)
2. fixation of the dissected brain with a 4% PFA solution on an orbital shaker overnight

at 4 ◦C followed by washing three times with phosphate-buffered saline (PBS) at
room temperature

3. sectioning the brain manually using a vibratome followed by clearing of the slice with
RapiClear 1.52 (SunJin Lab) overnight at room temperature

4. mounting of the cleared sample with fresh RapiClear 1.52 reagent in a 0.25-mm-deep
iSpacer microchamber (SunJin Lab)

For the SIM imaging, we used a home-built set-up based on the same design as de-
scribed previously [20,26,40,46]. The current SIM system was based on an IX83 microscope
equipped with several objectives (Olympus, Tokyo, Japan). Illumination was provided
by a liquid light guide-coupled Spectra-X light source (Lumencor, Beaverton, OR, USA)
using the cyan channel, which had an emission maximum of 470 nm. The illumination
was collimated by an achromatic 50 mm focal length lens (Thor labs, Newton, NJ, USA)
and vertically polarized with a linear polarizer (Edmund Optics, Barrington, NJ, USA)
before entering a polarized beam splitter (PBS) cube (Thor Labs) and reflecting onto a
liquid-crystal on silicon (LOCS) microdisplay (Forth Dimension Displays, Dalgety Bay,
Scotland, UK). This device is a ferroelectric reflective-type spatial light modulator. The pix-
els, which were turned on, rotated the polarization of the light by ~90 degrees, converting
vertical polarization to horizontal polarization. The horizontally polarized output of the
microdisplay then passed through the PBS and was imaged into the microscope using a
180 mm focal-length lens (SWTLU-C, Olympus). The emitted fluorescent light was filtered
(using a GFP filter set with dichroic T495lpxr and ET525/50 emission filters; Chroma,
Bellows Falls, VT, USA) and then imaged with an sCMOS camera (Zyla 4.2+, Andor). The
illumination power density on the sample used a 100× objective that was measured at
2.542 W/cm2 without SIM patterning (widefield illumination) and at 0.214 W/cm2 with
the SIM pattern active. Sample movements and focusing were controlled by an XY piezo Z
stage (Applied Scientific Instrumentation, Eugene, OR, USA).

The microdisplay was used to produce the SIM patterns, and it was controlled by the
software supplied with the device (MetroCon, Forth Dimension Displays). Various SIM
patterns were used as shown in the supplementary material in Table S6. The pattern position
was shifted by one pixel after each image was acquired such that the sum of all illumination
masks resulted in homogenous illumination. Figure 1 shows a simplified diagram of the
SIM optical system and a connection diagram illustrating how the microdisplay system
was synchronized with the camera using IQ software (Andor) and a digital input/output
computer card (DDA06/16, Measurement Computing, Concord, NH, USA). More details
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about the SIM system are given in the supplementary material. Table S1 shows a list of
the components we used along with the manufacturer, part number, and vendor website.
Tables S2–S5 show some of the relevant optical and performance characteristics of the
camera, microdisplay, and light source. These details should be useful for those wishing to
build their own SIM systems of this type. The supplementary text explains, and Figure S7
shows, a schematic of the timing scheme used by the SIM system, and they illustrate the
function of the AND gates shown in Figure 1. The supplementary text also explains, and
Figure S8 shows, additional details about the operation of the microdisplay.
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Figure 1. Simplified optical diagram (left) and connection diagram (right). The connection setup for
the two-wavelength acquisition is shown, and in this study, only 470 nm illumination was used.

3. Data Analysis
3.1. Optical Sectioning SIM (OS-SIM)

Several data processing methods are possible for generating optically sectioned im-
ages from SIM data (OS-SIM) [20,47]. The most commonly used implementation of this
technique was introduced in 1997 by Neil et al. [15]. Their method worked by projecting a
line illumination pattern onto a sample, followed by the acquisition of a set of three images
with the pattern shifted by the relative spatial phases 0, 2π/3, and 4π/3, respectively. Using
this method, an optically sectioned image can be recovered computationally as follows:

IOS−SIM =
[
(I1 − I2)

2 + (I1 − I3)
2 + (I2 − I3)

2
]1/2

, (1)

where IOS-SIM is an optically sectioned image and I1, I2, and I3 are the three images acquired
with the different pattern positions. This type of optically sectioned image is expected to
be similar to that obtained with a laser scanning confocal microscope. If the sum of the
individual SIM patterns results in homogeneous illumination, as was the case in our setup,
a widefield (WF) image can also be recovered from the SIM data by taking the average of
all images In, as follows:

IWF =
1
N

N

∑
n=1

In. (2)

This was the approach we used throughout this study to generate conventional wide-
field images.

Instead of using Equation (1), in this study, we used a method originally shown by
Neil et al. [15] and later elaborated upon [20,47], as follows:

IOS−SIM =

∣∣∣∣∣ N

∑
n=1

In exp
(

2πi
n
N

)∣∣∣∣∣. (3)

We found that this method provided consistent results and could be applied when
using any number of patterns instead of the three patterns used in the original work. The
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actual positions of the illumination patterns in the camera images were determined using a
calibrated camera according to our previous work [15], and this was based on a well-known
method for the spatial calibration of a camera [48].

3.2. SIM with Maximum a Posteriori Probability Estimation

MAP-SIM has been described previously [26]. In our study, the imaging process could
be denoted as follows:

yk = HMkx + nk, (4)

where Mk is a matrix in which the elements represent the k-th illumination pattern; yk de-
notes a low-resolution image acquired using the k-th illumination pattern; x is an unknown,
high-resolution image; and nk is (Gaussian) additive noise. H is a matrix that models the
convolution between the high-resolution image and the point-spread function (PSF) of the
system. Each SIM image acquired generates an Equation (4) with a different illumination
pattern (k). The linear system of Equation (4) produced in a SIM experiment must be solved
in order to reconstruct a high-resolution image. This reconstruction can be defined as the
inversion of the system of equations. In the presence of noise (nk), the inversion becomes
unstable and is considered an ill-posed problem. This means we need to add a constraint
which stabilizes the inversion of the system and ensures the uniqueness of the solution. In
this imaging model, the low-resolution images (yk), high-resolution image (x), and nose
(nk) are measurement-dependent.

We modeled the PSF as an Airy disk which, in Fourier space, would lead to an optical
transfer function (OTF) of the form [49] as follows:

OTF( f ) =
1
π

[
2 cos−1

(
f
fc

)
− sin

(
2 cos−1

(
f
fc

))]
, (5)

where f is the spatial frequency. We estimated the cut-off frequency (fc) by calculating
the radial average of the power spectral density (PSD) of a widefield image of 100 nm
fluorescent beads [50]. This could also be calculated by taking the Rayleigh limit of the
resolution d = 0.61λ/NA and expressing this value in terms of spatial frequency (1/d).

Using a Bayesian approach [26,27,29,51–54], high-resolution image estimation can be
expressed as a minimized cost function according to the following:

xHR−MAP = argmin
x

[
K

∑
k=1
‖yk − HMkx‖2 + λΓ(x)

]
. (6)

The cost function in Equation (6) consists of two terms. The first term describes
the mean square error between the estimated HR image and the observed LR images.
The second term (λΓ(x)) is a regularization term. To ensure positivity and promote a
smoothness condition, we relied on quadratic regularization [54]. The contribution of
Γ(x) was controlled by the parameter λ, a small positive constant defining the strength
of the regularization (typically, λ = 0.01). We solved Equation (6) using gradient descent
methods [54].

3.3. Spectral Merging

MAP estimation of high-resolution images obtained with structured illumination
enables the reconstruction of high-resolution images (HR-MAP) with details that are
unresolvable in a widefield microscope. However, MAP estimation, as described above,
does not suppress out-of-focus light. On the other hand, the processing method according to
Equation (3) used in optical sectioning SIM [15,20] provides images (LR-HOM) with optical
sectioning. Noting that the unwanted, out-of-focus light was dominant at low spatial
frequencies, we merged the LR-HOM and HR-MAP images in the frequency domain to
obtain the final HR image (MAP-SIM). For 3D data, this is completed in a slice-by-slice
fashion, resulting in a Z-stack of SIM images. Frequency-domain Gaussian low-pass
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filtering was applied to the LR-HOM image, and a complementary high-pass filter was
applied to the HR-MAP image. We used a weighting scheme that could be described by
the following equation:

xMAP−SIM = F−1
{
(1− β)F{xLR−HOM} exp

(
− f 2

2σ2

)
+ βF{xHR−MAP}

(
1− exp

(
− f 2

2σ2

))}
, (7)

where F ,F−1 denotes the Fourier transform operator and its inverse, respectively,
and f is the spatial frequency, σ is the standard deviation of the Gaussian filter, and β
is a weighting coefficient. Usually, we would set β to 0.85. We would typically use a
standard incoherent apodizing function to shape the MAP-SIM spectrum before the final
inverse FFT.

4. Results

To acquire an overview of the slice with SIM methods, we first imaged using a
10×/0.4 NA water immersion objective. We acquired 60 image positions with a 20-percent
overlap between each position and with 12 z-planes. In this image, the Z-plane spacing
was 20 µm. Image stitching was accomplished using our lab’s methods and an ImageJ
plugin [55], as shown in [46]. A composite image of the slice is shown in Figure 2, and it is
color-coded based on depth using the isolum color table [56]. This image was acquired in 5 min
and 30 s, with an additional 15 min and 35 s required for the OS-SIM processing, according to
Equation (3). The final image was 8.4 GB in size, and it had 16,859 × 10,378 × 12 pixels.

This slice was matched to Paxinos and Franklin’s mouse brain atlas [57] to identify
which section of the brain was being imaged. Our slice was visually matched with slice 64.
We further matched our sample to slice 92 of 132 in the Allen brain atlas [58,59]. Second
order polynomial fits were made for both the horizontal and vertical directions using the
edges and the central aqueduct as reference points. This allowed any point on this brain
slice, recorded from the microscope stage coordinates, to be translated into the coordinates
of the atlas. This method placed the neuron shown in Figure 3 in the temporal association
area (TeA) of the mouse brain isocortex, as indicated by the yellow box in Figure 2a.

Imaging Deep Neurons

To demonstrate MAP-SIM’s ability to image deeper into the sample than traditional SR-
SIM, a TeA neuron 41–66 µm deep was imaged. The depth was measured using the closed-
loop piezo stage. A 100×/1.4 NA oil immersion objective was used with an exposure time of
300 ms per SIM phase. This image is shown in Figure 3. The profile of a dendric spine neck
was also measured (Figure 3d,e). The profile was fit in MatLab using a Gaussian function
weighted by the square root of the counts, with nonlinear least squares methods. The full
width at half-max (FWHM) was determined to be 164.0 ± 4.9 nm. To determine the image
resolution, we calculated the power spectral density (PSD) as previously described [50].
We found that the WF image had a resolution of 247.6 nm while the MAP-SIM image had
a resolution of 143.6 nm, an improvement of ~1.7-fold. These results are summarized in
Table 1. Figures S1–S3 show additional images of cortical neurons imaged with MAP-SIM
and a resolution analysis by a Fourier ring correlation (FRC) [60,61] and the PSD methods.
The FRC measurements indicated a MAP-SIM resolution of approximately 150–160 nm, in
good agreement with the 144 nm measured by the PSD methods.

A comparison of widefield, basic OS-SIM (Equation (3)), and MAP-SIM (Equations (6)
and (7)) for this same cortical neuron is shown in Figure 4 and further analyzed in Table 1.
As is evident in the figure, widefield had the largest background due to out-of-focus light,
with basic OS-SIM providing optical sectioning and MAP-SIM providing both optical
sectioning and super-resolution. The imaging depth of 41–66 µm exceeded the depth limit
of traditional SIM by approximately three-fold.
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Figure 2. (a) Overview of the OS-SIM image. The yellow box indicates the temporal association area
where the neurons were imaged with super-resolution MAP-SIM. (b) Nissl (left) and anatomical
annotations (right) from the Allen mouse brain atlas and the Allen Reference Atlas—Mouse Brain,
at the same slice position as (a) (slice 92 of 132, Allen Mouse Brain Atlas, mouse.brain-map.org and
atlas.brain-map.org).
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Figure 3. (a) TeA neuron imaged at a depth of 41 µm to 66 µm using a 100×/1.4 NA oil immersion
objective. (b,c) Zoomed in views of the selected areas indicated in (a) by yellow boxes. The width of
the spine neck, selected in (d), was fit to a Gaussian function (FWHM 164.0 ± 4.9 nm).
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Figure 4. (a) TeA neuron shown in widefield, basic OS-SIM, and MAP-SIM. (b) MAP-SIM image
color-coded by depth.

Table 1. SNR and resolution measurements.

SNR (dB) Resolution (nm)

Widefield 43.87 247.6
Basic SIM 29.33 251.6
MAP-SIM 39.27 143.6

We further imaged a neuron at a depth of 71–83 µm. This is shown in Figure 5. In this
particular image, the resolution, measured by calculating the PSD, was 161 nm. While this
was a decrease in resolution from the shallower neuron shown in Figure 3, it still surpassed
the diffraction limit. Imaging at approximately 100 µm using these methods often resulted
in images with large amounts of noise, and so the maximum imaging depth with a 100×
objective in this sample appeared to be approximately 85 µm. Using a 60× objective, we
were able to image up to 113 µm, as shown in Figure 6.
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of 0 to 113 μm (60×/1.42 NA oil immersion objective). The maximum-intensity projections of the 
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Figure 5. (a) TeA neuron imaged at a depth of 71 µm to 83 µm using a 100×/1.4 NA oil immersion
objective. The inset shows the fast Fourier transform (FFT) of the image in (a), the boundary of which
indicates the resolution. (b) Zoomed-in view of the selected area indicated in (a) by a yellow box.
(c) A measurement of the resolution determined by measuring the power spectral density. (d) The
MAP-SIM image color-coded by depth.
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Figure 6. Neurons of the subiculum, ventral part, pyramidal layer (SUBv-sp), with an imaging depth
of 0 to 113 µm (60×/1.42 NA oil immersion objective). The maximum-intensity projections of the
imaged area have depths of (a) 0.2–28.4 µm, (b) 28.6–56.6 µm, (c) 56.8–84.8 µm, and (d) 85.0–113.0 µm.
(e) X-Z projection of the imaged area.
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In addition to the cortical neurons imaged in Figures 3–5 (and in Figures S1, S2 and S4),
we also imaged an area of the brain in which a higher proportion of the neurons expressed
the GFP marker (SUBv-sp subiculum, ventral part, pyramidal layer, also see Figure S5).
This is shown in Figure 6. The maximum-intensity projection images, shown at different
depths, showed good imaging at all depths. In addition, the imaging quality remained
high even at depths past 100 µm using this objective (60× oil immersion).

Typically, SIM uses high-frequency patterns to maximize the obtainable resolution,
but it has limited imaging depth due to scattering and the generation of large amounts
of background fluorescence. The pattern used here used a lower spatial frequency to
penetrate deeper into the mouse brain while maintaining the pattern integrity. A compar-
ison of (cropped) images acquired using a high-frequency pattern (i.e., one out of three
microdisplay pixels was activated) and our lower-frequency pattern (i.e., two out of ten
microdisplay pixels were activated) is shown in Figure 7. Also shown is a plot of the
measured modulation of the SIM pattern vs. the depth for various SIM patterns using a
thick fluorescent plastic slide (obtained from Chroma). The modulation, measured as the
average of the (max − min/max + min) in a region of interest, fell as the pattern spatial
frequency increased and as the depth increased. This was expected in the case of incoherent
illumination, as we used here, because the incoherent optical transfer function applied [49].
The higher-frequency pattern resulted in a weaker signal and poorer image reconstruction
when imaging deep into the sample, as shown in Figure 7c.
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Figure 7. (a) Plot of modulation vs. axial depth for the different SIM patterns. (b) High-frequency
pattern imaging of the TeA cortical neurons at the surface of the slice (0–10 µm). (c) High-frequency
pattern imaging of the TeA cortical neurons at a depth of 41–45 µm. (d) Low-frequency pattern
imaging of the same field of view shown in (c).
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5. Discussion

By combining a structured illumination microscope with a large field-of-view and
an image reconstruction method based on Bayesian statistics, we demonstrated synapse-
resolving meso- and micro-scale volumetric imaging in an optically cleared coronal slice
of adult mouse brain. The use of MAP-SIM and sample-optimized illumination patterns
allowed us to collect super-resolution images well beyond the typical depth limit for SIM.

Compared to other super-resolution methods, SIM has poorer resolution. For example,
the 144 nm lateral resolution achieved here is worse in comparison to the approximately
20 nm resolution that is typically achieved with STORM. However, SIM requires ~15 (or
less, depending on the method used) images to reconstruct a super-resolution image. This
is far lower than the 20,000 (or more) images usually required for STORM, making SIM
imaging much faster and, therefore, a possibility for use when imaging live cells. The
excitation power needed for SIM is much lower than that used in STORM. Here, we used
0.214 W/cm2 for SIM compared to the 2 kW/cm2 we previously used for STORM [62]. We
found that the photobleaching in our experiments was minimal (Figure S6).

Most of the progress in super-resolution SIM has been in the acquisition and processing
of images, but SIM was used in a detailed study on dendritic spines [9] where the authors
developed a method for reconstructing and measuring the surface geometries of dendritic
spines from 3D-SIM images. By adopting more flexible strategies for image acquisition and
processing, such as the methods shown here, SIM is expected to be used more frequently in
biological studies, including those on dense tissues such as brain tissue.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/bioengineering10091081/s1, Table S1. Main components of the SIM
system; Table S2. Camera parameters; Table S3. Light source parameters; Table S4. Microdisplay
parameters; Table S5. Camera parameters for the machine vision camera used (only) in Figures S4
and S5; Table S6. Parameters of the imaging data; Figure S1: Cortical neuron; Figure S2: Enlarged
views; Figure S3: Resolution analysis; Figure S4: Cortical neuron; Figure S5: Neurons of the midbrain;
Figure S6: Photobleaching analysis; Figure S7: SIM system details; Figure S8: SIM system diagrams.
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62. Smirnov, E.; Borkovec, J.; Kováčik, L.; Svidenská, S.; Schröfel, A.; Skalníková, M.; Švindrych, Z.; Křížek, P.; Ovesný, M.; Hagen,
G.M.; et al. Separation of replication and transcription domains in nucleoli. J. Struct. Biol. 2014, 188, 259–266. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1038/nmeth.4605
https://www.ncbi.nlm.nih.gov/pubmed/29457791
https://doi.org/10.1016/j.jsb.2014.10.001
https://www.ncbi.nlm.nih.gov/pubmed/25450594

	Introduction 
	Methods 
	Data Analysis 
	Optical Sectioning SIM (OS-SIM) 
	SIM with Maximum a Posteriori Probability Estimation 
	Spectral Merging 

	Results 
	Discussion 
	References

