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Abstract: Injectable hydrogels offer numerous advantages in various areas, which include tissue
engineering and drug delivery because of their unique properties such as tunability, excellent carrier
properties, and biocompatibility. These hydrogels can be administered with minimal invasiveness.
In this study, we synthesized an injectable hydrogel by rehydrating lyophilized mixtures of guar
adamantane (Guar-ADI) and poly-β-cyclodextrin (p-βCD) in a solution of phosphate-buffered saline
(PBS) maintained at pH 7.4. The hydrogel was formed via host-guest interaction between modified
guar (Guar-ADI), obtained by reacting guar gum with 1-adamantyl isocyanate (ADI) and p-βCD.
Comprehensive characterization of all synthesized materials, including the hydrogel, was performed
using nuclear magnetic resonance (NMR) spectroscopy, Fourier transform infrared (FTIR) spec-
troscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray
diffraction (XRD), thermogravimetric analysis (TGA), and rheology. The in vitro drug release study
demonstrated the hydrogel’s efficacy in controlled drug delivery, exemplified by the release of bovine
serum albumin (BSA) and anastrozole, both of which followed first-order kinetics. Furthermore,
the hydrogel displayed excellent biocompatibility and served as an ideal scaffold for promoting the
growth of mouse osteoblastic MC3T3 cells as evidenced by the in vitro biocompatibility study.

Keywords: modified natural polymer; injectable hydrogel; drug delivery; drug release kinetics; bone
tissue engineering

1. Introduction

Hydrogels are excellent materials for diverse applications including tissue engineering,
and drug delivery [1]. Hydrogels’ unique three-dimensional (3D) porous structure, which
retains a large amount of water, flexibility, biocompatibility, and biodegradability, furnishes
the hydrogels as excellent candidates for myriad biomedical uses [2]. Polymeric injectable
hydrogels have emerged as captivating subjects of research in the biomedical field owing
to their distinctive properties, including tunability, mechanical flexibility, and most notably,
their ability to be injected with low invasiveness for patient implantation [3–6]. Most
injectable hydrogels have been developed, as described in the literature, by employing
external stimuli such as temperature via physical crosslinking methods [7–10]. Injectable
hydrogels can be developed using different types of polymers such as natural and synthetic
polymers in different ways and are employed in the biomedical field [11,12]. It has been re-
ported that temperature-sensitive poly(N-isopropylacrylamide) hydrogel was successfully
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prepared and its applications for bone tissue engineering and drug delivery were studied
in detail [13]. The injectable hydrogel can also be prepared based on the pH [14]. Besides
temperature and pH, light, heat, electricity, and magnetic fields have been used to develop
injectable hydrogels [15].

The poor stability and low mechanical properties are the main issues associated
with physical crosslinking methods [16]. Host-guest chemistry can be used to circum-
vent such limitations even though host-guest chemistry belongs to the physical cross-
linking method [17]. Host-guest chemistry has also been exploited to develop physically
crosslinked hydrogels for different biomedical applications [18–20]. The host can interact
with polymers or small guest molecules that can fit in the host’s cavity, thereby crosslink-
ing them to form gels [21]. Cyclodextrin (CD), crown ether (CE), and cucurbituril (CB)
are the most commonly used hosts [22]. The inner hydrophobic cavity of CD can inter-
act with polymers such as polyethyleneglycol (PEG) or polypropylene glycol (PPG) and
small molecules such as ferrocene, adamantine (AD), and azobenzene which can lead to
crosslinking process [23]. Similarly, CB has been used to gel naphthalene-functionalized
hydrophilic polymers [24]. Such hydrogels exhibited intriguing mechanical properties and
have been applied in the development of drug delivery systems and tissue engineering
for stem and bone cells [25,26]. Although progress has been made to develop physically
crosslinked hydrogel using host-guest chemistry, economic approaches to establish a stable
biodegradable and biocompatible hydrogel using natural polymers are rare in the literature
and thus provide motivation for further study.

In this manuscript, we present the synthesis of an injectable hydrogel using guar gum
as the main polymeric material. Guar gum, a cost-effective, biodegradable, and biocompat-
ible polymer, is suitable for applications such as drug delivery and tissue engineering [27].
As guar gum contains several hydroxyl groups, we modified it with 1-adamantyl iso-
cyanate (ADI) to synthesize Guar-ADI [28]. We used β-cyclodextrin (βCD) polymer for
this research to make the injectable hydrogel [29]. βCD is poorly soluble in water hence
it was polymerized to poly-β-cyclodextrin (p-βCD) with epichlorohydrin (EPH) to make
it water soluble [30–32]. This report illustrates the synthesis of a hydrogel formation
via host-guest interaction using Guar-ADI solution with an aqueous solution of p-βCD
(Figure 1). Furthermore, we report the investigation of the injectable hydrogel for in vitro
BSA and anastrozole release and conduct an in vitro biocompatibility study by checking the
growth of mouse osteoblastic MC3T3 cells. These findings contribute to the advancement
of hydrogel-based drug delivery systems and tissue engineering.
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2. Materials and Methods
2.1. Materials

The reagents and solvents used in this study were sourced from reliable commercial
suppliers and employed without further purification unless otherwise stated. Guar Gum
was procured from VWR BeanTown Chemical (Hudson, NH, USA). ADI was purchased
from Acros Organics (Pittsburgh, PA, USA). BSA (Cohn fraction, molecular weight 66 kDa)
and phosphate buffered saline (10X, pH 7.4) were acquired from VWR Life Science (Rad-
nor, PA, USA). Anastrozole was purchased from Bio-Vision (San Franscisco, CA, USA).
Hydrochloric acid (HCl), sodium hydroxide (NaOH), and deionized water were obtained
from VWR BDH Chemicals (Rouses Point, NY, USA). βCD was procured from TCI America
(Portland, OR, USA). Dimethylsulfoxide-D6, ethanol, and isopropanol were sourced from
Millipore Sigma (Burligton, MA, USA). Triethylamine (TEA), dibutyltin dilaurate (DBDL),
epichlorohydrin (EPH), toluene, N,N-dimethylacetamide (DMA), and cell counting kit-8
were procured from Sigma-Aldrich (St. Louis, MO, USA). Minimum Essential Medium-
Earle’s (MEM) and fetal bovine serum (FBS) were acquired from Caisson Labs (Smithfield,
UT, USA).

2.2. Synthesis of Guar-ADI Compound

The synthesis of Guar-ADI was carried out using a modified version of the literature
method [33]. Initially, 2 g (g) of guar gum was taken in a three-necked round bottom flask
(RBF). Subsequently, 25 mL of DMA was added to the RBF. To this solution, 1 equivalent of
ADI (1.947 g, 10.99 mmol) was introduced while maintaining a constant stirring at 65 ◦C
using an oil bath. After 30 min of stirring, 0.15 mL of TEA (1.076 mmol) and 0.65 mL of
DBDL (1.092 mmol) were sequentially added and stirred for an additional 6 h. Afterward,
the resulting mixture underwent filtration and sequential washing with hexane, acetone,
and isopropanol, each performed at least three times. Finally, the product was dried in
a vacuum oven, yielding a powdered final product. A total of 1.986 g of the product
was obtained.

2.3. Polymerization of β-Cyclodextrin

The polymerization of βCD was conducted following a literature method [34]. Initially,
10 g of βCD (8.810 mmol) were dissolved in 10 mL of a 15% aqueous NaOH solution, after
which 10 mL of toluene was added. The mixture was stirred for approximately 2 h at
35 ◦C. Subsequently, 5 mol% of EPH (3.92 mL, 50 mmol) was introduced and stirred for
an additional 3 h at a temperature of 55 ◦C. To neutralize the reaction mixture, 6 M HCl
solution was added dropwise to maintain pH 7 of the solution. The resulting product was
precipitated by adding copious amounts of isopropanol. The precipitate was collected
through filtration, and the product was then dried in a vacuum oven to obtain it in powder
form. The mass of the final product obtained was 8.2 g.

2.4. Preparation of Hydrogel

The different concentrations of hydrogel were prepared by mixing rehydrated equal
volumes of different concentrations of Guar-ADI and p-βCD solutions prepared in PBS
(pH 7.4) under ambient temperature. The hydrogel material was mixed with the required
concentrations of BSA and anastrozole prepared in PBS solution separately.

2.5. Characterizations of Materials

The guar gum, guar-ADI, βCD, p-βCD, and hydrogels were characterized by different
spectroscopic and microscopic techniques such as FTIR Spectroscopy, NMR Spectroscopy,
TGA, SEM, EDS, XRD, and Rheology. UV-visible spectroscopy was used for the determina-
tion of concentrations of drugs released from the hydrogel.

The FTIR spectroscopy of the sample was conducted by using a Nicolet 6700 Thermo-
Scientific FTIR spectrometer. The FTIR spectra were recorded from 400 to 4000 cm−1. The
NMR spectroscopy was performed using a JEOL ECS-type nuclear magnetic resonance
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spectrometer with a frequency of 400 MHz. The TGA technique was used to study the
weight loss of Guar gum, and guar-ADI compound at various temperatures. The TGA
analysis was successfully recorded using a Mettler Toledo thermogravimetric analyzer
DSC3+. The dried hydrogel’s surface morphology was examined using a JEOL scanning
electron microscope (JSM 7000F) equipped with an EDS system. SEM images were cap-
tured at different magnifications to investigate the hydrogel’s surface morphology. The
EDS investigation of the dried hydrogel was achieved using the JEOL scanning electron
microscope (JSM 7000F) with the EDS system. XRD patterns of the dried hydrogels and
their components were measured using XRD analysis. The XRD analysis of the hydrogel
was conducted using the Bruker D8 Discover instrument. Rheological characterization
of all hydrogel samples was conducted using a dynamic hybrid rheometer (DHR)-2 from
TA Instruments (New Castle, DE, USA) with a 40 mm diameter flow ramp and a 1◦ angle
cone plate geometry. Oscillation (frequency) sweep experiments were studied at 25 ◦C to
determine the viscoelastic response of the gel. Flow ramp experiments were conducted
at a 1% strain and a frequency of 1 Hz to evaluate the flow behavior and shear thinning
properties with varying levels of viscosity based on gel concentration. Oscillation frequency
sweep experiments were executed at an angular frequency ranging from 10 to 1000 rad/s
and a 1% strain to assess the mechanical response under deformation. The concentrations
of drugs (BSA and anastrozole) were determined using a Perkin Elmer Inc. double-beam
UV-Visible spectrophotometer operating in the 200 to 700 nm range.

2.6. Measurement of the Swelling Property

To study the hydrogel’s swelling behavior, excess water was removed by wiping the
hydrogel with tissue paper, and the initial weight was recorded. Subsequently, the hydrogel
was immersed in PBS buffer at pH 7.4 for a duration of 24 h. After carefully blotting away
the excess buffer with tissue paper, the swollen hydrogel’s final weight was recorded. The
swelling percentage (%) of the hydrogel was calculated using the following formula:

Swelling % =

[
Wt − Wo

Wo

]
× 100

Here, Wt is the weight of the hydrogel at time t, and Wo represents the hydrogel’s
initial weight.

2.7. In Vitro Drug Release Study

To study in vitro drug release, BSA was employed as a hydrophilic drug, while anas-
trozole served as a hydrophobic drug, as indicated in the literature [35]. The study was
conducted using a 5% hydrogel at a temperature of 37 ◦C in PBS. To initiate the experiment,
5% (w/w) hydrogels with varying concentrations of BSA (1, 3, and 6 mg/mL) and anastro-
zole (50, 250, and 500 µg/mL) were prepared. This was achieved by rehydrating 100 mg
of lyophilized mixtures in PBS (pH 7.4) at a 50/50 ratio (w/w). During the experiment,
a 3 mL aliquot was taken out at specific time intervals to assess the drugs released from
the hydrogel. To maintain sink conditions, a fresh media of 3 mL was replenished after
each withdrawal. The concentrations of the released drugs were analyzed and calculated
based on the wavelength maxima for BSA at 280 nm and anastrozole at 263 nm using
UV-vis spectroscopy.

2.8. Cell Culture

All cell culture and biocompatibility studies performed are ethically in compliance.
They were conducted in a Biosafety level-2 (BSL-2) facility approved by the University
of Arkansas at Little Rock’s Institutional Biosaftey Committee (protocol approval #00057,
25 April 2012). Mouse osteoblastic cells (MC3T3-E1) were purchased from the American
Type Culture Collection (ATCC). The cells were cultured in MEM-Earle’s medium supple-
mented with 10% FBS and penicillin (500 units/mL), and streptomycin (500 units/mL) as
described earlier [36]. The cell culture was maintained in a controlled humidified environ-
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ment at 37 ◦C with a 5% CO2 atmosphere in an incubator and subcultured at approximately
80% confluence. For subculture, cells were washed with PBS solution at pH 7.4 and de-
tached with 0.05% Trypsin/0.53 mM EDTA solution. Trypsin/EDTA solution was removed
by centrifugation. Live cells were counted by hemocytometer following trypan blue stain-
ing before plating on scaffold materials for biocompatibility assessment [36]. The medium
was refreshed every 2–3 days to ensure optimal cell growth and viability.

2.9. Biocompatibility Assay

The biocompatibility assessment of the hydrogel was conducted using Mouse os-
teoblastic cells (MC3T3-E1). These cells serve as a widely accepted model for testing any
application for bone implants. Cell viability was determined using a cell counting kit-8
(CCK-8) assay, which is a method used to determine viable cell counts, reflecting cell
growth and viability. In this assay, control samples, hydrogel scaffolds, and hydrogel
scaffolds containing test drugs were added to 96-well plates under sterile conditions and
allowed to settle overnight to form a thin film substratum before seeding the cells on them.
Approximately 5 × 103 MC3T3-E1 cells per well were seeded onto the plates and cultured
in a humidified incubator maintained at 37 ◦C with 5% CO2 for 24 h, 48 h, and 72 h to allow
for cell growth and interaction with the hydrogel. After the designated incubation period,
10 µL of the cell counting kit-8 assay solution was added to every well of the plate. The
plate was then further incubated at 37 ◦C for 4 h more. Subsequently, the absorbance of the
samples was measured using a microplate reader at 450 nm (Synergy H4, Bio-Tek). This
measurement allowed for the quantification of cell viability, which is indicative of the cell
growth on the hydrogel samples. The percentage of cell viability was calculated as follows.

Cell viability (%) = [(As − Ab)/(Ac − Ab)] × 100,

where,
As = Experimental well’s absorbance (absorbance of cells, medium, CCK8 and wells

of the hydrogel materials).
Ab = Absorbance of the blank well (absorbance of wells containing medium and CCK8).
Ac = Absorbance of the control well (absorbance of wells containing cells, medium

and CCK8).

2.10. Statistical Analysis

The results for biocompatibility studies are expressed as a mean ± SD from at least
3 independent experiments each conducted in quadruplicate wells. We used a one-way
ANOVA test to evaluate the statistical significance between the control and experimental
groups. The p-value of p ≤ 0.05 was considered as the data with significant difference
compared to controls.

3. Results and Discussions
3.1. Characterizations

The modified guar with 1-adamantyl isocyanate and polymerized βCD samples were
subjected to FTIR spectroscopy analysis for characterization. Figure S1 displays (Supporting
Information) the FTIR spectra of Guar, ADI, and modified guar (guar-ADI). In the Guar-
ADI spectrum, a broad peak ranging from 3584 to 3700 cm−1 indicates the combined O-H
and N-H stretching. The sharp peaks observed at 2850 cm−1 to 2930 cm−1 correspond
to -CH stretching, which is present in all compounds (guar, ADI, and Guar-ADI) [37].
Furthermore, the peak at 2250 cm−1 corresponds to the N=C=O group of ADI [38]. The
peak at 1620 cm−1 indicates the existence of the C=O functional group associated with
the urethane compound found in Guar-ADI, thus confirming the modification of guar
gum with ADI. Figure S2 (Supporting Information) indicates the FTIR spectra of βCD and
p-βCD. The FTIR spectrum of βCD shows a broad peak at 3300 cm−1 which is due to
hydroxyl (-OH) stretching, whereas the intense peak at 2920 cm−1 is due to C-H (symmetric
and asymmetric stretching vibrations) bonds in the molecule. The peak at 1640 cm−1 is
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due to the H-OH deformation peak of the adsorbed water in βCD [39]. The 1150 cm−1

and 1020 cm−1 peaks show the peaks of C-H overtone and C-O stretching frequency,
respectively. The peak at 1150 cm−1 also shows the peak of C-O-C vibration. All the peaks
matched the literature-reported data [39]. After the polymerization of βCD, the peaks were
slightly shifted, and no new peaks were observed because p-βCD and βCD both contain
similar functional groups. The shift observed from 2920 cm−1 to 2930 cm−1 is attributed to
the overlapping of C-H peaks of EPH with βCD.

The modification of guar gum with ADI and the polymerization of βCD to p-βCD was
further characterized using the 1H-NMR spectroscopy technique. Figure S3 (Supporting
Information) depicts the 1H-NMR of Guar-ADI in D2O solvent. The NMR peaks between
3–4 ppm are due to the peaks of guar gum, which agree with the literature-reported
peaks [40]. Figure S4 (Supporting Information) presents the 1H-NMR spectra of p-βCD in
deuterium oxide (D2O) solvent. The 1H-NMR of p-βCD shows six different peaks from
1.1–5.0 ppm. The two extra peaks at 3.7 and 3.8 ppm are present only in p-βCD but not
in βCD, confirming the compound to be p-βCD [41]. Figure S5 (Supporting Information)
shows 13C NMR of Guar-ADI, which shows peaks in the range of 6–174 ppm. The peaks at
63, 70, and 100 ppm are due to guar gum, and the remaining peaks are due to ADI and EPH
moieties [42]. The number of carbon peaks confirms that guar was modified with ADI.

The modification of Guar gum with ADI was investigated using the TGA technique, as
depicted in Figure 2, which illustrates the recorded weight loss of the samples at different
temperature ranges. Initially, both guar gum and guar-ADI exhibited weight loss between
25 ◦C and 258 ◦C, accounting for approximately 10% due to moisture loss [43]. The weight
loss was more pronounced in Guar-ADI compared to Guar gum, indicating a higher
moisture content in the Guar gum upon modification with ADI. Another weight loss
occurred between 225 ◦C and 320 ◦C, corresponding to approximately 65% weight loss
attributed to the loss of hemiacetal [44]. Subsequently, at 481 ◦C, guar gum experienced
a significant 95% weight loss because of the decomposition of the polymer backbone,
hemiacetal, and moisture loss [45]. In the case of Guar-ADI, a similar mass loss was
observed at 530 ◦C, indicating enhanced thermal stability resulting from the modification
with ADI.
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The XRD analysis of the dried hydrogel revealed a range of intense peak 2θ values
spanning from 15◦ to 84◦. Notably, Figure S6 (Supporting Information) highlights two
prominent peaks at 32◦ and 45◦. In contrast, the X-ray diffraction pattern of guar gum
displayed a broad peak at 2θ = 18◦, indicating its non-crystalline nature due to the small
crystallite size (5.05 Å), in accordance with the literature [46]. However, following the
synthesis of the hydrogel, the XRD pattern exhibited intense peaks at 2θ values of 15◦,
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27◦, 32◦, 45◦, 54◦, 57◦, 66◦, 75◦, and 84◦, indicating the presence of crystallinity within the
hydrogel. Notably, the peaks at 15◦ and 27◦ are characteristic of βCD [47].

The hydrogel underwent additional characterization through rheology measurements.
Figure 3a illustrates the viscosity versus shear rate profiles of 4% and 5% hydrogels. Viscos-
ity is a measure of a hydrogel’s resistance to flow [46]. In this instance, the viscosity exhibits
shear-thinning behavior, as viscosity decreases with the increase in the shear rate. This
property implies that the hydrogel can be easily injected under shear stress and rapidly
recover its structure upon stress removal [48]. Notably, the viscosity of the 5% hydrogel is
higher than that of the 4% hydrogel due to the greater polymer concentration, highlighting
the strength of the 5% hydrogel. Furthermore, the viscoelastic behavior of the 5% hydrogel
was assessed by examining the dynamic moduli as a function of angular frequency, as
shown in Figure 3b. Dynamic moduli represent the viscoelastic properties of the hydrogel,
representing the ratio of shear stress to shear strain under vibratory conditions. In this
analysis, the storage moduli values consistently exceeded the loss moduli values, indicating
the predominance of elasticity over viscosity in the entangled network of the hydrogel [48].
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Figure S7 (Supporting Information) presents the relationship between the tan delta
values of the 4% and 5% hydrogels and the angular frequency. Tan delta is the ratio of the
storage modulus to the loss modulus [49]. The storage modulus provides insights into the
elastic nature of the hydrogel, while the loss modulus describes its viscous behavior [50].
As the tan delta values for these hydrogels are below 1, it indicates that the hydrogels
exhibit a predominantly elastic rather than viscous behavior. Comparing the different
hydrogels, the 5% hydrogel demonstrates greater strength, as evidenced by lower tan delta
values compared to the 4% hydrogel across all angular frequencies. This suggests a higher
degree of entanglement in the 5% hydrogels compared to the 4% hydrogel.

The UV-visible spectroscopy analysis of the hydrogel revealed that the percent trans-
mittance is relatively consistent in both hydrogel samples. For the 4% hydrogel, the percent
transmittance was approximately 10, and this value increased with higher concentrations
of the hydrogel. In contrast, the 5% hydrogel exhibited a percent transmittance of ap-
proximately 19, indicating a higher polymeric concentration in the hydrogel. This higher
concentration contributes to the stronger nature of the 5% hydrogel, which restricts the pas-
sage of light. Importantly, the gradual change in transmittance suggests that the hydrogel
does not exhibit significant absorbance, which is advantageous for conducting drug release
studies without interference. Figure S8 (Supporting Information) illustrates the UV-visible
spectra of both the 4% and 5% hydrogel samples.

Figure S9 (Supporting Information) depicts the EDS analysis of 5% dried hydrogel to
determine its elemental composition. The EDS analysis of the 5% hydrogel revealed the
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relative abundance of constituent elements. By weight, the hydrogel comprises approxi-
mately 52.7% carbon, 30% nitrogen, and 17.4% oxygen. These data confirm the presence of
carbon, nitrogen, and oxygen in the hydrogel without any detectable impurities, further
supporting its suitability for biomedical applications.

For the swelling study, 0.558 g of a 5% hydrogel sample was utilized. This hydrogel
was immersed in deionized distilled water for 24 h, and its mass was measured. Following
the swelling process in distilled water, the mass of the hydrogel was found to be 3.22 g.
Therefore, the swelling percentage of the hydrogel was determined to be 477%. The
swelling study of the 5% hydrogel demonstrated its impressive capacity to absorb water,
approximately five times its weight or 477 times its original volume. This feature makes
the hydrogel highly valuable for various biomedical applications.

3.2. In Vitro Drug Release Study

The investigation of controlled drug release using an injectable hydrogel represents a
significant area of research, as mentioned earlier. In our study, we specifically examined
the hydrogel’s capability for controlled drug release under in vitro conditions, focusing
on two different substances: BSA and anastrozole. BSA was chosen as a model protein
for hydrophilic drugs due to its prevalence as the third-most abundant whey protein in
milk. Comprising a single chain of 583 amino acid residues, BSA has a molecular mass
of 66.5 kDa [51]. It is one of the major proteins in biological fluids and is commonly
utilized as a protein supplement in mammal cell culture media [52]. Previous research
conducted by Crow et al. explored in vitro BSA release from poly (L-lactic acid)-based
hydrogel materials [53], while Nadam et al. investigated the BSA release kinetics using
a hydrogel of poly(N-isopropylacrylamide) [54]. Furthermore, we examined anastrozole,
an anticancer drug, as a representative hydrophobic drug for in vitro release studies [55].
Anastrozole is a non-steroidal aromatase inhibitor primarily used to treat postmenopausal
women with estrogen-responsive breast cancer by reducing their estrogen levels [56]. Tuna
et al. studied the kinetics of anastrozole release from silk fibroin rods [57]. However, it is
noteworthy that no previous studies have investigated the release of BSA or anastrozole
using the Guar-ADI-p-βCD hydrogel, making our approach unique and innovative in the
investigation of the hydrogel’s ability in its drug delivery application.

An in vitro BSA release study was conducted using a 5% hydrogel with varying
concentrations of BSA (1, 3, and 6 mg/mL) in PBS (37 ◦C, pH 7.4) for approximately 190 h,
as depicted in Figure 4. During the initial 24 h, approximately 40% of the BSA was released
from the hydrogel containing 1 mg/mL BSA. In contrast, hydrogels with 3 mg/mL and
6 mg/mL of BSA exhibited less than 20% release. As the BSA concentration increased, the
cumulative percentage of drug release decreased. This observation can be attributed to the
stronger interaction between the protein and the hydrogel at higher concentrations [35].
The faster release observed at 1 mg/mL loading can be attributed to the relatively low
interaction between the proteins and the hydrogel. However, at higher concentrations of
drug loading, the protein tends to interact more strongly with the hydrogel, possibly via
hydrogen bond formation. This stronger interaction slows down the protein release from
the hydrogel matrix.

We then investigated the kinetics of drug release using various models. Firstly, we
examined the zero-order kinetics by plotting the graph of the percentage of cumulative drug
release against time. However, no linear relationship was observed (Figure 4), indicating
that BSA release did not follow zero-order kinetics.

Subsequently, we explored the Higuchi model for drug release. The Higuchi model
equation is represented as Q = KH t

1
2 , where Q indicates the cumulative amount of drug

release at the time ‘t’, KH is the Higuchi constant, and t is the time in hours [58]. Upon
plotting the percentage of cumulative release of the drug against the square root of time,
we once again observed a lack of linearity in the plot, indicating that BSA release did not
follow the Higuchi model (Figure S10a, Supporting Information). To investigate the BSA
release study from the 5% hydrogel, we also examined the Weibull Model by plotting
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Ln[−ln(1 − %Drug release)/100] vs. lnt. However, no linear relationship was observed
(Figure S10b, Supporting Information), indicating that the BSA release from the hydrogel
did not follow the Weibull Model.
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Finally, we investigated the first-order kinetics of BSA released from the 5% hydrogel
by plotting the natural logarithm of the percentage of the remaining drug against time,
as illustrated in Figure 5. Notably, straight lines were obtained, indicating that BSA was
released from the hydrogel material in accordance with first-order kinetics. This finding
indicates that the rate of BSA release from the hydrogel is dependent on the concentration
of BSA [59].

Rate of release of BSA = K [Conc. of BSA] (1)
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Additionally, an in vitro study was performed to investigate the release of anastrozole
from the 5% hydrogel at varying concentrations (50, 250, and 500 µg/mL) over a duration
of 10 h at 37 ◦C, as depicted in Figure 6. It was observed that approximately 68–75% of
anastrozole was released from the hydrogel within the first hour. Subsequently, the cumu-
lative percentage of drug release exhibited a slight decrease with increasing anastrozole
concentration. However, unlike BSA, the decrease in cumulative drug release was not
as pronounced.
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Again, the release kinetics of anastrozole was examined starting with zero-order
kinetics by plotting the percentage of cumulative drug release against time. However, a
linear relationship was not observed, indicating that the release profile does not adhere to
zero-order kinetics (Figure 6). Next, we examined the Weibull model for anastrozole release
by plotting Ln[−ln(1 − %Drug release)/100] vs. ln(t). However, no linear relationship
was observed, indicating that anastrozole release from the 5% hydrogel did not follow
the Weibull model. Additionally, we studied the kinetics of anastrozole release using the
Higuchi model by plotting % cumulative anastrozole release vs. the square root of time.
Again, no linear line was observed, suggesting that anastrozole release from the hydrogel
did not follow the Higuchi model.

Finally, first-order kinetics were analyzed by plotting the natural logarithm of the
percentage of remaining drugs against time, as illustrated in Figure 7. Notably, a linear plot
was obtained, suggesting that the release of anastrozole follows first-order kinetics and is
dependent on the concentration of anastrozole [59]. Thus, the release of anastrozole was
similar to the release of BSA albeit at a faster rate.
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The above in vitro loading and release of BSA and anastrozole study from the hydrogel
shows that this hydrogel is useful for the release of both proteins and molecular drugs.
By analyzing the kinetics of in vitro drug release study from hydrogel, the release of
drugs occurs by diffusion and swelling controlled mechanism. In the diffusion-controlled
mechanism, the concentrations of drugs are higher at the center of the hydrogel which
allows for the diffusion or release of drugs initially at a high rate also called burst release
and then slow release of drugs occurs from the pores or mesh of the hydrogel [60]. In
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the swelling-controlled mechanism, the polymers start to swell when the hydrogel is kept
in PBS and start to degrade when it reaches the maximum extent thereby the burst and
slow release of drugs occur [61]. In the case of the in vivo experiment, the drug should be
injected with the hydrogel in a liquid state. The burst release of drugs may happen before
settling down the gelling material, which gives immediate relief in the targeted area and
then a slow release of drugs occurs [62].

We also tested the potential injectability of the hydrogel. The hydrogel still flows even
after 2–3 min of mixing of two components to make the gel. Therefore, we believe it retains
the injectability property for a reasonable duration. After mixing the solution, it takes
approximately 5 min to form a stronger gel.

3.3. Biocompatibility Study

We conducted experiments to assess the potential of the hydrogel as a scaffold for
promoting bone cell growth under in vitro conditions using mouse osteoblast MC3T3
cells as a model. These cells are widely used to test the biocompatibility of bone implant
materials. In the case of bone defects, the regenerative capacity of bone can typically heal
most defects. However, when the defect size exceeds the critical threshold, the healing
process becomes impeded [63]. Autografts have been traditionally utilized for repairing
bone defects of critical size in orthopedics because of their exceptional osteoconductivity,
osteoinductivity, and osseointegration characteristics [64]. Nonetheless, autografts are
associated with limitations such as inflammation, disease transmission, limited availability,
and high costs [65]. To overcome these challenges, various scaffolds and polymeric ma-
terials have been explored [66]. Injectable hydrogels, in particular, have shown potential
for tissue engineering of bone [67]. However, the application of injectable hydrogels for
tissue engineering of bone is still in its early stages of development, which motivated us to
develop a suitable material.

To evaluate the performance of the hydrogel scaffold, mouse osteoblastic cell growth
both on the scaffold of 5% hydrogel and a control substrate was studied (MEM). The cells
were incubated at 37 ◦C for 24, 48, and 72 h (Figure 8). The results indicated that the cell
viability percentage in the hydrogel scaffold after 24 h was 137, compared to 100 in the
control group. Statistically, this value was significantly different compared to the control
group. Furthermore, the cell viability rate increased significantly over time. After 72 h, the
percentage of cell viability in the hydrogel scaffold reached 160, while it remained at 100 in
the control group. These findings demonstrate the biocompatibility of the hydrogel and
indicate that osteoblastic cells exhibit superior growth on the hydrogel scaffold compared
to the control substrate.

In order to determine whether the structure of the hydrogel scaffold was porous,
scanning electron microscopy (SEM) analysis was performed. A thin layer of the hydrogel
was spread over glass coverslips and analyzed by SEM following an ethanol dehydration
protocol used to dehydrate MC3T3 cells gown on similar scaffold surfaces. SEM images
(Figure 9A,B) taken at two different magnifications show that the surface of the scaffold
hydrogel was porous indeed.

To study further whether the scaffold hydrogel surface supported bone cell growth,
we studied the growth of the mouse osteoblastic MC3T3 cells on the hydrogel surface
by light microscopy as well as SEM analysis. MC3T3 cells were grown on the hydrogel
surfaces spread on the coverslips and placed in 6-well plates. For light microscopy, the cells
were viewed under a light microscope after washing the cells with PBS, pH 7.4. The growth
of the cells on the hydrogel surface is not expected to be seen by light microscopy because
of the non-transparent nature of the hydrogel, which limits the passage of light through the
gel. However, the growth of the cells over thin layers of the hydrogel was visible perhaps
due to limited light passing through the translucent gel (Figure 10A).
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Figure 8. Osteoblastic cell (MC3T3-E1) growth on the control and scaffold of 5% hydrogel materials
at different periods. Values shown are mean ± SD from at least three independent experiments
each conducted in the quadruplicate sample. We used a one-way ANOVA test to evaluate statistical
significance between experimental and control groups. The p-value of p ≤ 0.05 was taken as the
value with a significant difference as compared with controls. Cell viability on scaffold hydrogel was
significantly different from the controls at all time points tested (p ≤ 0.05).
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Figure 9. SEM images of the hydrogel scaffold. Hydrogel was spread over glass coverslips and
dehydrated with increasing concentrations of ethanol. Shown in the figure are two representative
SEM images at different magnifications showing porous structure of the hydrogel ((A). magnification
10,000×, (B). magnification 50,000×).

For SEM analysis, the cells were fixed overnight with ice-cold methanol and then
dehydrated with increasing concentrations of ethanol and time (40% -5 min, 50% -5 min,
60% -5 min, 70% -5 min, 80% -5 min, 90% -5 min, 95% -10 min and 100% -10 min) to
remove any moisture. The coverslips were mounted on aluminum stubs using double-
sided tape and made electronically conductive. The growth of the cells was then examined
by scanning electron microscopy. As shown in Figure 10B, scaffold hydrogel supported
bone cell growth. Cells grew evenly as monolayers over hydrogel surfaces and maintained
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the normal shape of MC3T3 cells. However, the granular and porous structure of the
scaffold was not visible. Rather the surface looked smoother perhaps due to the filling up
of the pores with cell culture materials and covering the granular surface by the cells. This
supports biocompatibility and the utility of the hydrogel as a bone implant material.
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Figure 10. Morphological analysis of MC3T cells grown on hydrogel surface spread as a thin layer
on glass coverslips. (A). shows the growth of the cells by light microscopy at 100× magnification.
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4. Conclusions

The injectable hydrogel was synthesized through a host-guest interaction between
p-βCD and Guar-ADI in a phosphate-buffered saline solution. Analytical techniques such
as NMR, FTIR, and TGA confirmed the successful modification of the compound. Rheology
analysis demonstrated the viscoelastic nature of the hydrogel. The release study of the
hydrophilic (BSA) and hydrophobic (anastrozole) drugs from the hydrogel revealed a
concentration-dependent decrease in cumulative drug release for BSA, indicating stronger
interaction with the hydrogel, while anastrozole showed faster release due to weaker at-
tachment to the hydrogel via hydrogen bond formation compared to BSA. Biocompatibility
assessment with osteoblastic cells showed significantly enhanced cell viability compared to
the control, with viability increasing over a 72 h period. These results highlight the hydro-
gel’s potential as an ECM material for tissue engineering of bone. Overall, this injectable
hydrogel exhibits promising properties for controlled drug delivery and tissue engineering
applications, offering opportunities for further development in the field.

Supplementary Materials: The following supporting information can be downloaded at:
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Transform Infrared (FTIR) spectroscopy of β-cyclodextrin (β-CD), and poly-β-cyclodextrin (p-βCD);
Figure S3: Proton Nuclear Magnetic Resonance (1H-NMR) spectroscopy of Guar-ADI; Figure S4: Pro-
ton Nuclear Magnetic Resonance (1H-NMR) spectroscopy of p-βCD; Figure S5: Carbon Nuclear
Magnetic Resonance (13C-NMR) spectroscopy of Guar-ADI; Figure S6: X-ray Diffraction (XRD) of
5% hydrogel; Figure S7: Tan δ vs. angular frequency of 4%, and 5% hydrogels at room temperature;
Figure S8: UV-Visible spectroscopy of 4% and 5% hydrogel; Figure S9: Scanning Electron Microscopy
(SEM) (a. ×5000, b. ×100, and c. ×2000 magnifications) and d. Energy Dispersive Spectroscopy
(EDS) of dried 5% hydrogel. Figure S10: Higuchi Model showing percentage (%) cumulative drug
release vs. square root of time for BSA release study from 5% hydrogel having 1, 3, and 6 mg/mL
BSA at 37 ◦C in PBS (7.4).
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