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Abstract: Background: Alzheimer’s disease (AD) is the most common form of dementia, which
makes the lives of patients and their families difficult for various reasons. Therefore, early detection
of AD is crucial to alleviating the symptoms through medication and treatment. Objective: Given
that AD strongly induces language disorders, this study aims to detect AD rapidly by analyzing
the language characteristics. Materials and Methods: The mini‑mental state examination for demen‑
tia screening (MMSE‑DS), which is most commonly used in South Korean public health centers, is
used to obtain negative answers based on the questionnaire. Among the acquired voices, signifi‑
cant questionnaires and answers are selected and converted into mel‑frequency cepstral coefficient
(MFCC)‑based spectrogram images. After accumulating the significant answers, validated data aug‑
mentation was achieved using the Densenet121 model. Five deep learning models, Inception v3,
VGG19, Xception, Resnet50, and Densenet121, were used to train and confirm the results. Results:
Considering the amount of data, the results of the five‑fold cross‑validation aremore significant than
those of the hold‑out method. Densenet121 exhibits a sensitivity of 0.9550, a specificity of 0.8333, and
an accuracy of 0.9000 in a five‑fold cross‑validation to separate AD patients from the control group.
Conclusions: The potential for remote health care can be increased by simplifying the AD screen‑
ing process. Furthermore, by facilitating remote health care, the proposed method can enhance the
accessibility of AD screening and increase the rate of early AD detection.

Keywords: Alzheimer’s disease; mental status and dementia tests; early diagnosis; speech acoustics;
deep learning; digital healthcare
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1. Introduction
Alzheimer’s disease (AD), the most common form of dementia, is a neurodegener‑

ative disease characterized by cognitive decline [1–3]. Among the various causes of de‑
mentia, AD accounts for 60–70% of all cases [4]. The increase in life expectancy has been
associated with a steady increase in the population with AD [5,6]. After the age of 65, the
likelihood that a person will develop AD doubles every five years. Therefore, the number
of patients with dementia will reportedly be over three times higher by 2050 compared to
2010 [7,8].

From the early stages to themost severe cases, the symptoms of AD include decreased
spatial awareness, lack of concentration, and distraction [9,10]. Other major symptoms
includememory impairment and deficits in language skills [11–13]. Additionally, physical
function decreases, which makes it difficult to perform daily activities; therefore, patients
lose autonomy and become dependent on others for care [13,14]. However, deterioration
in language ability can impair communication, thereby making daily life difficult for AD
patients and caregivers [14,15]. Over time, familymembers of AD patients may experience
increased physical and emotional exhaustion [16,17]. Moreover, owing to the high costs
of all care, diagnosis, and pharmacological treatment, AD is one of the most expensive
chronic diseases [15,18]. For example, the cost of caring for patients with AD and other
forms of dementia is over twice that of patients of the same age suffering from cancer and
74% higher than those with cardiovascular diseases [19,20]. Consequently, patients and
their families incur a financial burden [14,16–18].

Currently, there is no cure for AD, and it is considered a very serious disease [2,4].
However, if detected early, the progression of symptoms can be delayed or alleviated with
medication [21,22]. A definitive diagnosis of AD includes diagnostic techniques such as
genetic tests, cerebrospinal fluid tests, positron emission tomography (PET), andmagnetic
resonance imaging (MRI), which can be costly and invasive [23,24]. Therefore, they are
unsuitable for early diagnosis [18,23,24]. In addition, various standards for AD diagnosis
exist, but most depend on the results of tests performed by experts [25,26]. Furthermore,
AD has social consequences, such as the cost to the national economy. Therefore, there is
increasing interest in the development of simple screening techniques that can provide an
easy and convenient diagnosis that is accessible and low‑cost [27–29].

One possible solution is using speech analysis and processing to detect changes in lan‑
guage ability, which can facilitate the early detection ofAD [30,31]. These changes could be
a key indicator for the preclinical stages of AD [12,30] and for patients experiencing greater
difficulty speaking as the disease progresses [13]. AD patients may show speech‑related
symptoms such as hesitation, frequent pauses, blurred pronunciation, tremors, light stut‑
tering, the use of irregular words, reduced verbal fluency, changes in the rhythm of speech,
deviation from simple grammatical and lexical rules, slow or irregular breathing, and an
inability to control breathing [12,31]. Moreover, there is a close relationship between lan‑
guage ability and cognitive ability [32,33]. These characteristics can be used as an initial in‑
dicator to distinguish between AD‑related anomic aphasia and non‑AD pathology [12,30].
In terms of the order of symptom manifestation, it can be considered that language im‑
pairment occurs before memory impairment; therefore, it can be a good predictor of early
AD [32,33].

Although changes in acoustic and vocal rhythm may be imperceptible to the human
ear, advances in automatic speech analysis technology have made it possible to identify
and effectively extract these acoustic and temporal parameters [14,34]. Speech biometrics
or automatic speech analysis are considered ideal tools for assessing cognitive deficits or
changes in older adults, as these methods are capable of recording speech planning, se‑
quencing, and performance in real time [35]. Recently, various studies have attempted to
classify spoken language using different speech processing techniques and algorithms to
identify the early signs of cognitive decline [14,27,35,36].

In addition to the symptoms of language disorders, the vocabulary level, complexity
of syntactic structure, and use of irregular words are significantly affected by factors such
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as age, educational background, and cognitive ability; therefore, it is difficult to use these
predictors as indicators of early AD [37]. In contrast, the frequency of hesitation, impaired
affective prosody, emphasis of specific syllables, changes in tempo or timing, differences
in pitch and intonation, and irregular breathing can be used as indicators in speech anal‑
ysis and processing of voice signals [38–40]. Language analysis is important owing to its
suitability for classification; some studies have shown that it can be used to distinguish
between people with and without AD with over 91.2% accuracy [41,42].

The COVID‑19 pandemic has increased the demand for remote diagnosis and man‑
agement of AD [43,44]. The existing mode of mini‑mental state examination for dementia
screening (MMSE‑DS) requires patients to visit medical institutions for in‑person screen‑
ings. Therefore, the restrictions imposed due to the COVID‑19 pandemic have made early
AD diagnosis difficult [45,46]. To satisfy the changing requirements, government agencies
are planning to introduce a remote AD management system that will enable elderly peo‑
ple with reduced mobility to undergo dementia screening examinations at home [47–49].
Hence, there is a pressing need to develop measures with greater accuracy and efficiency
for remote AD diagnostic screening [48,50,51]. Previously, remote dementia management
systems were implemented over the phone [29,32,35]. Also, in recent years, there has been
active research on the delivery of telemedicine via smart devices and applications [45,46].
Various smart devices are highly suitable for the diagnosis and remotemanagement of AD,
considering they can quickly and easily capture voice and image data and, in some cases,
record basic bio‑signals [46,49,52].

In this study, MMSE‑DS is performed with AD patients and healthy adults to select
factors that are significant for classifying dementia patients based on case records. After
pre‑processing the voice data obtained for each item, mel‑frequency cepstral coefficients
(MFCCs) are used to produce a spectrogramby arranging the coefficients in a specific order
defined by the authors and synthesizing them into a single image. These images are used
for training and are applied to different deep learning models to obtain high accuracy.
Furthermore, we establish the criteria for the selection of factors suitable for analysis based
on the MMSE‑DS and voice data. Lastly, we verify that the proposed method can be used
to diagnose AD with high accuracy compared to MMSE‑DS by utilizing voice signals that
can be easily acquired by exchanging simple questions and answers online using deep
learning methods without establishing a special examination system for AD screening.

2. Methods
2.1. Patient Information

The voice data ofADpatients (experimental group) andhealthy adults (control group)
were obtained by applying MMSE‑DS to 88 adults aged 50–75 years who expressly indi‑
cated their voluntary intention to participate (Table 1). The studywas conducted at Chung‑
namNational University Hospital between 1 April 2019 and 23 December 2019. The exper‑
imental group included those who had been diagnosed with AD in the last three months
and those who had a clinical dementia rating between 0.5 and 2.

Table 1. Status of age and gender distribution related to research data.

Age
AD Patients Healthy Adults

Male Female Male Female

50–59 0 0 1 8
60–69 6 12 7 12
70–75 2 20 4 8

Total
8 32 12 28

40 40

All experimental groups were confirmed to be AD patients through MRI, blood tests,
and neuropsychological tests. Patients with a rating > 3 or those who were unable to un‑
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dergo screening were excluded from this study. The control group was recruited via a
participant recruitment notice, and those who were deemed capable of conducting the
screening test were identified through a simple interview with a specialist. Finally, 42 pa‑
tients who scored at least 26 points were selected as the control group.

This study was approved by the institutional review board of Chungnam National
University Hospital (human subject study, prospective study, observational study, con‑
trolled study) (IRB approval number: CNUH2019‑02‑068), and the study protocol adhered
to the ethical guidelines of the 1975 Declaration of Helsinki. The MMSE‑DS for all partic‑
ipants was performed by one trained clinical psychologist. The entire MMSE‑DS process
for each participant was recorded as a video and saved as an MP4 file. Out of the 88 par‑
ticipants recruited, eight were excluded because they expressed their wish to withdraw.
Of the remaining 80 participants, 24 were men (11 in the experimental group) and 56 were
women (29 in the experimental group), i.e., accounting for 30 and 70% of the total partici‑
pants, respectively. The mean age of the participants was 68.8 years. The average length
of education was 9.36 years; 11.2 years for men and 8.27 years for women.

2.2. Clinical Data Collection
The screening test was conducted using MMSE‑DS, the most commonly used AD

screening method by public health centers in South Korea. MMSE‑DS includes the fol‑
lowing elements: temporal orientation, spatial orientation, memory registration, attention,
recall, visual denomination (naming), following a three‑stage command, phrase repetition,
visuospatial construction, reading, writing, comprehension, and judgment, and analysis of
scores [53–55]. Considering this study only used voice characteristics, the results for the
questions that required spoken answers were used [56,57]. Table 2 summarizes theMMSE‑
DS composition and questions.

Considering this study aims to perform a classification of AD patients by analyzing
voice data, we assumed that it would be advantageous and efficient to exclude some of
the results instead of using them all [33,35,36,57]. The selection of the questionnaires
was based on the expert advice of a focus group interview conducted by psychiatrists
at Chungnam National University Hospital. The questionnaires recommended excluding
some questions on temporal orientation, the ability to follow a command, spatial orienta‑
tion, and visuospatial construction as they required judgment, visual denomination, and
abstract thinking. In particular, questions on the ability to follow a command and visu‑
ospatial construction did not require a verbal response; hence, they were not suitable for
this study [32,58].

Next, based on the experts’ advice, items such as spatial orientation, temporal ori‑
entation, judgment, and visual denomination were gradually excluded to see the results.
Finally, twelve questions were determined to be most suitable for distinguishing AD pa‑
tients from the control group, which are marked with an asterisk in Table 2. They include
three items for memory registration, five items for attention and calculation, one item for
delayed recall, and one item for temporal orientation [53,54,59,60]. Although the responses
to all 28 questions were obtained, only twelve results were used for the subsequent MFCC
deep learning and spectrogram.

MMSE‑DS was performed once per participant, and the voice responses were ac‑
quired for 88 participants. All the recorded data were valid. After screening, eight patients
expressed their intention to withdraw from the study, and their results were excluded.
Once the consent of the remainder of participants was obtained, the video and audio data
were recorded for the remaining 80 participants using a webcam (Logitech BRIO 4K web‑
cam) with supported 30 fps, ultra‑high definition, and 4096 × 2160 resolution.

Among the recorded voice responses, the parts corresponding to the participants’ an‑
swers were edited and saved as a wave file using the Cubase audio editor.
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Table 2. Questionnaires for the MMSE‑DS used in this study.

Number Items Individual Questions

1‑1

Temporal orientation

What year are we in now?

1‑2 What is the season?

1‑3 What is the date today?

1‑4 What day of the week is it?

1‑5 * What month are we in now?

2‑1

Spatial orientation

What city are we in?

2‑2 What borough are we in?

2‑3 What ‘dong’ (one of the administrative divisions) are we in?

2‑4 What floor of the building are we on?

6 What is the name of this place?

10 Following a three‑stage command

Please follow what I say and as it will be told only once, please listen
carefully and follow accordingly.

I will give you a piece of paper. Please take this piece of paper in your
right hand, fold it in half with both hands, and place it on your lap.

11 * Memory registration

I am going to name three objects. After I have said them, I want you to
repeat them. Please remember what they are because I will ask you to

name them again in a few minutes: tree (11‑1 *), car (11‑2 *),
hat (11‑3 *). Could you name the three items you have just heard?

12‑1 *

Attention and calculation

What is one hundred minus seven?

12‑2 * Yes. Then, what is the result after subtracting seven from the value?

12‑3 * Yes. Then, what is the result after subtracting seven from the value?

12‑4 * Yes. Then, what is the result after subtracting seven from the value?

12‑5 * Yes. Then, what is the result after subtracting seven from the value?

13 * Delayed recall What are the three objects I asked you to remember a few moments
ago? Tree (13‑1 *), car (13‑2 *), hat (13‑3 *).

14‑1
Visual denomination

(Showing a watch) What is this called?

14‑2 (Showing a pencil) What is this called?

15 Phrase repetition

Please listen carefully to what I say and repeat accordingly. Please
note that only one attempt will be allowed. Please listen carefully and
repeat after I finish. Ganjang Gonjang Gongjangjang (Translation:
head of the soy source factory, used for checking pronunciation)

16 Visuospatial construction (Copying
interlocking pentagons)

Please see the interlocking pentagons here and copy the drawing in
the following blank section.

18
Judgment

Why do you need to wash your clothes?

19 Could you explain what “many a mickle makes a muckle” means?
* Questions selected for MFCC deep learning and spectrogram.

2.3. Data Preprocessing
The audio data corresponding to the responses to the twelve selected questions was

extracted from theMMSE‑DS videos using the ffmpeg toolwith a sampling rate of 44.1 kHz
and a stereo channel format. Then, the MP4 file format was used to minimize information
loss in the audio. The audio response informationwas set to 3 s as the participants’ answers
were completed within 1–2 s in most cases. When the response was completed in less than
3 s, silence was added to create a file with a total length of 3 s. Participants in the AD
group were often unable to answer the questions. In this case, they were given 30 s; if
therewas still no answer, the next questionwas asked. If a participant could not answer the
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questions, the entire 30 s period was treated as silence. In these cases, when the voice data
was converted to a spectrogram, the length of the dataset became long without containing
significant meaning. Therefore, to construct efficient training datasets, a 3 s clip of the 30 s
silencewas extracted and converted to a spectrogram. As all participants respondedwithin
1–2 s, “no response”, whichwas expressed as 3 s of silence, was sufficiently distinguishable.
Features from one wave file were converted to one image using the MFCC, and twelve
MFCC images were extracted from twelve wave files. Next, these images were combined
and reconstructed to form one image file. Figure 1 shows a conceptual diagram of the
pre‑processing procedure.
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2.4. Spectrogram
Extracting features from a wave file using MFCCs is a common technique used when

processing voice signals [61,62]. The sampling rate of the wave file was 44.1 kHz, which
indicated that there were 44,100 signals s−1. Each wave file had a duration of 3 s, which
gives 132,300 signals per file. If 0.025 s of audio information is defined as one frame of the
wave file, then there are 1103 signals per frame (rounded to the nearest whole number).
The period of frame extraction was 0.01 s; hence, the frame information was extracted by
skipping 0.01 × 44,100 = 441 signals. Therefore, if MFCC information was extracted from
132,300 signals for 3 s, a width of 599 MFCC images was obtained. The MFCC image was
26 pixels high because 13 MFCC feature values and 13 MFCC first derivative values were
extracted from each frame. Therefore, the MFCC image generated for each 3 s response
wave file was 599 × 26 pixels. By compiling the results for all twelve questions on the
vertical axis, the learning data (MFCC) comprising 599 × 312 pixels were generated for
each participant’s response. This description is shown in Figure 2.

2.5. Deep Learning Algorithms
Figure 1 shows the overall process, wherein the MFCC images are generated from

the audio data and used to train and test deep learning models. To improve the accuracy
during training, ten‑fold data augmentation was performed by translating the data hori‑
zontally and changing the brightness [63]. Because speech characteristics are expressed as
patterns and textures in MFCC images, augmentation methods that induce morphological
transformation were avoided. Further, we experimentally examined the range in which
the change in brightness value in MFCC image augmentation is suitable for learning in
deep learning. The brightness was changed by 80–120% compared to that of the original
image, in 5% increments. The “horizontal shift” led to a delayed response effect, and the
changes according to the shift range were validated and applied so that the effect was not
excessive. The horizontal shift was increased to ±25% in 5% increments.
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In order to perform accurate augmentation, we confirmed the section where the
Densenet121 model showed the highest performance after augmenting data for brightness
and horizontal shift, respectively. As the convolutional network incorporates shorter con‑
nections between layers closer to the input and those closer to the output, the network be‑
comes deeper, more accurate, and capable of learning more efficiently. Densenet121 con‑
nects each layer to every other layer in a feed‑forward manner. In traditional convolu‑
tional networks, each layer has L connections (one connection to the next layer), whereas
Densenet121 has L× (L + 1)/2 connections. For each layer, all previous featuremaps are used
as inputs, and its own feature map is utilized as inputs for all subsequent layers. Therefore,
the advantages of Densenet121 include: (1) alleviating the vanishing‑gradient problem and
enhancing feature propagation. (2) encouraging feature reuse and reducing the number
of parameters. Considering these characteristics, the Densenet121 model, which is suited
for MFCC analysis, was selected in this experiment [64,65]. Through this process, we per‑
formed data augmentation techniques that were advantageous for deep learning training.
The corresponding results are presented in Appendix A (Tables A1 and A2). Based on these
results, we finally applied brightness±15% and right shift 20% augmentation to our training
dataset. The eighty MFCC images obtained from the participants were augmented tenfold;
hence, the results comprised 400 images each for healthy adults and AD patients.

To classify healthy adults and AD patients using MFCC images, training and pre‑
dictions were performed using five deep learning models, which are representative CNN
algorithms for image classification and include Densenet121, Inception v3, VGG19, Xcep‑
tion, and Resnet50 [66]. In the MFCC image, the signal characteristics were expressed in
the form of a pattern or texture. Therefore, deep learningmodels suitable for image pattern
or texture type classification were selected [67–69]. The performance of the five CNN algo‑
rithms was evaluated using the five‑fold cross‑validation and hold‑out methods, wherein
the datasets were divided in a ratio of 8:1:1 for training, validation, and testing, respec‑
tively [70].

The training for each algorithmwas stopped early to avoid overfitting by checking the
training and validation losses three times. AdaMax was used as an optimizer to optimize
the deep learning models, with a learning rate of 1× 10−6 and a batch size of 4. For all five
types of models, the number of epochs was equally applied to 60, the number of training
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datawas 640, and the length of the test data was 16. In the case of five‑fold cross‑validation,
all models were iterated five times and the validation splits were set at 0.1.

3. Results
Performance Comparison

In order to acquire accurate results for the five deep learning algorithms, the per‑
formance results of the hold‑out and cross‑validation methods were obtained. In this
experiment, we focused on metrics such as sensitivity, which is the value predicted by
themodel as ADpatients among actual ADpatients, and positive predictive value (PPV),
which represents the ratio of actual AD patients among predicted AD patients [71]. Ad‑
ditionally, the F1‑scorewas utilized to assess themodel’s balanced performance between
positive and negative predictions. These metrics provide valuable insights into the per‑
formance of the classification model in terms of correctly identifying positive instances,
the accuracy of positive predictions, and the overall balance between precision and recall.
Furthermore, metrics such as specificity and negative predictive value (NPV), which is a
value representing the actual proportion of normal people among normal people, were
calculated and shown in Tables 3 and 4. The confusion matrix for each algorithm is in
Figures A1 and A2 of Appendix A.

Table 3. Performance metrics of the five deep learning models for the five‑fold cross‑validation.

Model Name Sensitivity Specificity Accuracy PPV NPV F1‑Score AUC

Densenet121 0.9550 0.8333 0.9000 0.8791 0.9314 0.9139 0.9243

Inception v3 0.9305 0.8099 0.8750 0.8556 0.9179 0.8887 0.9177

VGG19 0.9750 0.8236 0.9000 0.8494 0.9778 0.9013 0.8886

Xception 0.9455 0.3183 0.6000 0.5855 0.9143 0.6997 0.8349

Resnet50 0.8944 0.8979 0.9000 0.8994 0.9042 0.8956 0.9286

Table 4. Performance metrics of the five deep learning models for the hold‑out validation.

Model Name Sensitivity Specificity Accuracy PPV NPV F1‑Score AUC

Densenet121 1.0000 0.7143 0.8750 0.8182 1.0000 0.9000 0.9048

Inception v3 0.9000 0.8333 0.8750 0.9000 0.8333 0.9000 0.9500

VGG19 1.0000 0.6250 0.8125 0.7273 1.0000 0.8421 0.9219

Xception 1.0000 0.2500 0.6250 0.5714 1.0000 0.7273 0.8594

Resnet50 0.8889 1.0000 0.9375 1.0000 0.8750 0.9412 0.9524

As a result, in the five‑fold cross‑validation, Densenet121 showed the highest perfor‑
mance with a sensitivity of 0.9550, an accuracy of 0.9000, a PPV of 0.8791, an F1‑score of
0.9139, and an AUC of 0.9243. As shown in the AUC graph (Figure 3), Resnet50 and Incep‑
tion v3 also showed high performance. Likewise, in the results of the hold‑out validation,
Densenet121, Inception v3, and Resnet50 showed high performance in terms of sensitivity,
accuracy, PPV, F1‑score, and AUC. Figure 3 compares the results obtained using the hold‑
out and five‑fold cross‑validation methods. The gray dashed curve represents the AUC of
MMSE‑DS [59].
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4. Discussion
This study presented a method of screening AD patients using only voice data. Voice

data were collected, pre‑processed, normalized, and converted into a spectrogram to ob‑
tainMFCC images. Deep learningmodels are commonly trainedwith theMFCC transition
to utilize the advantages of sound signals and non‑verbal elements [71–74]. MFCC features
have been widely used in voice classification tasks, as they have been shown to perform
well in terms of robustness and discrimination power. These features are based on the
mel‑frequency scale, which is a non‑linear frequency scale that is closely related to the
non‑verbal elements. For this reason, we used MFCC and two‑dimensional spectrogram
images [75–77]. The MMSE‑DS assessment tool, the most widely used method for inter‑
viewing AD patients in public health centers in South Korea, was used to acquire the voice
data. The MMSE‑DS comprised 28 questions that were used to screen patients for their
attention and calculation, temporal orientation, memory registration, and delayed recall.

Responses were obtained for all questions with MMSE‑DS. At the beginning of the
experiment, we trained the deep learning model using all the questions. We attempted to
train the model in various ways, but the ROC value was very low at 0.6. Therefore, we
judged that it is more effective to select valid questions and use them for model training
than to use all questionnaires. For this reason, not all of these responses were converted
into MFCC images; only 12 questions were finally selected based on expert advice from a
focus group interview conducted by psychiatrists at Chungnam National University Hos‑
pital. The excluded questions were based on temporal orientation, ability to follow a com‑
mand, spatial orientation, and visuospatial construction, as they required judgment, visual
denomination, and abstract thinking. In particular, the ability to follow a command and vi‑
suospatial construction questions did not require a verbal response, and hence, they were
not suitable for this study [32,58].

The answers to each question were standardized to a duration of 3 s. One MFCC
image was generated, and the answers to all 12 questions were compiled to generate a
training image. The responses were standardized to 3 s because none of the responses in
either group exceeded this duration. However, the AD patients were unable to answer
some questions, in which case a waiting time of 30 s was provided. If there was no answer
at the end of this period, silencewas added to the entire duration. The texture of theMFCC
image of the part processed as silence was different from the voice signals, and if all 30 s
of the wait time were used, the ratio of the texture of silence would become unnecessarily
high. Considering that these factors hinder learning performance, the voice data were
standardized to 3 s, which was found to be an appropriate time to receive an answer.
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In this study, the AD classification accuracy of the deep learning model was mea‑
sured using the five‑fold cross‑validation and hold‑out validationmethods. In the five‑fold
cross‑validationmethod, theDensenet121model exhibited the highest overall accuracy. In‑
ception v3 and VGG19 also exhibited high accuracy. In the hold‑out validation method,
Resnet50, Inception v3, and Densenet121 showed high performance.

The conventional methods used for a definitive diagnosis of AD, such as genetic tests,
cerebrospinal fluid tests, PET, and MR imaging, are invasive and costly, making them less
accessible [23,24]. Moreover, these methods typically require expert interpretation [25,26].
In contrast, the approach presented in this study, utilizing a deep learning model based
on voice analysis, offers a non‑invasive, cost‑effective, and time‑efficient alternative. If it
is more systematized, it may be automated and utilized without the help of experts.

Overall, theDensenet121, Inception v3, resnet50, andVGG19models performed excel‑
lently and exhibited similar or superior performance to theMMSE‑DS [59]. When the voice
signals of the responseswere analyzed to classify theADpatients, we achieved a sensitivity
of 0.9550, a specificity of 0.8333, an accuracy of 0.9000, and an area under the curve (AUC)
of 0.9243 in the five‑fold cross‑validation method. The accuracy of this study, wherein the
spectrogram of the voice data was used to train a convolutional neural network (CNN)
to classify AD patients, was higher than that reported by Duc and Ryu (85.27%), who in‑
vestigated the correlation between the 3D‑functional MRI results and MMSE scores [78],
and Tae Hui Kim (0.895), who evaluated the diagnostic accuracy of MMSE‑DS [59]. Addi‑
tionally, this study showed greater accuracy than the results reported by Liu and Cheng
(91.2%), who used FDG‑PET images to classify AD patients using a CNN and a recurrent
neural network [79].

Considering AD patients were classified solely based on the analysis of voice signals,
questions from the MMSE‑DS requiring execution, visuospatial construction, judgment,
and abstract thinking were not included in the experimental data based on recommen‑
dations from psychiatrists. This study aimed to show that AD classification is possible
without these elements, and hence, the results are significant. In addition, it is consid‑
eredmeaningful to confirmwhich questionnaire among theMMSE‑DS is suitable for voice‑
based deep learning classification. The academia community related to AD in South Korea
judged that these results were reliable and useful for screening AD patients. In this study,
an individual effect analysis of each question was not performed. It is expected that more
diverse and accurate results can be acquired if the scope is expanded by performing an
individual analysis of each question, a validation of a combination of various questions,
and an analysis including additional elements.

We have tried to detect Alzheimer’s disease based on the audio datawithout including
any semantics. Therefore, we focused on non‑verbal characteristics in the responses of pa‑
tients with Alzheimer’s disease, and for this purpose, we recruited subjects and designed
an experiment. Actually, the experiment’s results showed that Alzheimer’s dementia pa‑
tients had distinctive features in intonation and nuance, as well as inaccurate pronuncia‑
tion, a slow pace, and the elongation of vowel sounds, regardless of whether the answer
was correct or not [71–74].

As this was an experimental study in which real AD patients were recruited, there
are limitations in terms of the subjects and data. Because the experiment was conducted
with a limited number of 80 people, this study could not perform external validation. In
future studies, subject recruitment will be conducted on a large scale, and subjects from
external institutions for external validation will be considered. In addition, other voice
data, not responses to specific answers, will be collected, compared, and analyzed. Also,
the severity of dementia will be classified using a deep learning model.
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With respect to data augmentation, there are concerns that traditional data augmenta‑
tion methods (flip, crop, enlargement, reduction, rotation, inversion, etc.) may negatively
impact patterns or textures reflecting non‑verbal characteristics in MFCC images. As can
be seen in Tables A1 and A2, the augmentation range of the brightness and horizontal shift
also preserves the quality of usable data by validating the effective range. It is expected that
more accurate and valid results can be obtained by increasing the number of participating
subjects and the amount of data.

From a clinical point of view, our results have several strengths. First, MMSE‑DS
requires checking all 28 items, while our results require only 12 items, making it simple
and time‑saving. Second, the MMSE‑DS should have different cut‑off scores according to
educational background, age, and gender. It is convenient and useful because clinicians
do not have to consider various conditions for dementia screening.

But there are also limitations. Dementia occurswhen there is a severe decrease in func‑
tion in some of the various cognitive domains. Since this study used only temporal orienta‑
tion, memory registration, delayed recall, and attention, the evaluation of other cognitive
functions may be limited. However, as mentioned earlier, in the early stages of dementia,
generally there is a decrease in peripheral awareness, a lack of concentration, distraction,
memory impairment, and a decrease in language ability. In other words, if early demen‑
tia patients can be selected through voice and responses to limited items, it is expected to
bring about a fundamental innovation in the dementia screening method.

This study is a simplified dementia screening test, so further validation of each ques‑
tion’s reliability is needed, but it is considered to be a useful technique for screening high‑
risk groups. It will also be of great help in developing a platform that performs high‑risk
screening, precise diagnostic testing, and management.

If the deep learning model proposed in this study is used, AD screening can be per‑
formed more easily and quickly. Based on this, it is possible to build a telemedicine or
screening automation system through smart devices [46,52]. By installing them in an eas‑
ily accessible place, the barrier to entry can be lowered, and the quality of telemedicine can
be improved by utilizing virtual reality [47–49]. In addition, since early diagnosis of AD
can inhibit its progression, it is expected that the simple screening method introduced in
this paper will also work as a digital therapeutic.

5. Conclusions
In this study, voice data were acquired using MMSE‑DS to distinguish between AD

patients and healthy adults with high accuracy. In the five‑fold cross and hold‑out valida‑
tion, Densenet121, Inception v3, and Resnet50 deep learning models showed high perfor‑
mancewith sensitivity, accuracy, PPV, F1‑score, andAUCmetrics. Their performancewas
higher than the classification accuracy of MMSE‑DS, and they also recorded good results
compared to other studies that did not use voice‑deep learning. Utilizing the results of this
study, the screening process for AD patients can be simplified, which can contribute to in‑
creasing the accessibility of AD testing and the early diagnosis rate. In addition, it can be
developed into an automated system to reduce dependence on experts and can contribute
to AD screening by being applied to remote or online medical treatment.
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Appendix A

Table A1. The augmentation range of the brightness.

Model
Name Augmentation Sensitivity Specificity Accuracy PPV NPV F1‑Score AUC

Densnet121 Brightness ±5% 1.0000 0.8571 0.9375 0.9000 1.0000 0.9473 1.0000

Densnet121 Brightness ±10% 1.0000 0.8000 0.8750 0.7500 1.0000 0.8571 0.9666

Densnet121 Brightness ±15% 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9682

Densnet121 Brightness ±20% 1.0000 0.8888 0.9375 0.8750 1.0000 0.9333 0.9523

Table A2. The augmentation range of the horizontal shift.

Model
Name Augmentation Sensitivity Specificity Accuracy PPV NPV F1‑Score AUC

Densnet121 Right shift 5% 1.0000 0.8750 0.9375 0.8888 1.0000 0.9411 0.9375

Densnet121 Right shift 10% 1.0000 0.8571 0.9375 0.9000 1.0000 0.9473 0.9365

Densnet121 Right shift 15% 1.0000 0.9000 0.9375 0.8571 1.0000 0.9230 0.9833

Densnet121 Right shift 20% 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Densnet121 Right shift 25% 0.8571 1.0000 0.9375 1.0000 0.9000 0.9230 1.0000

The confusion matrix for each algorithm is in Figures A1 and A2.

https://github.com/mikeahn00/ahn_experiment
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