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Abstract: The automatic generation of descriptions for medical images has sparked increasing interest
in the healthcare field due to its potential to assist professionals in the interpretation and analysis
of clinical exams. This study explores the development and evaluation of a generalist generative
model for medical images. Gaps were identified in the literature, such as the lack of studies that
explore the performance of specific models for medical description generation and the need for
objective evaluation of the quality of generated descriptions. Additionally, there is a lack of model
generalization to different image modalities and medical conditions. To address these issues, a
methodological strategy was adopted, combining natural language processing and features extraction
from medical images and feeding them into a generative model based on neural networks. The
goal was to achieve model generalization across various image modalities and medical conditions.
The results showed promising outcomes in the generation of descriptions, with an accuracy of 0.7628
and a BLEU-1 score of 0.5387. However, the quality of the generated descriptions may still be limited,
exhibiting semantic errors or lacking relevant details. These limitations could be attributed to the
availability and representativeness of the data, as well as the techniques used.

Keywords: digital image processing; natural language processing; transfer learning; biomedical
engineering

1. Introduction

The field of medicine has undergone a transformative revolution, owing to the rapid
advancement of computational technologies. These technological breakthroughs have
played a pivotal role in enhancing patient care by enabling more precise and efficient
diagnosis, treatment, and patient monitoring. Specifically, the integration of Artificial In-
telligence (AI) has emerged as a transformative force, offering promising opportunities to
elevate the quality and efficacy of healthcare services. Significant achievements have al-
ready been attained through the application of AI in medical contexts. For instance, Ref. [1]
developed an automated system for diagnosing COVID-19 and common-acquired pneumo-
nia by utilizing chest CT scans. Additionally, Ref. [2] successfully implemented a multi-class
skin lesion detection and classification system through teledermatology.

Generative algorithms have proven to be an efficacious approach for automatically
generating textual descriptions of images. These algorithms possess the capability to discern
intricate patterns within images and express them coherently in natural language, thereby
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producing detailed and precise descriptions that faithfully reflect the salient features present
in the images.

Within the realm of medicine, the automatic generation of descriptions for medical
images has garnered increasing interest due to its potential to assist healthcare professionals
in interpreting and analyzing clinical examinations [3]. Elaborate and accurate descriptions
of medical images, such as X-rays and magnetic resonance imaging, play an integral
role in facilitating accurate diagnoses and effective patient treatment, thereby providing
invaluable information to healthcare practitioners. However, the manual generation of
such descriptions remains a laborious and error-prone process that necessitates a high level
of expertise [4].

Numerous research studies have explored the domain of automatic image description
generation in diverse contexts. Nevertheless, there remains a noticeable gap concerning
its application to medical images [5]. The distinctive complexities associated with medical
images, comprising specific anatomical structures and crucial clinical information, warrant
tailored approaches and techniques customized for the medical domain. Hence, there exists
a clear need to investigate and develop generative models capable of generating accurate
and contextually relevant descriptions for medical images.

Medical images play a crucial role in disease diagnosis, providing physicians with
detailed visual information about the internal structures and conditions of the human body.
They enable the identification of anomalies, lesions, or pathological changes, even at early
stages, before visible or palpable symptoms appear [6]. For example, X-rays, computed
tomography (CT) scans, magnetic resonance imaging (MRI), and ultrasounds can detect
early changes in diseases, allowing for early detection and increasing the chances of effective
treatment and better outcomes for patients. Moreover, medical images help identify and
characterize lesions, such as tumors, fractures, inflammations, and congenital abnormalities.
They provide essential information about the size, location, extent, and characteristics of
these lesions, enabling physicians to determine the most suitable treatment approach.

In this context, the development of generative models capable of automatically and ef-
ficiently producing descriptive texts for medical images becomes crucial. Previous research
has explored various approaches for automatic description generation, including rule-
based models, statistical models, and neural network-based models [7]. These approaches
have shown promising results in different domains, encompassing both general image
description and specific medical image description. However, despite recent advancements,
automatic description generation for medical images still faces significant challenges due
to the complexity and diversity of medical images.

The potential of automatic description generation for medical images lies in optimizing
the workflow of healthcare professionals, facilitating more efficient and accurate analysis
of clinical exams [8]. Implementing such solutions could lead to substantial benefits for
patients and healthcare providers, streamlining the decision-making process and enhancing
the overall quality of medical care [9].

The objective of the present work is to address the challenge of implementing a
generative model for medical image descriptions, with a specific focus on its application
to the publicly available "Radiology Objects in Context" (ROCO) dataset [10]. The central
research question seeks to explore the effective integration of natural language processing
techniques and machine learning to generate precise and contextually relevant descriptions
for medical images within the ROCO dataset.

The methodological approach adopted in this study consists of a combination of
natural language processing and machine learning techniques. A strategy is used where
image recognition models are employed to extract relevant attributes from medical images.
These attributes are used as inputs to a generative model based on neural networks that
create contextually relevant textual descriptions for their inputs. The model training is
performed using an annotated dataset, where each image is associated with a corresponding
textual description. The model evaluation is performed through various metrics and a
comparison with the provided real descriptions.
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The main contrubution of this work are:

1. Evaluate and compare the performance of different specific models concerning the
quality of the generated descriptions;

2. Explore the generalization of models to different medical image modalities, such as
X-rays, MRI, or CT scans, and to a variety of medical conditions.

2. Materials and Methods

In this section, all computational techniques used to generate textual descriptions of
medical images are presented. Firstly, the ROCO dataset is introduced. Then, the algorithm
for selecting a subset of images and texts from this database is described. Next, the ex-
periment to investigate the possible combinations of the studied variables is explained,
aiming to obtain the best combination of analyzed techniques. Subsequently, the generative
algorithm built using deep learning and natural language techniques for generating de-
scriptions of medical images is presented. Finally, the parameters used in the performance
evaluation of the generative algorithm are described.

2.1. The ROCO Dataset

In this study, the Radiology Objects in Context (ROCO) dataset was utilized. This dataset
comprises approximately 82,000 radiology images from diverse modalities, including
computed tomography, ultrasound, X-rays, fluoroscopy, positron emission tomography,
mammography, magnetic resonance imaging, angiography, among others. Figure 1 shows
an example subset of these images.

Figure 1. Images belonging to the ’radiology’ subset of the ROCO dataset.

In addition to radiological images, the dataset also contains medical images of other
types, such as figures, portraits, digital arts, illustrations, and clinical photos. This set could
potentially enhance prediction and classification performance; however, it was not utilized
in this study. Figure 2 displays a random subset of these images.
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Figure 2. Images belonging to the ’non-radiology’ subset of the ROCO dataset.

Each image in the ROCO dataset is associated with various text files containing
corresponding image descriptions, keywords characterizing it, two UMLS (Unified Medical
Language System) codes, a CUI (Concept Unique Identifier), SemTypes (Semantic Types),
and their respective download links. Figure 3 provides random images from the dataset
and their respective three-word descriptions.

Figure 3. Example of random images from the dataset and their respective three-word descriptions.

Using the ROCO dataset, it is possible to create systems for image description gen-
eration, allowing for multimodal representation for image sets that do not have a textual
representation, which is the main objective of this work. Additionally, it is possible to create
systems with the aim of structuring images and providing semantic annotation for image
retrieval and information purposes.
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2.2. Training, Testing, and Validation Data Sets

As presented in the previous section, the ROCO database contains approximately
82,000 medical images from different contexts. Therefore, to achieve the goal of creating
natural language sentences that describe the content of medical images through generative
models, the first step was to create an algorithm capable of selecting a subset of image-text
pairs from a well-defined context within the ROCO database.

Firstly, an algorithm that calculates the frequency of all keywords of the dataset in
descending order was developed. A portion of this output can be seen in Figure 4.

Figure 4. Listing of a portion of the frequency of all keywords.

As there are 37,075 distinct keywords with frequencies ranging from 1 to 14,870, an ar-
bitrary lower limit for word frequency was set, selecting only those with a frequency greater
than 500. This way, only the most relevant words from the ROCO dataset are included.

Analyzing the list of keywords with a frequency greater than 500, it was possible to
group most of them into three distinct categories. Words that could not be classified into
any of these categories were discarded. The categories are:

1. Type of examination;
2. Body part;
3. Identified problem.

These words belonging to the three defined categories were designated as keywords
of interest. Table 1 shows the keywords of interest for each of the defined categories and
their frequencies in parentheses.

Then, the algorithm generates a list of all possible combinations, taking three of the
values of interest defined in each category at a time. For each combination of keywords
of interest, the algorithm searches for images that match these values and saves them in
a specified directory.

This algorithm iterated over the list of all possible combinations and separated groups
of ROCO images belonging to combinations of keywords that contained between 10 and
80 images (arbitrary defined size range of a subclass). This resulted in a dataset containing
1419 medical images and their respective descriptive texts. The texts and the quantity of
images for each group can be found in Table 2.

Then, this set of 1419 medical images was randomly divided into three smaller parts,
in the proportion of 60%/20%/20%, consisting of the training, validation, and test sets for
the generative models implemented in this study.
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Table 1. Keywords of interest for each category.

Type of Examination Body Part Identified Problem

ct (12,752) chest (6881) tumor (2387)
scan (9651) artery (4718) fracture (2162)

tomography (8043) abdomen (2856) normal (2083)
radiograph (7198) lobe (2780) cystic (1700)

xray (5357) lung (2728) cyst (1477)
mri (4943) bone (2654) effusion (1371)

contrast (4140) tissue (2277) calcification (1179)
resonance (3318) mouth (2235) nodule (1158)
magnetic (3310) pulmonary (2100) hepatic (997)

abdominal (3274) head (2092) node (981)
ultrasound (2198) brain (2038) stent (901)

angiography (1680) vein (1897) heterogeneous (889)
angiogram (1220) liver (1695) pancreatic (874)

catheter (1020) ventricle (1675) weak (858)
pelvi (1635) aneurysm (842)

kidney (1468) edema (833)
spine (1321) irregular (752)
neck (1307) dilatation (746)

pleural (1294) absces (745)
muscle (1293) disease (743)
renal (1266) apical (700)

coronary (1258) hematoma (688)
femoral (1252) fistula (608)
cervical (1196) cancer (505)
atrium (1192)
bowel (1171)
aorta (1098)
aortic (1064)

hip (1018)
heart (620)
tooth (619)

2.3. Description of the Experiment

In this subsection, the experiment conducted to create a generative model of descrip-
tive texts for medical images is described in detail. The main objective of the experiment
was to investigate the possible combinations of the studied variables to gain valuable
insights into the model’s performance.

Firstly, it is important to emphasize that all the experiments were conducted on a Dell
Alienware M15 R7 notebook with the following configurations: 12th Generation Intel Core
i7-12700H, 2.30 GHz, 20 cores; 32 GB; 1 TB SSD; NVIDIA GeForce RTX 3070 Ti with 8 GB
dedicated memory; Windows 11.

To extract attributes from the images, a variety of classical image recognition models
were used: MobileNetV2 [11], DenseNet201 [12], ResNet152V2 [13], NASNetLarge [14],
VGG19 [15], Xception [16], InceptionV3 [17], and InceptionResNetV2 [18]. Each model
was individually employed to evaluate its ability to capture relevant information from the
medical images.

Furthermore, different gradient optimizers were explored for model training: Adam [19],
AdamW [20], Adadelta [21], and Adafactor [22]. This aimed to determine which optimizer
would provide the best results in terms of computational performance and model convergence.

Another line of experimentation involved the use of transfer learning in the image
feature extractors. Therefore, in part of the experiments, feature extractors pre-trained
with the ImageNet dataset were used. Additionally, regarding transfer learning, cases
with and without weight fine-tuning during the training phase were tested to evaluate
the influence of this process on the results. Experiments without using ImageNet transfer
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learning were also conducted to explore the model’s ability to learn directly from the
available medical data.

Table 2. Selected groups of keywords of interest.

Type of Examination Body Part Identified Problem Quantity of Images

ct chest tumor 52
ct artery aneurysm 63
ct abdomen tumor 38
ct abdomen cystic 58
ct abdomen hepatic 47
ct abdomen pancreatic 35
ct abdomen hematoma 38
ct lobe hepatic 51
ct lung effusion 56
ct head pancreatic 56
ct vein hepatic 34
ct liver cyst 35
ct liver hepatic 28

scan chest nodule 77
scan abdomen cystic 23
scan lobe hepatic 18
scan lung effusion 18
scan lung nodule 41
scan pulmonary nodule 17
scan head pancreatic 13

tomography chest tumor 29
tomography lobe nodule 41
tomography lobe hepatic 21
tomography lung effusion 20
tomography lung nodule 34
tomography pulmonary nodule 21
radiograph chest normal 47
radiograph bone fracture 41
radiograph pelvi fracture 44
radiograph neck fracture 31
radiograph femoral fracture 31
radiograph hip fracture 32

xray chest normal 65
contrast artery aneurysm 32

abdominal aortic aneurysm 35
angiography artery normal 39
angiogram artery aneurysm 58

Total 1419

During the experiment, data augmentation techniques, known as image augmentation,
were also considered. These techniques aim to expand the available dataset by applying
transformations such as rotation, zoom, and mirroring to the images. Experiments were
conducted with and without the use of data augmentation to analyze its impact on the
model’s performance.

It is important to note that all hyperparameters for each test section were optimized
using the KerasTuner API with the Grid Search approach. This process allowed for a sys-
tematic exploration of hyperparameter combinations and aided in identifying the best
configurations for each model.

During the training of each variant, model performance was monitored through
accuracy, as well as the processing time involved, measured by the time required for
training and testing. The best model is defined as the one with the highest accuracy.
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To address possible limitations of the proposed solution, imbalanced data was added
to the training, validation, and test sets. This choice allowed for an analysis of the impact
of class imbalance on the model’s performance and investigated the minimum dataset size
required to achieve satisfactory results. This analysis was essential to provide insights into
the model’s ability to effectively handle imbalanced data.

Finally, for the best obtained model, a detailed evaluation of its performance was con-
ducted by constructing confusion matrices for each part of the generated texts (exam type,
body part, and identified problem). These matrices allowed for visualizing the correct and
incorrect choices made by the best model in constructing the descriptive texts of medical
images. Key indicators, such as precision, recall, F1 score, and others, were calculated for
each matrix. These indicators provided an objective measure of the quality of the textual
descriptions generated by the model and served to evaluate its performance.

By combining all the studied variables and conducting systematic experiments, vari-
ous combinations of feature extraction models, gradient optimizers, use of transfer learning
(with and without weight fine-tuning), data augmentation techniques, and the presence of
imbalanced data were explored. With this approach, it was possible to gain an in-depth un-
derstanding of the performance, processing time, and limitations of the proposed solution.

2.4. Proposed Generative Model

For text generation, transformers stand out, which are machine learning models based
on attention mechanisms. Instead of sequentially processing words, e.g., how RNNs
operate, transformers calculate interactions between all words in a sentence using attention
operations [23]. These models have been successfully applied in generating descriptions
for medical images because they have the ability to capture complex relationships between
words and generate more contextually relevant descriptions [24].

Our generative text model consists of two interconnected transformer blocks: a trans-
former encoder block and a transformer decoder block.

In Figure 5, a summarized representation of the proposed generative model for medical
descriptions is depicted. In subsequent paragraphes, each element in this representation
will be explored. The code for the proposed model can be accessed at https://github.
com/ArturBarreto/GenerativeModelTextualDescriptionsMedicalImages (accessed on 6
August 2023).

The transformer encoder block is used to encode the features extracted by the CNN
from the medical images and generate a vector representation of this information. To build
this encoder, a class named “Transformer Encoder Block” was defined. This encoder
comprises attention layers, normalization layers, and a dense layer, which collectively
transform the input into a more meaningful representation for the model.

First, the input is normalized and then passed through the “Dense” layer. This layer
consists of a fully connected dense layer with a ReLU activation function. The result is
then passed through the “Multi-Head Attention” layer with multiple heads, which returns
an “attention utput” tensor. This tensor is added to the original input and normalized by
the “Layer Normalization” layer. The final result is a vector representation of the image
attributes fed into the generative model. This vector is returned as the output of the
transformer encoder.

The transformer decoder block operates by taking as input a tensor containing text
tokens and the outputs generated by the transformer encoder block. It consists of multiple
layers, including Multi-Head Attention layers, normalization layers, and dense layers. The
decoder processes the input tokens, ensuring that each token receives the relevant contex-
tual information from other tokens through Multi-Head Attention. It also incorporates
positional encoding to account for the sequential order of tokens.

https://github.com/ ArturBarreto/GenerativeModelTextualDescriptionsMedicalImages
https://github.com/ ArturBarreto/GenerativeModelTextualDescriptionsMedicalImages
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Figure 5. The proposed generative model.

This block aims to generate a probability distribution over the vocabulary, effectively
producing the next token in the sequence. The hyperparameters, such as the dimension of
word embeddings, the number of attention heads, and vocabulary size, play crucial roles
in determining the quality and coherence of the generated text.

This combination of components forms a strong foundation for a generative system
that can convert medical image data into understandable text, improving interpretability
and usefulness in medical image analysis.

2.5. Performance Evaluation Metrics

In this subsection, the metrics used to evaluate the performance of the proposed model
are presented.

Accuracy measures the proportion of correct words generated compared to the total
number of words generated and can be calculated using the equation:

Acc =
Number of correct words generated

Total number of words generated
. (1)

This equation is commonly used in the context of natural language processing (NLP),
machine learning, and text generation tasks to evaluate how well a system is performing in
terms of generating correct words and is expressed as a percentage or a decimal between
0 and 1. It measures the proportion of correctly generated words out of the total words
generated by the system.
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The loss represents the measure of the error between the model’s word predictions
and the actual words in the dataset. In this work, the loss is calculated using Sparse
Categorical Cross-Entropy. This function is commonly used in multi-class classification
tasks, where true labels are represented by integer values, i.e., in sparse encoding, and the
model’s predicted probabilities are calculated using a softmax activation function to obtain
a probability distribution over the classes [25]. The Sparse Categorical Cross-Entropy aims
to minimize the difference between the model’s predicted probabilities and the true labels,
penalizing incorrect classifications more heavily, and can be calculated using the equation:

Loss(y, ŷ) = −
C

∑
i=1

yi ln(ŷi). (2)

The Sparse Categorical Cross-Entropy loss function is a well-suited choice for training
generative text models for several compelling reasons. First and foremost, it is designed to
handle multi-class classification problems, making it appropriate for generating text where
each word or token corresponds to a specific class in the vocabulary. This loss function
efficiently quantifies the dissimilarity between the predicted probability distribution over
classes and the true class labels, promoting the generation of more accurate and contextually
relevant text. Additionally, it naturally accommodates the sparsity of the target distribution
in text generation tasks, as most words in a given language are not present in any given
context. This makes it especially valuable for modeling realistic language generation
scenarios where words are drawn from a vast vocabulary.

The accuracy metric provides an overall measure of the model’s ability to generate
correct words, while the loss metric indicates how close the model’s predictions are to the
ground truth during training. A lower value of the loss indicates better alignment between
predicted and true labels, reflecting better performance.

F1 score is a measure that combines precision and sensitivity into a single metric.
It is the harmonic mean between these two metrics and provides a balance between them.
It can be calculated using the equation:

F1 score = 2 × Precision × Sensitivity
Precision + Sensitivity

. (3)

Additionally, for the best model, the BLEU-1 metric was calculated. BLEU-1 is a
commonly used metric to evaluate the quality of translations or text generation. It measures
the overlap of unigrams between the generated sequences and the reference sequences.
It can be calculated using the equation:

BLEU-1 =
∑1-grams number of correctly predicted 1-grams

∑1-grams total number of predicted 1-grams
. (4)

3. Results

This section presents and discusses the results obtained from a series of experiments
conducted to create a generative model of descriptive texts for medical images. The out-
comes are organized in tables, each representing a specific experiment configuration in-
volving different combinations of image feature extraction models, gradient optimizers,
transfer learning usage, and data augmentation.

To facilitate the interpretation of the results, the columns in the tables are defined
as follows:

1. ID: a unique identifier for each experiment configuration;
2. OPTZ: the gradient optimizer used in the model training;
3. TL: an abbreviation for Transfer Learning, indicating whether the concept of transfer

learning from ImageNet was utilized;
4. TR: an abbreviation for Trainable, indicating whether the model weights were fine-

tuned during the training stage;
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5. IA: an abbreviation for Image Augmentation, indicating whether a data augmentation
technique was applied to the images;

6. Loss: the final value of the loss function obtained by the model;
7. ACC: the final accuracy achieved by the model;
8. Epochs: the number of training epochs;
9. Training Time (s): the time required for model training in seconds;
10. Test Time (s): the time required for model testing in seconds.

These metrics provide valuable information regarding the models’ performance in
terms of loss, accuracy, and training/testing time. By analyzing this information, it becomes
possible to compare different experiment configurations and identify those that achieved
the best results.

The provided data allows for an evaluation of the models’ performance concerning
various combinations of tested variables, such as feature extractors, gradient optimizers,
the use of transfer learning, and data augmentation techniques.

It is important to note that, after conducting all 192 experiments, the mean (µ) and
standard deviation (σ) of accuracy were calculated, resulting in the values presented in
Table 3. These results indicate that the experiments show statistically significant differences
regarding accuracy. Therefore, considering only this metric, it is possible to define the best
model as the one with the highest accuracy.

Table 3. Mean and standard deviation of accuracy.

CNN µ σ Min Max µ − σ µ + σ

DenseNet201 0.7365 0.0114 0.7151 0.7610 0.7250 0.7479
ResNet152V2 0.7154 0.0138 0.6868 0.7359 0.7016 0.7292
NASNetLarge 0.7050 0.0085 0.6891 0.7210 0.6965 0.7135

VGG19 0.7431 0.0167 0.7056 0.7628 0.7264 0.7598
Xception 0.7313 0.0116 0.7069 0.7499 0.7197 0.7429

InceptionV3 0.7236 0.0124 0.6992 0.7472 0.7111 0.7360
InceptionResNetV2 0.6985 0.0089 0.6823 0.7165 0.6896 0.7074

MobileNetV2 0.7056 0.0225 0.6603 0.7345 0.6831 0.7281

Global 0.7199 0.0206 0.6603 0.7628 0.6992 0.7404

3.1. DenseNet201 Family

Upon evaluating the results in Table 4, considering the various variables presented,
several significant trends can be identified.

Firstly, different gradient optimizers exhibit considerable impact on the model’s per-
formance. Notably, the Adafactor optimizer consistently demonstrated lower losses and
higher accuracies across various settings. This suggests that Adafactor is an effective
optimizer for training the DenseNet201 model in this specific context.

Furthermore, the use of transfer learning generally improved results when compared
to settings without transfer learning. Configurations with TL achieved lower losses and
higher accuracies across various gradient optimizer combinations. This emphasizes the
importance of leveraging pre-trained knowledge from broader models and adapting them
to specific tasks.

It is worth noting that the best results in this family occurred in cases where the model’s
weights were fine-tuned during the training stage. This implies that while ImageNet can
serve as a good starting point for these weights, better results can be achieved by fine-tuning
the weights during training.
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Table 4. Results of the DenseNet201 family.

ID OPTZ TL TR IA Loss ACC Epochs Training
Time (s)

Test Time
(s)

1 Adam X 0.7487 0.7276 20 6520 246
2 AdamW X 0.7727 0.7205 6 1656 250
3 Adadelta X 0.7601 0.7253 8 2185 248
4 Adafactor X 0.7539 0.7275 7 1896 259
5 Adam X X 0.7894 0.7151 20 5662 249
6 AdamW X X 0.7461 0.7271 6 1706 281
7 Adadelta X X 0.7390 0.7279 6 1784 293
8 Adafactor X X 0.7199 0.7356 6 1812 314
9 Adam X 0.7438 0.7443 10 2887 293
10 AdamW X 0.7244 0.7406 4 1160 298
11 Adadelta X 0.7223 0.7413 8 2345 306
12 Adafactor X 0.7190 0.7446 5 1476 319
13 Adam X X 0.6907 0.7413 18 5463 334
14 AdamW X X 0.6890 0.7483 4 1454 400
15 Adadelta X X 0.6818 0.7549 10 3400 357
16 Adafactor X X 0.6807 0.7532 7 3010 443
17 Adam X X 0.7519 0.7337 11 4778 345
18 AdamW X X 0.7534 0.7439 4 1203 329
19 Adadelta X X 0.7408 0.7449 5 1540 346
20 Adafactor X X 0.7190 0.7610 6 2205 420
21 Adam X X X 0.7236 0.7262 18 6640 424
22 AdamW X X X 0.7349 0.7242 4 1530 436
23 Adadelta X X X 0.7059 0.7343 8 2733 366
24 Adafactor X X X 0.7044 0.7318 4 1649 433

Total 66,694 7989

Concerning data augmentation, configurations with image augmentation consistently
showed lower losses and higher accuracies, indicating that data augmentation was benefi-
cial for the model’s performance. This technique improves model generalization, enhancing
robustness and reducing overfitting.

Additionally, the configurations exhibited significant variations in training times,
ranging from a few hundred seconds to several hours. These differences can be influenced
by various factors, such as dataset size, model complexity, among others. In general,
configurations with transfer learning and image augmentation tend to require more training
time due to additional processing needed for weight adjustments or data transformations.
Conversely, configurations without transfer learning and without image augmentation
may have shorter training times as they deal solely with the original dataset and do not
involve complex model adjustments.

When evaluating the results in the tables, several factors should be considered to
determine the best outcome. Accuracy (ACC) serves as an important indicator of the
model’s performance, measuring the proportion of correct predictions out of the total
predictions. Additionally, other metrics such as loss, F1 score, precision, and recall can be
taken into account.

Upon analysis, some configurations achieved relatively high accuracy. For instance,
configuration ID 20 achieved an accuracy of 0.7610, which is the highest among the tested
configurations. This configuration employed the DenseNet201 architecture as a feature
extractor for medical images, the Adafactor optimizer, transfer learning with weight adjust-
ment, and image augmentation.

Furthermore, other criteria, such as processing time and model scalability, need to
be considered. Some configurations that attained high accuracy may require significantly
longer training time, which could be impractical in certain cases. Thus, finding a balance
between performance and processing time is important, taking into account the available
resources and project constraints.
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Based on the presented results, configuration ID 20 appears to be one of the most
promising ones, as it achieves high accuracy and involves techniques such as transfer
learning, image augmentation, and weight adjustment. However, it is essential to conduct
further analyses and consider the specific requirements of the application or task at hand
before finalizing the choice.

3.2. ResNet152V2 Family

When analyzing the results from Table 5 and considering the various variables present
in the table, several relevant trends can be identified.

Table 5 presents the results of experiments conducted with the ResNet152V2 model
using different configurations. Each row represents a specific configuration identified by
its ID number, and the columns show various metrics such as optimizer (OPTZ), trans-
fer learning (TL), weight adjustment during training (TR), data augmentation (IA), loss,
accuracy (ACC), number of epochs, training time, and test time.

Regarding the optimizers, we observed that the AdamW optimizer (IDs 26, 30, 34, 38)
tends to yield good results in terms of accuracy, with values above 0.72, and relatively low
losses. Similarly, the Adafactor optimizer (IDs 28, 32, 36, 40) also shows promising results
in terms of accuracy, with values above 0.73.

The use of transfer learning (TL) and data augmentation (IA) techniques can lead to
significant improvements in the model’s performance. Several configurations that apply
these techniques show higher accuracy compared to configurations without them. For ex-
ample, configurations with IDs 29, 33, 37, and 41 exhibit superior results when both transfer
learning and data augmentation are applied.

Table 5. Results of the ResNet152V2 family.

ID OPTZ TL TR IA Loss ACC Epochs Training
Time (s)

Test Time
(s)

25 Adam X 0.8128 0.7020 20 7844 293
26 AdamW X 0.8027 0.7113 4 1654 385
27 Adadelta X 0.7894 0.7174 10 3999 294
28 Adafactor X 0.7840 0.7127 7 2815 308
29 Adam X X 0.8791 0.6868 11 4493 299
30 AdamW X X 0.8525 0.6929 5 2059 332
31 Adadelta X X 0.8480 0.6908 10 4116 355
32 Adafactor X X 0.8499 0.6919 6 2428 337
33 Adam X 0.7817 0.7277 15 5974 338
34 AdamW X 0.7539 0.7278 11 4395 318
35 Adadelta X 0.7524 0.7263 7 2912 366
36 Adafactor X 0.7413 0.7359 9 3771 452
37 Adam X X 0.7865 0.7151 18 7519 382
38 AdamW X X 0.7712 0.7248 6 2548 372
39 Adadelta X X 0.7722 0.7228 7 2957 361
40 Adafactor X X 0.7533 0.7311 11 4672 384
41 Adam X X 0.7424 0.7237 19 7932 381
42 AdamW X X 0.7593 0.7124 4 1647 334
43 Adadelta X X 0.7469 0.7136 7 2891 359
44 Adafactor X X 0.7271 0.7246 8 3645 1042
45 Adam X X X 0.7815 0.7033 20 9948 396
46 AdamW X X X 0.7629 0.7214 4 1648 339
47 Adadelta X X X 0.7523 0.7234 6 2713 453
48 Adafactor X X X 0.7425 0.7298 11 5785 489

Total 100,363 9371
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It is worth noting that some configurations, including transfer learning and/or data
augmentation, can lead to an increase in training time. This is because these techniques
often involve using pre-trained models or generating more training examples, which
require more processing time. Therefore, when considering these techniques, it is necessary
to strike a balance between model performance and the required training time. However,
the test time does not seem to be significantly affected by the evaluated configurations.

The results indicate that the use of specific optimizers such as Adafactor and AdamW,
combined with transfer learning, can lead to promising performance in terms of accuracy.
The best result in Table 5, considering the highest achieved accuracy, belongs to configura-
tion ID 36. This configuration achieved an accuracy of 0.7359 after nine training epochs.
In this configuration, the ResNet152V2 model was used with the Adafactor optimizer,
and transfer learning (TL) was applied.

Additionally, it is relevant to consider the training and testing time associated with this
configuration. In Table 5, it is indicated that the training time was 3771 s (approximately 1 h
and 3 min), and the testing time was 452 s (just under 8 min). Therefore, it is essential to
consider the achieved accuracy along with the training and testing time to evaluate the
efficiency and practicality of this configuration in a real-world context.

3.3. NASNetLarge Family

Table 6 presents the results of experiments conducted with the NASNetLarge model
using different configurations.

Four optimizers were tested during the training of the models: Adam, AdamW,
Adadelta, and Adafactor. Each optimizer has its own weight adjustment characteristics
and learning rates. The results show that there is no significant difference in the accuracy
achieved by the different optimizers, ranging from approximately 0.69 to 0.72.

Table 6. Results of the NASNetLarge family.

ID OPTZ TL TR IA Loss ACC Epochs Training
Time (s)

Test Time
(s)

49 Adam X 0.8557 0.6914 16 7587 466
50 AdamW X 0.8530 0.6980 5 2427 479
51 Adadelta X 0.8526 0.6900 5 2418 495
52 Adafactor X 0.8356 0.7011 8 3887 482
53 Adam X X 0.8414 0.7001 18 8774 490
54 AdamW X X 0.8509 0.6891 4 2005 551
55 Adadelta X X 0.8475 0.6969 8 3699 537
56 Adafactor X X 0.8459 0.6949 5 2494 523
57 Adam X 0.8125 0.7084 11 5433 531
58 AdamW X 0.8115 0.7095 4 1967 537
59 Adadelta X 0.7938 0.7105 7 3798 674
60 Adafactor X 0.7849 0.7173 6 3864 765
61 Adam X X 0.8122 0.7065 15 10,067 822
62 AdamW X X 0.7857 0.7089 6 3495 707
63 Adadelta X X 0.7780 0.7137 6 4172 832
64 Adafactor X X 0.7734 0.7081 5 3401 862
65 Adam X X 0.7838 0.7061 12 7191 768
66 AdamW X X 0.8015 0.7141 7 3520 572
67 Adadelta X X 0.8002 0.7121 4 2210 603
68 Adafactor X X 0.7813 0.7210 7 4260 768
69 Adam X X X 0.8082 0.7021 11 6600 691
70 AdamW X X X 0.8155 0.7010 5 2702 629
71 Adadelta X X X 0.7998 0.7058 6 3095 609
72 Adafactor X X X 0.7875 0.7134 10 6359 821

Total 105,426 15,216
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Regarding the use of pre-trained transfer learning with the ImageNet dataset, the re-
sults indicate that its use tends to provide slightly better accuracies compared to exper-
iments without transfer learning. This suggests that transferring knowledge from pre-
trained models can assist in learning relevant features for medical images.

In addition to transfer learning, weight adjustment during training was evaluated. The
results show that weight adjustment can also contribute to slightly better performance, with
slightly higher accuracies compared to experiments without weight adjustment. This tech-
nique allows the model to adapt better to the specific data of the training set.

Regarding the use of data augmentation techniques, the results indicate that its use
does not show a clear trend of improvement or deterioration in accuracy. This suggests that,
for the NASNetLarge model, data augmentation may not be as crucial for performance.

It is important to note that experiments with more complex configurations, such as the
use of transfer learning, weight adjustment, and data augmentation techniques, generally
require longer training time. This should be considered when implementing the model in a
production environment, where training and testing time are important factors.

Overall, the results of the experiments with the NASNetLarge model indicate that
the use of transfer learning, weight adjustment, and data augmentation techniques can
contribute to slightly better performance, resulting in slightly higher accuracies. However,
the choice of these techniques should take into account the processing time involved,
as more complex configurations may require longer training time.

Among the experiments conducted in the NASNetLarge family, the best result was
achieved in the configuration identified as ID 68. These results indicate that this config-
uration performed well in the generative model of descriptive texts for medical images.
The loss, which measures the discrepancy between the model’s predictions and the true
labels, showed a relatively low value, indicating a good model fitting capacity to the data.
The configuration achieved these results after seven training epochs, with a total training
time of 4260 s and a testing time of 768 s.

3.4. VGG19 Family

Table 7 presents the results of different configurations of the model using the VGG19
convolutional neural network (CNN).

In relation to the optimizers, it was observed that configurations with Adam and
AdamW generally show more favorable loss and accuracy values compared to configura-
tions with Adadelta and Adafactor.

It was found that, in general, the use of transfer learning and weight adjustment during
the training stage improved the model’s performance, as evidenced by the configurations
marked with ‘X’ in those columns. The use of data augmentation techniques (IA) also
shows an impact on the results. Configurations with data augmentation tend to have lower
loss values and higher accuracy compared to configurations without data augmentation.

Regarding the training and testing time, there are significant variations among the
different configurations. The training time can range from just over 1800 s to over 9000 s,
while the testing time varies from about 150 s to over 300 s. In summary, the analysis of
Table 7 indicates that using VGG19 together with the Adam optimizer and data augmenta-
tion techniques can lead to good performance in the task of generating descriptive texts for
medical images. Transfer learning and weight adjustment also contribute to improving the
model’s performance.

The best result obtained in Table 7 is represented by configuration with ID 85. In this
configuration, the VGG19 architecture was used together with the Adam optimizer, as well
as the combination of transfer learning and data augmentation.

This specific configuration achieved a loss of 0.6276 and an accuracy of 0.7628. These
values indicate very favorable performance in the task of generating descriptive texts in
medical images.
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Table 7. Results of the VGG19 family.

ID OPTZ TL TR IA Loss ACC Epochs Training
Time (s)

Test Time
(s)

73 Adam X 0.7734 0.7056 16 9480 310
74 AdamW X 0.7534 0.7166 7 3384 158
75 Adadelta X 0.7375 0.7252 11 5194 150
76 Adafactor X 0.7231 0.7242 6 2831 150
77 Adam X X 0.8118 0.7126 12 5693 150
78 AdamW X X 0.7517 0.7258 16 7615 152
79 Adadelta X X 0.7382 0.7318 5 2336 150
80 Adafactor X X 0.7266 0.7273 6 2805 151
81 Adam X 0.6648 0.7510 10 4685 152
82 AdamW X 0.6530 0.7485 4 1887 158
83 Adadelta X 0.6530 0.7483 8 3879 156
84 Adafactor X 0.6485 0.7503 5 2459 166
85 Adam X X 0.6276 0.7628 18 8930 163
86 AdamW X X 0.6509 0.7456 4 2014 172
87 Adadelta X X 0.6325 0.7525 10 5040 171
88 Adafactor X X 0.6158 0.7607 14 7091 176
89 Adam X X 0.6659 0.7558 11 5467 168
90 AdamW X X 0.6608 0.7580 7 3410 240
91 Adadelta X X 0.6787 0.7538 4 3495 153
92 Adafactor X X 0.6784 0.7477 7 3179 163
93 Adam X X X 0.6608 0.7586 10 4369 150
94 AdamW X X X 0.6380 0.7552 13 6118 170
95 Adadelta X X X 0.6307 0.7564 10 6210 174
96 Adafactor X X X 0.6224 0.7593 5 2512 177

Total 110,084 4080

The application of transfer learning made it possible to leverage prior knowledge
learned by the VGG19 network on a related task. This can lead to better performance since
the network has already been trained on a large amount of general image data.

Furthermore, the use of data augmentation techniques contributes to increasing the
quantity and diversity of the training data. This can improve the model’s ability to general-
ize and handle variations in medical images, resulting in more robust performance.

The Adam optimizer is known for its efficiency and effectiveness in training neural
networks, adapting the learning rate adaptively for each model parameter. This feature
may have contributed to the superior performance achieved in this configuration.

In conclusion, the best result obtained in Table 7, represented by configuration with
ID 85, demonstrates the importance of combining different strategies, such as transfer
learning, data augmentation, and efficient optimizers, to achieve remarkable performance
in generating descriptive texts in medical images.

3.5. Xception Family

The Table 8 presents the results of experiments conducted with the Xception model,
employing different gradient optimizers, transfer learning, data augmentation, and weight
adjustment during training.
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Table 8. Results of the Xception family.

ID OPTZ TL TR IA Loss ACC Epochs Training
Time (s)

Test Time
(s)

97 Adam X 0.7686 0.7215 16 2994 120
98 AdamW X 0.7551 0.7223 9 1724 121
99 Adadelta X 0.7416 0.7334 9 1728 118

100 Adafactor X 0.7381 0.7289 7 1358 120
101 Adam X X 0.7961 0.7069 16 3174 121
102 AdamW X X 0.7709 0.7104 6 1244 134
103 Adadelta X X 0.7614 0.7154 6 1200 124
104 Adafactor X X 0.7687 0.7131 4 799 121
105 Adam X 0.7521 0.7235 12 2342 124
106 AdamW X 0.7493 0.7298 4 821 134
107 Adadelta X 0.7416 0.7310 4 804 131
108 Adafactor X 0.7381 0.7313 6 1208 132
109 Adam X X 0.7825 0.7306 20 4983 171
110 AdamW X X 0.7013 0.7449 4 870 139
111 Adadelta X X 0.6895 0.7499 6 1238 133
112 Adafactor X X 0.6848 0.7479 4 826 132
113 Adam X X 0.7112 0.7400 12 2371 133
114 AdamW X X 0.7237 0.7362 4 1003 124
115 Adadelta X X 0.7209 0.7354 4 1232 278
116 Adafactor X X 0.7134 0.7366 4 1483 274
117 Adam X X X 0.6928 0.7359 20 3613 125
118 AdamW X X X 0.6896 0.7413 4 772 141
119 Adadelta X X X 0.6958 0.7393 6 1186 133
120 Adafactor X X X 0.6816 0.7463 8 1599 142

Total 40,571 3426

When analyzing the results, it becomes evident that the choice of gradient optimizer
has a notable impact on the model’s performance. For instance, the configuration using the
Adam optimizer achieved a loss of 0.7686 and an accuracy of 0.7215, while the configuration
employing the Adadelta optimizer obtained a loss of 0.7416 and an accuracy of 0.7334. This
variation suggests that selecting an appropriate optimizer is crucial for achieving optimal
model performance.

Configurations with transfer learning generally showed slightly improved results
in terms of loss and accuracy compared to configurations without transfer learning. For
example, the configuration with transfer learning using the Adam optimizer had a loss of
0.7961 and an accuracy of 0.7069, while the corresponding configuration without transfer
learning achieved a loss of 0.7521 and an accuracy of 0.7235. This indicates that leveraging
pre-trained resources, such as feature extractors from the ImageNet dataset, enhances the
model’s ability to capture relevant information from medical images.

Another critical factor is the application of data augmentation techniques. Comparing
configurations with and without data augmentation, it can be observed that, in some cases,
data augmentation leads to improved model performance. For instance, the configuration
with the Adafactor optimizer and data augmentation (IA) yielded a loss of 0.7381 and an
accuracy of 0.7289, whereas the corresponding configuration without data augmentation
showed a loss of 0.7687 and an accuracy of 0.7131. This suggests that data augmentation
aids the model in learning more robust patterns and generalizing better.

The training and testing times recorded in Table 8 provide insight into the processing
time associated with each configuration. It is evident that the time varies significantly
among configurations, highlighting the importance of considering the trade-off between
model performance and computational resources required.
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Overall, the analysis of these results emphasizes the importance of exploring different
combinations of variables, such as feature extractors, gradient optimizers, the use of
transfer learning, and data augmentation techniques, to gain a deeper understanding of the
performance and limitations of the generative model for descriptive texts in medical images.

The best model in this family, represented by ID 111, employed the Xception architec-
ture, the Adadelta optimizer, transfer learning, and data augmentation techniques. This
model demonstrated good overall performance with a relatively low loss of 0.6895 and
a considerably high accuracy of 0.7499, indicating its ability to learn relevant patterns in
medical images and make accurate predictions. The training time for this model was 1238 s,
emphasizing the importance of considering available computational resources.

Based on the presented results, this model shows potential for generating accurate
and high-quality textual descriptions for medical images.

3.6. InceptionV3 Family

Table 9 presents the results of different configurations used in the experiment for the
InceptionV3 model. Observing the results, several key observations and discussions can
be made.

The AdamW, Adadelta, and Adafactor optimizers demonstrated similar accuracies,
with slightly better results than the Adam optimizer. In terms of training and testing
time, the AdamW and Adafactor optimizers exhibited shorter times compared to Adam
and Adadelta.

The use of transfer learning and data augmentation had a positive effect on the overall
accuracy of the models. The results indicate that combining transfer learning and data
augmentation led to higher accuracies compared to when these techniques were used
separately. However, it is important to note that data augmentation may lead to an increase
in training time. This suggests that using pre-trained models and data augmentation
techniques is beneficial for improving the performance of the descriptive text generation
model for medical images.

The best model in this family, identified by ID 136, achieved a loss of 0.7118 and an
accuracy of 0.7472, indicating its capability to generate accurate textual descriptions for the
medical images used in the experiment. The configuration of the best model included the
use of transfer learning with the InceptionV3 architecture, which is a pre-trained model
with the ImageNet dataset. This approach effectively leverages prior knowledge acquired
by the model from a large set of images and applies it to a new domain, such as medical
images. This allows the model to capture relevant information from medical images and
use it to generate more accurate textual descriptions. Additionally, the model also benefited
from data augmentation techniques, which helped improve its ability to generalize to
different variations in medical images.

In terms of computational performance, the model was trained for eight epochs,
and the training time was 1059 s (approximately 17 min). The testing time was 187 s
(about 3 min). These times are essential to assess the efficiency of the model in terms of
processing time.

Considering all these factors, it can be concluded that the model with ID 136 showed
good performance in generating descriptive texts for medical images. The combination
of transfer learning with the InceptionV3 architecture, the Adafactor optimizer, and data
augmentation techniques allowed the model to capture relevant information from the
images, resulting in accurate textual descriptions with an accuracy of 74.72%.



Bioengineering 2023, 10, 1098 19 of 38

Table 9. Results of the InceptionV3 family.

ID OPTZ TL TR IA Loss ACC Epochs Training
Time (s)

Test Time
(s)

121 Adam X 0.8028 0.7109 20 2202 129
122 AdamW X 0.7700 0.7125 4 472 131
123 Adadelta X 0.7584 0.7145 7 825 132
124 Adafactor X 0.7457 0.7319 10 1170 131
125 Adam X X 0.8109 0.6992 17 2066 133
126 AdamW X X 0.8084 0.7054 4 487 132
127 Adadelta X X 0.7991 0.7070 9 1199 182
128 Adafactor X X 0.7926 0.6997 8 1056 167
129 Adam X 0.7521 0.7283 12 1490 164
130 AdamW X 0.7507 0.7300 4 500 169
131 Adadelta X 0.7498 0.7358 6 749 165
132 Adafactor X 0.7371 0.7315 5 635 179
133 Adam X X 0.7435 0.7213 13 1724 189
134 AdamW X X 0.7246 0.7315 12 1599 174
135 Adadelta X X 0.7044 0.7425 7 934 180
136 Adafactor X X 0.7118 0.7472 8 1059 187
137 Adam X X 0.7869 0.7324 12 1565 192
138 AdamW X X 0.7718 0.7217 4 528 182
139 Adadelta X X 0.7571 0.7285 8 1075 198
140 Adafactor X X 0.7541 0.7276 7 1478 216
141 Adam X X X 0.7626 0.7210 12 2631 229
142 AdamW X X X 0.7178 0.7337 12 2519 227
143 Adadelta X X X 0.7238 0.7267 4 739 210
144 Adafactor X X X 0.7320 0.7249 4 858 222

Total 29,562 4219

3.7. InceptionResNetV2 Family

After careful analysis of the results presented in Table 10, it is evident that the perfor-
mance of the InceptionResNetV2 model varies depending on the combinations of gradient
optimizers, the usage of transfer learning, data augmentation techniques, and weight
adjustment during training. However, no clear performance pattern was identified with
respect to these variables.

The impact of different gradient optimizers on the model’s accuracy and loss was not
significantly different. The Adam and AdamW optimizers showed consistent performance
across various configurations, with similar results in terms of accuracy and loss. On the
other hand, the Adadelta and Adafactor optimizers achieved slightly lower accuracy in
certain configurations.

Regarding the use of transfer learning, it did not have a significant impact on the
model’s performance. Configurations with and without transfer learning achieved similar
results in terms of accuracy and loss.

The inclusion of weight adjustment during training did not show a clear advantage or
disadvantage. Configurations with and without weight adjustment exhibited comparable
performance in terms of accuracy and loss.

The application of data augmentation techniques resulted in a small increase in accu-
racy in some configurations, but this improvement was not consistently observed. In certain
setups, data augmentation led to enhanced accuracy, while in others, there was no signifi-
cant improvement. Overall, the impact of data augmentation on the model’s performance
was moderate.
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Table 10. Results of the InceptionResNetV2 family.

ID OPTZ TL TR IA Loss ACC Epochs Training
Time (s)

Test Time
(s)

145 Adam X 0.8118 0.7066 12 3164 269
146 AdamW X 0.8171 0.6901 7 1887 267
147 Adadelta X 0.8048 0.6975 7 1890 272
148 Adafactor X 0.7941 0.7117 5 1369 283
149 Adam X X 0.8011 0.7165 15 4679 264
150 AdamW X X 0.8145 0.6922 4 1149 307
151 Adadelta X X 0.8067 0.6940 6 1744 343
152 Adafactor X X 0.7871 0.7076 8 3213 456
153 Adam X 0.8422 0.6967 12 4939 455
154 AdamW X 0.8247 0.6920 5 1838 418
155 Adadelta X 0.8167 0.7019 11 4628 472
156 Adafactor X 0.8269 0.6915 4 2113 547
157 Adam X X 0.8184 0.6886 16 8287 489
158 AdamW X X 0.7907 0.6997 11 4793 504
159 Adadelta X X 0.7863 0.7073 6 3332 1245
160 Adafactor X X 0.7823 0.7054 7 3881 1,211
161 Adam X X 0.8214 0.6962 16 4131 255
162 AdamW X X 0.8192 0.7011 9 2375 271
163 Adadelta X X 0.8087 0.7122 4 1047 262
164 Adafactor X X 0.7982 0.7057 6 1576 260
165 Adam X X X 0.8305 0.6823 17 4530 265
166 AdamW X X X 0.8246 0.6848 4 1095 313
167 Adadelta X X X 0.8146 0.6906 9 2500 320
168 Adafactor X X X 0.8136 0.6923 4 1133 330

Total 71,296 10,077

It is important to note that the training and testing times varied considerably for each
configuration. As this family of models demonstrated very similar results, the computa-
tional efficiency may be a relevant factor when choosing the appropriate gradient optimizer
and other techniques.

In conclusion, the InceptionResNetV2 family obtained consistent results in terms of
accuracy and loss compared to other tested models, and no clear superior or inferior model
was identified concerning the analyzed variables.

3.8. MobileNetV2 Family

The results of different configurations used in the experiment for the MobileNetV2
model are presented in Table 11. Upon analyzing these results, the following observations
and discussions can be made.

The AdamW gradient optimizer consistently showed better results in terms of loss
and accuracy, especially when used in combination with transfer learning and weight
adjustment during training.

The utilization of transfer learning, with pre-trained feature extractors from the Ima-
geNet dataset, tended to slightly improve the model’s accuracy, particularly when com-
bined with weight adjustment during training. This indicates that the prior knowledge
acquired from ImageNet can be effectively transferred to the task of generating descriptive
texts for medical images, and adjusting the weights of the feature extractors during training
can aid the model in learning specific characteristics of medical images.
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Table 11. Results of the MobileNetV2 family.

ID OPTZ TL TR IA Loss ACC Epochs Training
Time (s)

Test Time
(s)

169 Adam X 0.9017 0.6775 16 1209 76
170 AdamW X 0.9028 0.6704 7 552 79
171 Adadelta X 0.8984 0.6734 4 327 79
172 Adafactor X 0.9001 0.6773 7 555 77
173 Adam X X 0.9104 0.6603 10 840 74
174 AdamW X X 0.9119 0.6839 7 592 81
175 Adadelta X X 0.9063 0.6779 9 833 84
176 Adafactor X X 0.8998 0.6809 5 467 83
177 Adam X 0.8022 0.7108 11 935 85
178 AdamW X 0.7965 0.7183 4 343 82
179 Adadelta X 0.7940 0.7173 6 517 85
180 Adafactor X 0.7759 0.7229 7 596 84
181 Adam X X 0.7684 0.7125 14 1304 85
182 AdamW X X 0.7910 0.7196 4 384 88
183 Adadelta X X 0.7795 0.7186 4 384 90
184 Adafactor X X 0.7715 0.7203 4 383 89
185 Adam X X 0.7996 0.7118 11 1016 104
186 AdamW X X 0.7855 0.7225 4 428 111
187 Adadelta X X 0.7622 0.7306 4 431 103
188 Adafactor X X 0.7712 0.7238 7 639 89
189 Adam X X X 0.7532 0.7150 14 1350 90
190 AdamW X X X 0.7434 0.7282 7 794 112
191 Adadelta X X X 0.7261 0.7345 4 400 93
192 Adafactor X X X 0.7353 0.7253 10 1166 113

Total 16,445 2134

Regarding data augmentation, the results indicated that in terms of loss, experiments
with data augmentation generally had slightly higher values compared to experiments
without data augmentation. This suggests that data augmentation might introduce some
variability in the results and increase the model’s complexity. However, the difference in
loss was not significant.

In terms of accuracy, data augmentation showed mixed results. In certain configura-
tions, data augmentation led to an increase in accuracy compared to experiments without
it, while in others, there was no significant improvement.

It is crucial to consider that while data augmentation might increase accuracy in some
cases, it could also lead to longer training times. The experiments with data augmentation
generally required more training time compared to those without it.

In summary, data augmentation can have a positive impact on the model’s accuracy
in specific configurations, but the trade-off between increased accuracy and longer training
time needs to be considered.

The best model of the MobileNetV2 family, identified by ID 191 in Table 11, corre-
sponds to the configuration with the Adadelta optimizer, the use of transfer learning, and
data augmentation. This best model achieved a loss of 0.7261 and an accuracy of 0.7345,
demonstrating good performance in generating descriptive texts for medical images.

Additionally, the model’s fast convergence during training, completed in just four
epochs, can be attributed to the effective combination of the Adadelta optimizer with other
model variables. In terms of training and testing time, the model required about 400 s
(approximately 6 min and 40 s) for training and 93 s (about 1 min and 33 s) for testing.
These times are considered reasonable and indicate adequate computational efficiency.

In conclusion, the best model (ID 191) demonstrated promising results in terms of loss,
accuracy, and training time, making it a potential configuration for the task of generating
descriptive texts for medical images.
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3.9. Best Results from Each Family

Table 12 provides a summary of the experiment’s best results from each family of
models used to extract attributes from medical images. It is important to note that the
InceptionResNetV2 family did not have a clearly defined best result. This table enables
a direct comparison between different model families and their respective performances,
allowing us to observe the relevance of various approaches in achieving the best result.

Table 12. Best results from each family.

ID CNN OPTZ TL TR IA Loss ACC Epochs Training Time (s) Test Time (s)

20 DenseNet201 Adafactor X X 0.7190 0.7610 6 2205 420
36 ResNet152V2 Adafactor X 0.7413 0.7359 9 3771 452
68 NAYNetLarge Adafactor X X 0.7813 0.7210 7 4260 768
85 VGG19 Adam X X 0.6276 0.7628 18 8930 163
111 Xception Adadelta X X 0.6895 0.7499 6 1238 133
136 InceptionV3 Adafactor X X 0.7118 0.7472 8 1059 187
191 MobileNetV2 Adadelta X X X 0.7261 0.7345 4 400 93

The Adafactor optimizer was utilized in four out of the seven experiments with
the best results (IDs 20, 36, 68, and 136), while the Adadelta optimizer was used in two
experiments (IDs 111 and 191). Only one experiment employed the Adam optimizer (ID 85).
These results suggest that using the Adafactor optimizer may be associated with better
performances, as it appears in four of the best results. However, it is crucial to acknowledge
that other factors, such as the architecture of the attribute extractor, the use of transfer
learning, weight adjustment during training, and the employment of data augmentation,
can also influence the results.

All the best results relied on transfer learning with a pre-trained network on the
ImageNet dataset, highlighting the importance of this technique for the overall performance
of the models. This indicates that initializing the networks with pre-trained weights
contributed to superior results due to the prior learning on image attribute extraction tasks.

Regarding weight adjustment during training, out of the seven best results listed, three
of them (IDs 20, 68, and 191) indicated the use of this technique. This information suggests
that weight adjustment may not have been a significantly relevant strategy to improve
the models’ performance, as the weights initialized via transfer learning with pre-trained
weights from the ImageNet dataset already demonstrated sufficient capability to extract
attributes from medical images.

As for data augmentation, it was present in four out of the seven experiments (IDs 85,
111, 136, and 191). This indicates that data augmentation likely played an important role
in enhancing the models’ performance, as it can improve the model’s generalization and
ability to handle variations in medical images, resulting in more robust performance.

Finally, the training and testing times varied significantly among the different models.
These times can be influenced by various factors, such as the network’s complexity, the type
of gradient optimizer used, and the application or absence of data augmentation techniques.
Training times ranged from 400 s (ID 191-MobileNetV2) to 8930 s (ID 85-VGG19), while
testing times ranged from 93 s (ID 191-MobileNetV2) to 768 s (ID 68- NASNetLarge). It is
important to note that training and testing time do not always directly correlate with the
best performance achieved by the models.

The best result obtained across all families, considering the highest accuracy, corre-
sponds to variant ID 85. This variant consists of a VGG19 model trained using transfer
learning and data augmentation. The achieved loss value was 0.6276, and the obtained
accuracy was 0.7628.

Based on the data available in Table 12, it is evident that the VGG19 model achieved a
very high level of accuracy, indicating its ability to generate descriptive texts for medical
images effectively.
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The utilization of transfer learning, combined with data augmentation, likely con-
tributed to the VGG19 model’s exceptional performance. Transfer learning enabled the
model to benefit from prior knowledge learned in image attribute extraction tasks, while
data augmentation increased the variability of the training data, leading to a more robust
and generalizable model.

However, it is crucial to emphasize that for a comprehensive analysis of the best
model’s performance, additional metrics such as precision, recall, and F1 score are necessary
to conduct statistical analyses and determine the significance of the results. Such analyses
will be the focus of the subsequent section.

4. Discussion

The best model obtained in the experiment underwent a detailed evaluation of its
performance through the construction of confusion matrices for each part of the generated
texts: type of examination, body part, and identified problem.

Figure 6 provides an example representing two arbitrary images from the test dataset
along with their respective true descriptive texts and the texts generated by the best model,
which achieved an accuracy of 0.7628 and a BLEU-1 score of 0.538.

The utilization of confusion matrices allowed a visualization of both the correct and
incorrect choices made by the best model in constructing each part of the descriptive texts
for the medical images. From these matrices, essential indicators were calculated to provide
objective measures of the textual descriptions’ quality generated by the model, facilitating
the evaluation of its performance. As such, each confusion matrix has an associated table
summarizing these indicators.

The confusion matrix is a valuable tool for evaluating the performance of a classi-
fication model, displaying the model’s predictions concerning the actual classes. In the
confusion matrices presented in this work, the actual classes are represented on the vertical
axis, while the predicted classes are represented on the horizontal axis.

Figure 6. Examples of input images and true and generated descriptions.
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4.1. Confusion Matrix for the Type of Examination

The confusion matrix represented in Table 13 illustrates the best model’s predictions
regarding the type of exam for the images. Observing this confusion matrix allows for
several conclusions to be drawn.

Table 13. Confusion matrix for the type of examination.

Real/Predicted ‘ct’ ‘radiograph’ ‘scan’ ‘tomography’ ‘xray’ ‘angiogram’ ’angiography’ ‘abdominal’ ‘contrast’

‘ct’ 108 2 10 3 0 0 0 0 0
‘radiograph’ 1 32 0 0 12 0 0 0 0

‘scan’ 19 0 26 5 0 0 0 0 1
‘tomography’ 16 0 9 0 0 0 0 0 0

‘xray’ 0 0 0 0 11 0 0 0 0
‘angiogram’ 1 0 0 0 0 9 1 0 0

‘angiography’ 3 0 0 0 0 7 0 0 0
‘abdominal’ 4 0 1 0 0 0 0 0 0

‘contrast’ 0 0 0 0 0 3 0 0 0

The model’s performance for the ‘ct’ (computed tomography) class is quite satisfactory,
with 108 examples correctly classified. There were only a few confusions, with two examples
misclassified as ‘radiograph,’ ten as ‘scan,’ and three as ‘tomography.’

The ‘radiograph’ class also demonstrated good performance, with 32 examples cor-
rectly classified. However, there were some confusions, particularly with the ’xray’ class,
where 12 radiograph examples were misclassified. Nevertheless, it is worth noting that
’xray’ and ‘radiograph’ are considered interchangeable terms in this context.

The model’s performance for the ‘scan’ class was not as strong, with 26 examples
correctly classified. There were confusions, with 19 examples being misclassified as ‘ct’ and
five examples as ‘tomography’.

The ‘tomography’ class exhibited poor performance, with no examples correctly
classified. There was confusion, with nine examples being mistaken for the ‘scan’ class
and 16 examples being misclassified as ‘CT.’ Nevertheless, ‘tomography’ and ‘computed
tomography’ can be considered interchangeable terms in this context.

On the other hand, the ‘xray’ class demonstrated excellent performance, with 11 exam-
ples correctly classified. There were no confusions with other classes in this category.

For the ‘angiogram’ and ‘angiography’ classes, both showed satisfactory results, with
most examples correctly classified. However, seven examples were misclassified as ‘CT.’

The ‘abdominal’ class had poor performance, with no examples being correctly clas-
sified. There were confusions, with four examples being mistaken for the ‘ct’ class and
one example being misclassified as ‘scan.’

The ‘contrast’ class also had poor performance. All examples were misclassified as
’angiogram,’ with no confusions with other classes.

Table 14 presents the metrics of the confusion matrix for the best model regarding the
type of examination in the images. Analyzing this table allows an evaluation of the best
model’s performance and provides insights into its effectiveness.

Upon analyzing the metrics of the confusion matrix for all provided classes, consider-
able variation in the results is evident. Let us discuss each class in a general context and
assess whether the values are considered good or poor.

For the ‘ct’ class, the performance is relatively good. Sensitivity and specificity are
above 0.7, indicating that the model can correctly identify most positive and negative cases.
The precision is also around 0.71, indicating that the majority of cases classified as positive
are indeed positive.
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Table 14. Metrics of the confusion matrix for the type of examination.

Class P N TP FP TN FN TPR TNR PPV NPV ACC F1

‘ct’ 123 161 108 44 117 15 0.88 0.73 0.71 0.89 0.79 0.79
‘radiograph’ 45 239 32 2 237 13 0.71 0.99 0.94 0.95 0.95 0.81

‘scan’ 51 233 26 20 213 25 0.51 0.91 0.57 0.89 0.84 0.54
‘tomography’ 25 259 0 8 251 25 0.00 0.97 0.00 0.91 0.88 -

‘xray’ 11 273 11 12 261 0 1.00 0.96 0.48 1.00 0.96 0.65
‘angiogram’ 11 273 9 10 263 2 0.82 0.96 0.47 0.99 0.96 0.60

‘angiography’ 10 274 0 1 273 10 0.00 1.00 0.00 0.96 0.96 -
‘abdominal’ 5 279 0 0 279 5 0.00 1.00 - 0.98 0.98 -

‘contrast’ 3 281 0 1 280 3 0.00 1.00 0.00 0.99 0.99 -

Regarding the ‘radiograph’ class, the performance is quite positive. Sensitivity and
specificity are above 0.7 and 0.9, respectively, indicating good performance in correctly
identifying positive and negative cases. The precision is high, around 0.94, suggesting that
most positive classifications are correct. Additionally, the F1 score of 0.81 indicates a good
balance between precision and sensitivity.

For the ‘scan’ class, the values are slightly lower compared to the previous classes.
Sensitivity and specificity are above 0.5, indicating reasonable performance in identify-
ing positive and negative cases. However, precision and the F1 score are around 0.57,
suggesting room for improvement in correctly classifying positive cases.

On the other hand, the values for the ‘tomography’ class are low. Sensitivity and
precision are 0, meaning that the model did not correctly identify any positive cases. The
F1 score is undefined, as the model did not correctly identify this class at all, indicating
very poor performance for this term.

The values for the ‘xray’ class show mixed performance. Sensitivity is high, indicating
that the model correctly identified all positive cases. Specificity is also high, showing that
the model can correctly identify most negative cases. However, precision is relatively low,
suggesting that many of the positive classifications may be false positives. The F1 score
indicates a moderate balance between precision and sensitivity.

For the ‘angiogram’ class, the values show reasonable performance. Sensitivity indi-
cates that the model correctly identified most positive cases. Specificity is high, indicating
that most negative cases were correctly identified. However, precision is relatively low,
suggesting that some of the positive classifications may be false positives. The F1 score
indicates a moderate balance between precision and sensitivity.

For the ‘angiography’ class, sensitivity and precision are 0, indicating that the model
did not correctly identify any positive cases. The F1 score is undefined, as the model did
not correctly identify this class at all, indicating very poor performance for this term.

The ‘abdominal’ class also yielded sensitivity and precision of 0, indicating that the
model did not correctly identify any positive cases. The F1 score is undefined, as the model
did not correctly identify this class at all, indicating very poor performance for this term.

For the ‘contrast’ class, sensitivity is 0, indicating that the model did not correctly
identify any positive cases. The F1 score is undefined, as the model did not correctly
identify this class at all, indicating very poor performance for this term.

The model demonstrated promising performance in classifying different types of med-
ical exams. However, certain classes presented greater difficulty in accurate classification,
resulting in confusions with other classes. These findings offer valuable insights into the
strengths and limitations of the proposed generative model for generating descriptive text
for medical images.

An important observation is the interchangeability of some terms, such as ‘tomography’
being equivalent to ‘ct’. This indicates consistent results and generally good performance
of the model in classifying medical exams.
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The metrics of accuracy, sensitivity, specificity, precision, and negative predictive
value showed relatively high values, indicating the model’s capability to make correct
classifications for both positive and negative examples in most cases. This indicates the
model’s ability to learn relevant patterns in medical images and generate accurate tex-
tual descriptions.

However, some sensitivity values equal to 0 indicate that the model failed to identify
any positive cases for certain terms. Additionally, the presence of undefined values for
precision and F1 score indicates limitations in interpreting these metrics due to the lack
of positive predictions. The analysis of the metrics demonstrates varied performance for
different terms, with some exhibiting positive values for sensitivity, specificity, precision,
and F1 score, indicating good performance in correctly identifying positive and negative
cases. However, other terms show inferior performance with low or undefined values for
certain metrics.

It is important to acknowledge that variations in the results suggest the model’s
performance may be influenced by different factors, such as data distribution or specific
characteristics of each class. These variations are noticeable in metrics such as sensitivity,
specificity, and precision.

Therefore, while the results are generally good, continuous refinement and optimiza-
tion of the model are essential. Exploring different approaches and techniques, such as
fine-tuning weights, data augmentation, and selection of relevant attributes, will be benefi-
cial. Additionally, conducting further validations and testing on external datasets is crucial
to verify the model’s generalization capabilities.

4.2. Confusion Matrix of Body Part

The confusion matrix presented in Table 15 represents the predictions of the best
model concerning the body part of the medical images. Analyzing this confusion matrix
allows us to draw several conclusions.

The classification of ‘chest’ shows generally good performance, with 39 cases correctly
predicted. There are some confusions with ‘abdomen’ (three incorrect cases) and ’lung’
(ten incorrect cases). However, the majority of predictions for ‘chest’ are correct, indicating
good performance in identifying this body part.

The model exhibits satisfactory performance in the classification of ‘abdomen’, with
47 cases correctly predicted. There are some confusions with ‘artery’ (two incorrect cases)
and ’lung’ (two incorrect cases). Overall, the model can adequately identify ’abdomen’, but
there are instances where confusions with other body parts occur.

In the classification of ‘artery’, the model shows relatively good performance, with
24 cases correctly predicted. However, there are confusions with ‘abdomen’, where 10 cases
were incorrectly identified, and with ‘chest’, where a single incorrect prediction occurred.
These confusions may be due to the anatomical proximity between arteries and these
specific body regions, making it visually challenging for the model to distinguish between
them. Therefore, it is important to continue refining the model to improve accuracy in these
distinctions and reduce confusions between ‘artery’, ‘abdomen’, and ‘chest’.

In the classification of ‘lung’, with 16 cases correctly predicted, the model showed
reasonable performance. However, some confusions occurred with ‘chest’ (12 incorrect
cases) and ‘abdomen’ (six incorrect cases). These confusions can be attributed to the fact
that the lungs are located in both the chest and abdominal regions. This anatomical overlap
can make it visually challenging for the model to correctly distinguish between ‘lung’,
‘chest’, and ‘abdomen’. Therefore, it is necessary to enhance the model’s ability to accurately
differentiate between these body parts, considering more specific characteristics related to
the lungs in medical images.
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Table 15. The confusion matrix of the body part.

Real/Predicted ‘chest’ ‘abdomen’ ‘artery’ ‘lung’ ‘lobe’ ‘head’ ‘liver’ ‘pelvi’ ‘bone’ ‘pulmonary’ ‘aortic’ ‘vein’ ‘hip’ ‘neck’ ‘femoral’
‘chest’ 39 3 0 10 1 0 0 0 1 0 0 0 0 0 0

‘abdomen’ 0 47 2 2 0 0 0 0 1 0 0 0 0 0 0
‘artery’ 1 10 24 0 0 0 0 0 0 0 0 0 0 0 0
‘lung’ 12 6 2 16 0 0 0 0 0 0 0 0 0 0 0
‘lobe’ 0 22 1 1 1 0 0 0 0 0 0 0 0 0 0
‘head’ 0 14 0 0 0 1 0 0 0 0 0 0 0 0 0
‘liver’ 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0
‘pelvi’ 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
‘bone’ 2 1 0 0 0 0 0 2 6 0 0 0 0 0 0

‘pulmonary’ 2 0 1 4 0 0 0 0 0 0 0 0 0 0 0
‘aortic’ 0 3 1 0 1 0 0 0 0 0 0 0 0 0 0
‘vein’ 0 9 0 0 0 1 0 0 1 0 0 0 0 0 0
‘hip’ 0 0 0 0 0 0 0 2 1 0 0 0 1 0 0

‘neck’ 1 0 0 0 0 0 0 6 3 0 0 0 0 0 0
‘femoral’ 0 0 0 0 0 0 0 1 5 0 0 0 0 0 1
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The model encountered difficulties in the classification of ‘lobe’, with only one case
correctly predicted. Most of the predictions for ‘lobe’ were confused with ‘abdomen’
(22 incorrect cases). These confusions may be attributed to the fact that ‘lobe’, in the dataset
used, refers to the right and left lobes of the liver, which are located in the abdomen. This
anatomical proximity between ‘lobe’ and ‘abdomen’ can make it challenging for the model
to distinguish between them, especially considering the visual characteristics of medical
images. Therefore, it is necessary to improve the model’s ability to accurately differentiate
between the liver lobes (‘lobe’) and the abdomen (‘abdomen’) by considering more specific
and discriminative features present in the medical images.

The model’s performance in the classification of ‘head’ shows that there is room for
improvement, as only one case was correctly predicted. There were significant confusions
with ‘abdomen’ (14 incorrect cases). These confusions may be justified by the fact that, in
the context of the dataset used, ‘head’ refers to a specific part of the pancreas located in
the abdomen. This association between ‘head’ and the pancreas, which is an abdominal
structure, may lead to confusions in the classification, as the model may visually interpret
the features present in the images similarly for both classes. Thus, anatomical proximity
and visual overlap between ‘head’ and ‘abdomen’ can make it challenging for the model
to distinguish between them accurately. Therefore, it is necessary to consider approaches
that explore more specific features related to the pancreas, as well as more advanced
image processing techniques, to improve the model’s ability to differentiate these body
parts accurately.

The model obtained unsatisfactory performance in the classification of ‘liver’, correctly
predicting none of the cases, and all cases were erroneously classified as ‘abdomen’. The
confusions observed in the classification of ‘liver’ can be attributed to the fact that the liver
is located in the abdomen. This anatomical and visual proximity between the liver and
other abdominal structures can lead to confusions in the classification, as the visual features
of these structures may overlap in medical images. The liver is a large and complex organ
occupying a central position in the abdomen. Its shape, texture, and location can vary
between individuals and in different medical images. This variation can make the precise
segmentation and identification of the liver challenging, leading to confusions with other
body parts present in the same anatomical region.

The ‘pelvi’ class presented consistent classification results, with all predictions cor-
rectly made by the model. This indicates satisfactory performance in identifying images
corresponding to the pelvic region of the body. The fact that the model correctly classified
all images associated with the ’pelvi’ class indicates its ability to recognize the relevant
visual characteristics of this specific body region. This suggests that the distinctive features
of pelvic medical images were well learned and captured by the model during training.

The ‘bone’ class showed moderate performance in the classification of medical images.
The model was able to correctly identify six cases related to this class but with confusions
in other categories, such as ‘abdomen’ and ‘chest’. The confusion observed between ’bone’
and other classes can be explained by the presence of similar or overlapping visual features
in the images. For example, in abdominal (‘abdomen’) and chest (‘chest’) medical images,
bones may be partially visible, resulting in confusions in the classification.

The ‘pulmonary’ class presented poor performance in the classification of medical
images. The model was unable to correctly identify four cases related to this class but
confused them with other categories, such as ‘chest’ and ‘lung’. As the ‘pulmonary’ class is
associated with pulmonary structures such as the lungs, bronchi, and pulmonary blood
vessels, the confusions observed with other classes may be attributed to the visual similarity
between pulmonary structures and other adjacent structures in the chest, such as the chest
(‘chest’) and lungs (‘lung’). This visual overlap can make it difficult for the model to
distinguish precisely between the categories during classification.
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The ‘aortic’ class presented poor performance in the classification of medical images.
The model was unable to correctly identify any cases related to this class, presenting
confusions with other categories, such as ‘abdomen’ and ‘artery’. The ‘aortic’ class is
associated with the aorta, which is the largest artery in the human body and plays a
crucial role in transporting blood to various parts of the body. The confusions observed
with other classes can be explained by the visual similarity between the aorta and other
structures, such as arteries in general (‘artery’) and the abdominal region (‘abdomen’). This
visual overlap and shared characteristics can make it difficult for the model to distinguish
precisely between the categories during classification.

Regarding the ‘vein’ class, the model showed poor performance, with no cases correctly
predicted. However, there were some confusions with other classes, especially with the
‘abdomen’ class. The confusions may be attributed to the fact that the vein data in the
dataset are related to the liver, which is located in the abdominal region. This anatomical
and visual proximity between hepatic veins and other abdominal structures can make it
challenging to distinguish precisely during the classification process.

The ’hip’ class represents the hip region in medical images. The model presented
unsatisfactory results in the classification of the hip, with only one case correctly predicted.
However, there were some confusions with other classes, such as ‘pelvi’ and ‘bone’. These
confusions can be justified by the fact that the hip and pelvis are closely related anatomically,
and the precise distinction between these structures can be challenging. Additionally, the
hip is composed of several bone structures, such as the hip bone (ilium, ischium, and pubis)
and the femur, which may overlap with other nearby bone regions.

The ’neck’ class represents the neck region in medical images. The model obtained
poor results in the classification of this class, with no cases correctly predicted, and there
were confusions with other classes, such as ‘pelvi’ and ‘bone’, and ‘chest’. The confusion
with ‘chest’ can be attributed to the transition between the neck and abdomen, which may
not be clearly distinct, especially when dealing with images with structural overlap. The
confusion with ‘pelvi’ and ‘bone’ can be due to the presence of cervical bones in the neck,
such as cervical vertebrae. These bone structures may be similar to those found in other
parts of the body, making it challenging for the model to classify the neck accurately.

The ’femoral’ class represents the femoral artery region in medical images. Although
the model achieved some successes in the classification of this class, there were significant
confusions with the ‘bone’ and ‘pelvi’ classes. The confusion with the ‘bone’ class can be
attributed to the femur being a bone, which makes it challenging to precisely distinguish
between the two classes. The confusion with the ‘pelvi’ class can be explained by the close
location of the femoral artery to the pelvic region. In some images, the femoral artery may
be partially within the pelvic region, leading to confusions between the two classes.

In Table 16, the metrics of the confusion matrix for the best model regarding the body
part of the images are presented. This table allows us to evaluate the performance of the
best model and draw conclusions.

Upon analyzing the metrics of the confusion matrix for all provided classes, it is
evident that considerable variation exists in the results. Let us discuss each class in a
general context and evaluate whether the values are considered good or poor.

The metrics for the ‘chest’ class indicate relatively good performance. The true positive
rate (TPR) of 0.72 and the true negative rate (TNR) of 0.92 demonstrate a satisfactory rate
of correct identification for both positive and negative cases. The positive predictive value
(PPV) of 0.68 indicates that about 68% of cases classified as positive are indeed positive.
The accuracy (ACC) of 0.88 is also quite reasonable. The F1 score of 0.70, which is the
harmonic mean between precision and recall, indicates a balanced performance between
these metrics.
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Table 16. Metrics of the confusion matrix for the body parts.

Class P N TP FP TN FN TPR TNR PPV NPV ACC F1

‘chest’ 54 230 39 18 212 15 0.72 0.92 0.68 0.93 0.88 0.70
‘abdomen’ 52 232 47 78 154 5 0.90 0.66 0.38 0.97 0.71 0.53

‘artery’ 35 249 24 7 242 11 0.69 0.97 0.77 0.96 0.94 0.73
‘lung’ 36 248 16 17 187 20 0.44 0.92 0.48 0.90 0.85 0.46
‘lobe’ 25 259 1 2 257 24 0.04 0.99 0.33 0.91 0.91 0.07
‘head’ 15 269 1 1 268 14 0.07 1.00 0.50 0.95 0.95 0.12
‘liver’ 10 274 0 0 274 10 0.00 1.00 - 0.96 0.96 -
‘pelvi’ 2 282 2 11 271 0 1.00 0.96 0.15 1.00 0.96 0.27
‘bone’ 11 273 6 12 261 5 0.55 0.96 0.33 0.98 0.94 0.41

‘pulmonary’ 7 277 0 0 277 7 0.00 1.00 - 0.98 0.98 -
‘aortic’ 5 279 0 0 279 5 0.00 1.00 - 0.98 0.98 -
‘vein’ 11 273 0 0 273 11 0.00 1.00 - 0.96 0.96 -
‘hip’ 4 280 1 0 280 3 0.25 1.00 1.00 0.99 0.99 0.40

‘neck’ 10 274 0 0 274 10 0.00 1.00 - 0.96 0.96 -
‘femoral’ 7 277 1 0 277 6 0.14 1.00 1.00 0.98 0.98 0.25

Conversely, the results for the ‘abdomen’ class are less favorable. Although the TPR of
0.90 is high, suggesting a good rate of correct identification for positive cases, the TNR of
0.66 indicates a relatively low rate of correct identification for negative cases. The PPV of
0.38 indicates that only 38% of cases classified as positive are indeed positive. The accuracy
(ACC) of 0.71 is also relatively low. The F1 score of 0.53 shows moderate performance, but
there is still room for improvement.

In contrast, the metrics for the ‘artery’ class are generally positive. The TPR of
0.69 indicates a reasonable rate of correct identification for positive cases, while the TNR
of 0.97 suggests a high rate of correct identification for negative cases. The PPV of 0.77 is
relatively high, indicating that 77% of cases classified as positive are indeed positive. The
accuracy (ACC) of 0.94 is also quite satisfactory. The F1 score of 0.73 demonstrates a good
balance between precision and recall.

As for the ‘lung’ class, the results are not as positive. The TPR of 0.44 indicates a
relatively low rate of correct identification for positive cases, while the TNR of 0.92 suggests
a high rate of correct identification for negative cases. The PPV of 0.48 indicates that only
48% of cases classified as positive are indeed positive. The accuracy (ACC) of 0.85 is also
moderate. The F1 score of 0.46 shows performance below the ideal in terms of balance
between precision and recall.

The metrics for the ‘lobe’ class reveal very low performance. The TPR of 0.04 indicates
an extremely low rate of correct identification for positive cases. On the other hand, the
TNR of 0.99 suggests a high rate of correct identification for negative cases. The PPV of
0.33 indicates that only 33% of cases classified as positive are indeed positive. The accuracy
(ACC) of 0.91 is moderate, but the F1 score of 0.07 indicates very low performance in terms
of balance between precision and recall.

The metrics for the ‘head’ class also do not present satisfactory performance. The
TPR of 0.07 indicates a very low rate of correct identification for positive cases, while the
TNR of 1.00 suggests a high rate of correct identification for negative cases. The PPV of
0.50 indicates that only 50% of cases classified as positive are indeed positive. The accuracy
(ACC) of 0.95 is reasonable, but the F1 score of 0.12 indicates low performance in terms of
balance between precision and recall.

Regarding the ‘liver’ class, there are no positive cases (TP = 0), which prevents the
calculation of PPV and F1 score. However, the TNR of 1.00 suggests a high rate of correct
identification for negative cases, and the negative predictive value (NPV) of 0.96 indicates
a high proportion of correctly classified negative cases. The accuracy (ACC) of 0.96 is also
considered good.
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The metrics for the ‘pelvi’ class reveal mixed performance. The TPR of 1.00 indicates a
high rate of correct identification for positive cases, while the TNR of 0.96 suggests a high
rate of correct identification for negative cases. However, the PPV of 0.15 indicates that
only 15% of cases classified as positive are indeed positive. The NPV of 1.00 indicates that
all negative cases were correctly identified. The accuracy (ACC) of 0.96 is reasonable, and
the F1 score of 0.27 shows moderate performance in terms of balance between precision
and recall.

The metrics for the ‘bone’ class indicate moderate performance. The TPR of 0.55 suggests
a reasonable rate of correct identification for positive cases, while the TNR of 0.96 indicates
a high rate of correct identification for negative cases. The PPV of 0.33 indicates that only
33% of cases classified as positive are indeed positive. The NPV of 0.98 indicates a high
proportion of correctly classified negative cases. The accuracy (ACC) of 0.94 is considered
good. The F1 score of 0.41 shows moderate performance in terms of balance between
precision and recall.

Regarding the ‘pulmonary’ class, there are no positive cases (TP = 0), which prevents
the calculation of PPV and F1 score. However, the TNR of 1.00 suggests a high rate of
correct identification for negative cases. The NPV of 0.98 indicates a high proportion of
correctly classified negative cases. The accuracy (ACC) of 0.98 is considered good.

Similarly to the ‘pulmonary’ class, there are no positive cases (TP = 0) for the ‘aortic’
class, which prevents the calculation of PPV and F1 score. The TNR of 1.00 suggests a high
rate of correct identification for negative cases. The NPV of 0.98 indicates a high proportion
of correctly classified negative cases. The accuracy (ACC) of 0.98 is considered good.

As with the previous classes, there are no positive cases (TP = 0) for the ‘vein’ class,
preventing the calculation of PPV and F1 score. The TNR of 1.00 suggests a high rate of
correct identification for negative cases. The NPV of 0.96 indicates a high proportion of
correctly classified negative cases. The accuracy (ACC) of 0.96 is considered reasonable.

The metrics for the ‘hip’ class indicate relatively good performance. The TPR of
0.25 suggests a moderate rate of correct identification for positive cases, while the TNR
of 1.00 suggests a high rate of correct identification for negative cases. The PPV of
1.00 indicates that all cases classified as positive are indeed positive. The NPV of 0.99 indi-
cates a high proportion of correctly classified negative cases. The accuracy (ACC) of 0.99 is
considered good. The F1 score of 0.40 shows moderate performance in terms of balance
between precision and recall.

Regarding the ‘neck’ class, there are no positive cases (TP = 0), which prevents the
calculation of PPV and F1 score. The TNR of 1.00 suggests a high rate of correct identifica-
tion for negative cases. The NPV of 0.96 indicates a high proportion of correctly classified
negative cases. The accuracy (ACC) of 0.96 is considered reasonable.

The metrics for the ‘femoral’ class indicate moderate performance. The TPR of
0.14 suggests a relatively low rate of correct identification for positive cases, while the
TNR of 1.00 indicates a high rate of correct identification for negative cases. The PPV
of 1.00 indicates that all cases classified as positive are indeed positive. The NPV of
0.98 indicates a high proportion of correctly classified negative cases. The accuracy (ACC)
of 0.98 is considered good. The F1 score of 0.25 shows moderate performance in terms of
balance between precision and recall.

In summary, the analysis of the confusion matrix for body parts in medical images
reveals a moderate performance of the model in classifying the body parts. While some
classes show relatively good performance, such as ‘chest,’ ‘abdomen,’ and ‘artery,’ indi-
cating the model’s ability to identify vascular structures in medical images, other classes
demonstrate lower performance, e.g., ‘lobe,’ ‘head,’ and ‘liver,’ which can be attributed to
anatomical proximity or a lack of clear visual distinction between these structures.

Despite the confusions, it is encouraging that the model could capture the general con-
text and provide relevant information about the body parts present in the medical images.
This suggests that the model has the potential to assist in description and classification
tasks, even if it requires refinement to improve accuracy in choosing specific words.
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However, it is essential to emphasize that the model’s performance can be enhanced
through more advanced approaches, such as using sophisticated image processing tech-
niques, incorporating additional contextual information, and training on more diverse and
balanced datasets.

Therefore, while the model shows a moderate performance in classifying body parts
in medical images, there is room for improvements and refinements that can enable a more
precise and specific description of the anatomical structures present in the images.

In summary, the analysis of the metrics from the confusion matrix reveals varied
results for different classes. Some classes exhibit satisfactory performance, with high
rates of correct identification of positive and negative cases, as well as positive values for
precision, recall, and F1 score metrics. However, other classes show lower performance,
with low rates of correct identification of positive cases, low values for precision and recall
metrics, and low F1 scores.

Additionally, some classes had no positive cases in the sample, making it challenging to
properly evaluate metrics such as precision and F1 score for these cases. Nevertheless, these
classes demonstrated a high rate of correct identification for negative cases and high values
of negative predictive value (NPV), indicating that negative cases were correctly classified.

4.3. Confusion Matrix of the Identified Problem

The presented confusion matrix in Table 17 illustrates the predictions made by the best
model regarding the identified problem in the images. By analyzing this confusion matrix,
several conclusions can be drawn.

In the ‘nodule’ class, the model demonstrated relatively good performance, correctly
identifying 30 cases. Although some confusion occurred with other classes, such as ‘hep-
atic’, ‘aneurysm’, ‘tumor’, and ‘cystic’, these can be attributed to the complex nature of
nodules, which can vary in size, shape, and location. Nevertheless, it is crucial to highlight
that even with these confusions, the model made several correct predictions for nodule
cases, indicating its ability to capture distinctive characteristics of nodules despite facing
challenges with more complex cases.

Conversely, the ‘hepatic’ class exhibited poor performance in terms of classification.
While the model made some correct predictions, significant confusions arose with other
classes, such as ‘cystic’ and ‘pancreatic’. This confusion can be explained by the visual
overlap between the liver and pancreas in medical images, leading to incorrect predictions
due to overlapping features, making precise differentiation challenging for the model.

The ‘aneurysm’ class displayed reasonable performance in terms of classification,
with 15 correct predictions. However, there were also some confusions with other classes,
such as ‘pancreatic’ and ‘cystic’. These confusions can be attributed to certain types of
cysts exhibiting similar characteristics to aneurysms, making the distinction between these
classes challenging. Despite these confusions, the model was able to correctly identify a
significant portion of aneurysm cases.

Regarding the ‘fracture’ class, the model performed well, correctly identifying 30 cases
with minimal confusion with other classes.

Similarly, the ‘normal’ class also showed good performance, with 21 cases correctly
identified and minimal confusion with other classes.

However, the ‘tumor’ class had moderate performance in terms of classification. The
model made a significant number of correct predictions for tumors. Nevertheless, there
were some confusions with other classes, such as ‘cystic’ and ‘pancreatic’. These confusions
can be attributed to certain types of tumors having visual similarities with hepatic lesions
and cysts, making the precise differentiation between these classes challenging. Despite the
confusions, the model successfully identified nine cases of tumors, indicating its ability to
capture certain distinctive characteristics of this condition.
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Table 17. Confusion matrix of the identified problem.

Real/Predicted ‘nodule’ ‘hepatic’ ‘aneurysm’ ‘fracture’ ‘normal’ ‘tumor’ ‘pancreatic’ ‘effusion’ ‘cystic’ ‘hematoma’ ‘cyst’

‘nodule’ 30 3 2 0 0 4 0 4 8 0 0
‘hepatic’ 0 5 1 1 0 0 16 0 22 0 0

‘aneurysm’ 1 1 15 0 1 0 3 0 8 1 0
‘fracture’ 0 0 0 30 3 0 0 0 1 0 0
‘normal’ 0 0 9 1 21 0 0 0 1 0 0
‘tumor’ 1 1 0 1 0 9 2 0 3 1 0

‘pancreatic’ 0 2 0 0 0 0 15 0 2 3 0
‘effusion’ 10 0 1 0 0 5 0 0 4 0 0

‘cystic’ 0 0 2 0 0 0 6 2 9 0 0
‘hematoma’ 0 1 0 0 0 0 3 0 3 0 0

‘cyst’ 0 0 0 0 0 0 2 0 4 0 0
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For the ‘pancreatic’ class, the model displayed relatively good performance, correctly
identifying 15 cases. However, there were some confusions with other classes, such as
‘hepatic’, ‘cystic’, and ‘hematoma’. This confusion can be explained, in part, by the visual
overlap between the liver and pancreas in medical images, leading to incorrect predictions
due to overlapping features, making precise differentiation challenging for the model.

In the ‘effusion’ class, there were only confusions with other classes, such as ‘nodule’,
‘cystic’, and ‘tumor’. These confusions can be justified by the presence of overlapping
or similar visual characteristics among these conditions. For example, some effusions
may exhibit mass or lesion-like characteristics resembling nodules or cysts. Likewise,
some effusions may appear visually similar to tumors in terms of their appearance in
medical images.

The ‘cystic’ class showed moderate performance in terms of classification, with nine
correct predictions. However, some confusions occurred with other classes, such as ‘pan-
creatic’. These confusions can be attributed to the presence of shared or overlapping visual
characteristics between these conditions. For example, some cysts may exhibit characteris-
tics of nodules or hepatic lesions, making the distinction between these classes challenging.
Likewise, the presence of cysts in organs such as the pancreas may visually resemble other
conditions, such as pancreatic tumors.

The ‘hematoma’ class displayed poor performance, with all predictions being incorrect.
There was a confusion with ‘cystic’, which can be justified by the fact that some hematomas
may appear similar to cysts or nodules, especially when there is fluid or blood accumu-
lation in a specific region. Likewise, the presence of hematomas in hepatic organs may
resemble hepatic lesions, justifying the confusion with the ’pancreatic’ class, making the
differentiation between the classes challenging.

The ‘cyst’ class generally exhibited good performance in terms of classification, with
the majority of predictions being correct, considering that the terms ‘cyst’ and ‘cystic’ are
interchangeable. However, some confusion occurred with the ‘pancreatic’ class. These
confusions can be justified by the fact that some cysts may share characteristics with hepatic
lesions, making the distinction between these classes challenging. Despite the confusion,
the model was able to correctly identify most cases of cysts, indicating its ability to capture
distinctive characteristics of this condition.

In Table 18, we present the metrics of the confusion matrix for the best model regarding
the identified problem in the images. This table allows for the evaluation of the performance
of the best model and drawing relevant conclusions.

Table 18. Metrics of the confusion matrix for the identified problem.

Class P N TP FP TN FN TPR TNR PPV NPV ACC F1

‘nodule’ 51 233 30 12 221 21 0.59 0.95 0.71 0.91 0.88 0.65
‘hepatic’ 45 239 5 8 231 40 0.11 0.97 0.38 0.85 0.83 0.17

‘aneurysm’ 30 254 15 15 239 15 0.50 0.94 0.50 0.94 0.89 0.50
‘fracture’ 34 250 30 3 247 4 0.88 0.99 0.91 0.98 0.98 0.90
‘normal’ 32 252 21 4 248 11 0.66 0.98 0.84 0.96 0.95 0.74
‘tumor’ 18 266 9 9 257 9 0.50 0.97 0.50 0.97 0.94 0.50

‘pancreatic’ 22 262 15 32 230 7 0.68 0.88 0.32 0.97 0.86 0.43
‘effusion’ 20 264 0 6 258 20 0.00 0.98 0.00 0.93 0.91 -

‘cystic’ 19 265 9 56 209 10 0.47 0.79 0.14 0.95 0.77 0.21
‘hematoma’ 7 277 0 5 272 7 0.00 0.98 0.00 0.97 0.96 -

‘cyst’ 6 278 0 0 278 6 0.00 1.00 - 0.98 0.98 -

Upon analyzing the metrics of the confusion matrix for all provided classes, we observe
considerable variation in the results. Let us discuss each class in a general context and
analyze whether the values are considered good or poor.
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The class ‘nodule’ exhibits a reasonable performance. The true positive rate (TPR)
of 0.59 indicates a moderate rate of correct identification of positive cases, while the
true negative rate (TNR) of 0.95 suggests a high rate of correct identification of negative
cases. The positive predictive value (PPV) of 0.71 indicates that approximately 71% of
cases classified as positive are truly positive. The negative predictive value (NPV) of
0.91 indicates a high proportion of correctly classified negative cases. The accuracy (ACC)
of 0.88 is considered good. The F1 score of 0.65 shows moderate performance in terms of
the balance between precision and recall.

On the other hand, the class ‘hepatic’ presents poor performance. The TPR of 0.11 in-
dicates a low rate of correct identification of positive cases, while the TNR of 0.97 suggests
a high rate of correct identification of negative cases. The PPV of 0.38 indicates that only
about 38% of cases classified as positive are truly positive. The NPV of 0.85 indicates a
reasonable proportion of correctly classified negative cases. The accuracy (ACC) of 0.83 is
considered fair. The low F1 score of 0.17 indicates poor performance in terms of the balance
between precision and recall.

Regarding the class ‘aneurysm,’ it shows reasonable performance. The TPR of 0.50 in-
dicates a moderate rate of correct identification of positive cases, while the TNR of 0.94 sug-
gests a high rate of correct identification of negative cases. The PPV of 0.50 indicates that
approximately 50% of cases classified as positive are truly positive. The NPV of 0.94 indi-
cates a high proportion of correctly classified negative cases. The accuracy (ACC) of 0.89 is
considered good. The F1 score of 0.50 shows moderate performance in terms of the balance
between precision and recall.

Moving on to the class ‘fracture,’ it presents generally good performance. The TPR
of 0.88 indicates a high rate of correct identification of positive cases, while the TNR
of 0.99 suggests a very high rate of correct identification of negative cases. The PPV of
0.91 indicates that about 91% of cases classified as positive are truly positive. The NPV of
0.98 indicates a high proportion of correctly classified negative cases. The accuracy (ACC)
of 0.98 is considered good. The F1 score of 0.90 shows solid performance in terms of the
balance between precision and recall.

As for the class ‘normal,’ it shows reasonable performance. The TPR of 0.66 indicates
a moderate rate of correct identification of positive cases, while the TNR of 0.98 suggests
a high rate of correct identification of negative cases. The PPV of 0.84 indicates that ap-
proximately 84% of cases classified as positive are truly positive. The NPV of 0.96 indicates
a high proportion of correctly classified negative cases. The accuracy (ACC) of 0.95 is
considered good. The F1 score of 0.74 shows moderate performance in terms of the balance
between precision and recall.

Similarly, the class ‘tumor’ shows reasonable performance. The TPR of 0.50 indicates
a moderate rate of correct identification of positive cases, while the TNR of 0.97 suggests
a high rate of correct identification of negative cases. The PPV of 0.50 indicates that ap-
proximately 50% of cases classified as positive are truly positive. The NPV of 0.97 indicates
a high proportion of correctly classified negative cases. The accuracy (ACC) of 0.94 is
considered good. The F1 score of 0.50 shows moderate performance in terms of the balance
between precision and recall.

However, the class ‘pancreatic’ presents poor performance. The TPR of 0.68 indicates
a moderate rate of correct identification of positive cases, while the TNR of 0.88 suggests a
relatively low rate of correct identification of negative cases. The PPV of 0.32 indicates that
only about 32% of cases classified as positive are truly positive. The NPV of 0.97 indicates
a high proportion of correctly classified negative cases. The accuracy (ACC) of 0.86 is
considered fair. The F1 score of 0.43 shows moderate performance in terms of the balance
between precision and recall.

Regarding the classes ‘effusion’, ‘hematoma’, and ‘cyst’, they have a number of positive
cases equal to zero, making it difficult to properly evaluate precision, recall, and F1 score
metrics. However, the TNR values for these classes are relatively high, indicating a high
rate of correct identification of negative cases.
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The model exhibited varied results in the classification of different classes of identified
issues in medical images. For some classes, such as ‘nodule,’ ‘aneurysm,’ ‘fracture,’ and
‘normal,’ the performance was relatively good, with a significant number of correct predic-
tions. However, there were confusions with other classes, indicating visual feature overlap
between different medical conditions.

On the other hand, some classes, such as ‘hepatic,’ ‘effusion,’ and ‘hematoma,’ pre-
sented more challenging performance. There were considerable confusions with other
classes, indicating visual feature overlap and difficulty in distinguishing these conditions.

Regarding the confusion matrix metrics, some classes showed reasonable performance,
such as ‘nodule,’ ‘aneurysm,’ ‘fracture,’ and ‘normal,’ with moderate rates of correct
identification of positive cases, high rates of correct identification of negative cases, and
moderate F1 scores. Notably, the ‘fracture’ class exhibited generally good performance,
with high rates of correct identification of positive cases, high rates of correct identification
of negative cases, and a solid F1 score. On the other hand, the ‘hematoma’ and ‘cyst’ classes
have a number of positive cases equal to zero, making it challenging to evaluate some
metrics properly.

Conversely, the classes ‘hepatic,’ ‘effusion,’ and ‘hematoma’ exhibited inferior perfor-
mance, with low rates of correct identification of positive cases and/or low F1 scores.

To enhance classification in these classes, more advanced approaches can be employed,
such as specific image processing techniques and a more comprehensive dataset that
includes a broader range of examples.

5. Conclusions

The automatic generation of descriptions for medical images has emerged as a promis-
ing research area, holding significant potential to support healthcare professionals in the in-
terpretation and analysis of clinical exams. The implementation of such solutions can yield
substantial benefits for both patients and professionals by streamlining decision-making
and enhancing the quality of medical care. In this study, we undertook the development
and evaluation of a versatile generative model for medical image descriptions using the
ROCO dataset.

Our work explores the generalization of description generation models for different
medical image modalities, such as X-rays, magnetic resonance imaging, or computed
tomography, and for various medical conditions. This approach broadens the applicability
of the proposed models, allowing them to be employed in diverse clinical scenarios and
providing greater flexibility in generating descriptions for medical images.

An important aspect to consider is that having a more generalist model reduces the
complexity of the generated descriptions and may lead to an increase in confusion, espe-
cially when describing specific nuances of certain image modalities or medical conditions.
Therefore, it is crucial to strike a balance between generalization and the ability to capture
detailed and relevant features of medical images with the aim of assisting physicians and
healthcare professionals in diagnoses and decision-making.

To achieve our objectives, we explored the applicability of various models, including
MobileNetV2, DenseNet201, ResNet152V2, NASNetLarge, VGG19, Xception, InceptionV3,
and InceptionResNetV2, for generating medical descriptions, with the aim of achieving
generalization across diverse image modalities and medical conditions.

By utilizing a variety of feature extraction models and the transformer approach, this
study provides a more comprehensive analysis and enables the identification of which
models may be more effective in generating descriptions for medical images.

Although promising results were obtained in generating descriptions for medical im-
ages, the quality of the generated descriptions still exhibited limitations. Some descriptions
contained semantic errors or lacked relevant specific details. These limitations could be
attributed, in part, to the availability and representativeness of the ROCO data, which can
influence the obtained results. Additionally, the techniques used for generating descriptions
may not fully capture the complexity of medical images and their clinical interpretation.
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It is crucial to consider these limitations when interpreting and generalizing the results of
this study.

As recommendations for future research, we emphasize the importance of further
exploring the influence of different techniques and approaches. This may involve the use
of more advanced neural network architectures, the implementation of interpretability
in generative models, and the utilization of even larger and more diversified datasets.
Additionally, seeking a more appropriate metric for evaluating the quality of descriptions
and considering clinical validation can contribute to a deeper comparative analysis between
generated descriptions and those provided by experts.
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