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Abstract: To enhance the performance of surface electromyography (sEMG)-based gesture recogni-
tion, we propose a novel network-agnostic two-stage training scheme, called sEMGPoseMIM, that
produces trial-invariant representations to be aligned with corresponding hand movements via
cross-modal knowledge distillation. In the first stage, an sEMG encoder is trained via cross-trial
mutual information maximization using the sEMG sequences sampled from the same time step but
different trials in a contrastive learning manner. In the second stage, the learned sEMG encoder is
fine-tuned with the supervision of gesture and hand movements in a knowledge-distillation manner.
In addition, we propose a novel network called sEMGXCM as the sEMG encoder. Comprehensive
experiments on seven sparse multichannel sEMG databases are conducted to demonstrate the ef-
fectiveness of the training scheme sEMGPoseMIM and the network sEMGXCM, which achieves an
average improvement of +1.3% on the sparse multichannel sEMG databases compared to the existing
methods. Furthermore, the comparison between training sEMGXCM and other existing networks
from scratch shows that sEMGXCM outperforms the others by an average of +1.5%.

Keywords: surface electrography (sEMG); deep learning; gesture recognition; mutual information;
knowledge distillation

1. Introduction

In human–computer interfaces (HCIs), hand movements commonly offer a natural
way for users to interact with the computer [1]. There are multiple ways to recognize hand
gestures, such as vision- [2], WiFi- [3], and radar-based approaches with off-body sensors [4],
as well as approaches based on biosignals such as surface electromyography (sEMG) and
electroencephalography (EEG) [5,6]. Among these approaches, the sEMG-based muscle–
computer interface is attracting increasing attention due to its robustness to the deployment
environment and its non-invasive nature [7].

With the recent advancement of deep learning techniques, a common method for
sEMG-based gesture recognition is to translate the sEMG signals to images and then
Convolutional Neural Network (CNN) [5,8,9] is trained for classification. However, these
models only capture the spatial information of sEMG signals without considering the
temporal information. To address this issue, recurrent neural networks (RNNs) [10] and the
hybrid CNN–RNN [11,12] are adopted to extract both spatial and temporal features from
sEMG signals and achieve better performances compared to CNN. However, RNN and
CNN–RNN are rarely used in real-time HCIs due to their slow computation. Motivated by
this fact, we propose an improved network, namely sEMGXCM (Figure 1). In this network,
spatial and temporal features are extracted in parallel using 2D and 1D convolutional layers,
respectively. After the extracted features are fused, a self-attention layer [13] is added to
model the association across electrodes. To validate the effectiveness of sEMGXCM, we

Bioengineering 2023, 10, 1101. https://doi.org/10.3390/bioengineering10091101 https://www.mdpi.com/journal/bioengineering

https://doi.org/10.3390/bioengineering10091101
https://doi.org/10.3390/bioengineering10091101
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/bioengineering
https://www.mdpi.com
https://orcid.org/0000-0003-2850-0683
https://orcid.org/0000-0002-1239-4428
https://orcid.org/0000-0002-2709-396X
https://doi.org/10.3390/bioengineering10091101
https://www.mdpi.com/journal/bioengineering
https://www.mdpi.com/article/10.3390/bioengineering10091101?type=check_update&version=1


Bioengineering 2023, 10, 1101 2 of 14

conducted a fair comparison between sEMGXCM and other three existing deep networks,
GengNet [5], XceptionTime [9], and XCM [14]. The performances of these networks
are obtained by training them from scratch and adopting cross-trial gesture recognition
accuracy as the evaluation metric.
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Figure 1. The architecture of sEMGXCM, which is end-to-end and double-stream, used as the
backbone of Esemg.

Despite the improvement brought by network design, cross-trial gesture-recognition
performance is still far from optimal. A trial commonly represents a repetition of performing a
hand gesture when wearing electrodes without removing them [15]. Then, the cross-trial gesture
recognition accuracy could indicate the performance of a trained classification model during the
longtime use of an sEMG-based application. Thus, it is essential to build a classification model
with high cross-trial gesture-recognition accuracies. Motivated by the cross-modal association
between sEMG signals and hand movements [16], we aim to model another type of association
across different trials within the same sEMG modality. Based on these two kinds of associations,
we propose a novel scheme, called sEMGPoseMIM (Figure 2), to enhance the training of
sEMG-based classification models, such as GengNet [5], XceptionTime [9], and XCM [14].

Likelihood Estimator 
Q

Minimize MI

Maximize MI

anchor sEMG

positive sEMG Likelihood Estimator  
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Maximize Cross-trial MI

Stage 1: Cross-Trial Mutual
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Figure 2. An overview of our proposed network-agnostic training framework, namely sEMGPoseMIM,
for intra-subject sEMG-based gesture recognition. The positive sEMG xj is sampled from a different
trial from that of the anchor sEMG xi at the same time window.

Specifically, sEMGPoseMIM consists of two stages that, respectively, model the cross-modal
(i.e., sEMG signals and hand movements) association and invariant information across
different trials. In the first stage, inspired by the study of mutual information (MI) [17],
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we aim to train an encoder that generates trial-invariant representations. To do this, we
sample pairs of sEMG sequences from different trials in the same time step. Then, the
sEMG sequences of a pair are fed into the encoder, whose output is disentangled into
a gesture-relevant representation and a trial-relevant representation. Subsequently, the
mutual information between the two representations from a single sEMG sequence is
minimized through a likelihood estimator to ensure the disentanglement, as Belghazi et al.
do in [18]. In addition, the cross-trial mutual information between the gesture-relevant
representation and trial-relevant representation from the two respective sEMG sequences
of a sampled pair is maximized to mitigate the impact across different trials. In this way,
an encoder producing trial-invariant representations is obtained. In the second stage, we
aim to leverage the invariance of hand movements across different trials. To this end,
we adopt a common knowledge-distillation method [19] to align the feature spaces of
two modalities (i.e., sEMG signals and hand movements). Firstly, a teacher network of
the hand movements modality is supervisedly trained to classify hand gestures. Next,
a student network based on sEMG signals is initialized using the parameters learned in
the first stage and then is jointly trained through classification loss as well as Kullback–
Leibler divergence loss to the output of the well-trained teacher network. We validate
the effectiveness of sEMGPoseMIM by comparing the performance of training using the
scheme sEMGPoseMIM with that of training from scratch. In addition, the effect of the
components of sEMGPoseMIM is verified.

The main contributions of this paper are summarised as follows.

• We design a new end-to-end convolutional neural network for cross-trial sEMG-based
gesture recognition, namely sEMGXCM, that captures the spatial and temporal fea-
tures of sEMG signals as well as the association across different electrodes. The
parameter number of the self-attention layer increases as the number of electrodes
increases, so sEMGXCM is utilized for sparse multichannel sEMG signals.

• We present a novel two-stage training scheme called sEMGPoseMIM for cross-trial
sEMG-based gesture recognition. Specifically, the first stage is designed to maximize
the mutual information between the pairs of cross-trial features at the same time
step to produce trial-invariant representations. And the second stage models the
cross-modal association between sEMG signals and hand movements via cross-modal
knowledge distillation to enhance the performance of the trained network.

• A comprehensive evaluation of the proposed network sEMGXCM on the benchmark
NinaPro databases is conducted, and the results show the superiority of sEMGXCM for
cross-trial gesture recognition. Specifically, compared with the state-of-the-art network,
sEMGXCM achieves improvements of +0.7%, +1.3%, +0.5%, +0.3%, +0.3%, +0.6%,
and +1.0% on NinaPro DB1-DB7 [20–23]. We also performed an evaluation of our
training scheme sEMGPoseMIM on NinaPro DB1-DB7. The experimental results show
the superiority of sEMGPoseMIM for enhancing the cross-trial gesture recognition
performance of networks. And the recognition accuracy of sEMGXCM from training it
using sEMGPoseMIM is significantly higher than the state-of-the-art method by +1.3%,
+1.5%, +0.8%, +2.6%, +1.7%, +0.8% and +0.6% on NinaPro DB1-DB7.

2. Related Work
2.1. sEMG-Based Gesture Recognition

The sEMG signal is recorded using electrode contact with the skin during the contrac-
tion of skeletal muscles [24], which is non-invasive and robust to environmental conditions.
Recently, sEMG-based gesture recognition has attracted much attention due to its broad
potential in the area of sign language, medical rehabilitation, virtual reality, and so on [25].
The approaches to tackle this classification problem can be categorized into conventional
machine-learning-based approaches and deep-learning-based ones [5,7,9,11,26]. The for-
mer usually consists of three steps, including preprocessing sEMG signals, handcrafted
feature extraction, and classification using the extracted features. Various handcrafted
sEMG features are adopted, such as temporal–spatial descriptors (TSDs) [27], Discrete
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Wavelet Transform Coefficients (DWTCs) [28], and Continuous Wavelet Transform Coef-
ficients (CWTCs) [29]. Given the extracted features, the conventional machine learning
classifiers, such as the Support Vector Machine (SVMs) [30] and Random Forests [23],
are employed for classification. However, handcrafted feature extraction often requires
domain expertise and the manual engineering of features, which can be time-consuming
and resource-intensive. In contrast, deep models could automatically learn relevant fea-
tures from raw data, eliminating the need for explicit feature engineering. For example,
Geng et al. [5] converts the sEMG signal into a grayscale image, and a network composed
of multiple 2D convolutional layers is utilized to recognize it. However, 2D convolutional
layers are hardly used to capture the temporal information of signals. Motivated by this
fact, RNN [10] is specifically designed to handle sequential data, making it suitable for
capturing temporal dependencies. Unlike traditional feed-forward networks, it possesses
an internal memory that retains information about prior inputs. This memory enables
RNNs to process data sequentially and consider the context of previous inputs when mak-
ing predictions. Furthermore, the hybrid CNN–RNN [11] is proposed by combining the
strengths of both CNNs and RNNs. CNNs excel at extracting spatial features through the
use of convolutional filters, while RNNs specialize in handling sequential information. By
integrating these two architectures, the hybrid model can simultaneously capture spatial
and temporal features. Furthermore, XceptionTime [9] utilizes 1D convolutional layers to
extract fine-grained temporal information in time-series sEMG data.

Besides the input of converted images, Côté-Allard et al. [31] employs spectrograms
extracted from sEMG signals as the input of a CNN. Wei et al. [8] fed vectors of multiple
handcrafted features into a multi-stream convolutional neural network, and the approach
made significant improvements in cross-trial gesture recognition. During the collection of
sEMG signals, data of other modalities may be collected simultaneously [20–22]. Therefore,
multimodal gesture-recognition methods that fuse the features of multimodal data are
introduced to achieve further improvement [32,33]. In contrast, Hu et al. [16] utilized
the hand poses to model the cross-modal association via adversarial learning during the
training phase and improved the cross-trial gesture recognition performance during the test
phase, barely using sEMG signals. Our training scheme sEMGPoseMIM is also formulated
as multimodal training but is a unimodal evaluation.

2.2. Mutual Information and Cross-Modal Learning

In this work, our target is to learn trial-invariant representations of sEMG signals and
make use of multimodal data during the training phase. Recently, mutual information
(MI) [34] has been widely used in representation learning such as subject-invariant brain–
computer-interface [35] and view-invariant human-pose estimation [36]. However, for the
applications of muscle–computer interfaces (MCIs), mutual information is often utilized to
select channels [37] or features [38]. Unlike these approaches, the maximization of mutual
information is used for trial-invariant representation learning in our work.

To model the inherent relationship between the sEMG signals and finger movements,
cross-modal learning-based methods are reviewed next. We shall focus on the approaches
designed for pattern recognition. Hu et al. [16] performed the cross-modal transformation
of sEMG signals and hand movements to obtain a fused feature of these two modalities.
Liu et al. [39] also utilized cross-modal transformation to obtain more discriminative imag-
ined visual features from a single modality. In addition to cross-modal transformation,
Gu et al. [40] mapped noisy data from RGBD and wearable sensors to accurate 4D repre-
sentations of lower limbs to perform abnormal gait-pattern recognition via cross-modal
transfer. Considering that finger movements are more discriminative and generalized for
gesture recognition, we follow [41] to utilize cross-modal knowledge distillation instead of
transformation to model the relationship between these two modalities.
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3. Materials and Methods
3.1. sEMGXCM

In this subsection, we present our improved network for cross-trial sEMG-based ges-
ture recognition (sEMGXCM). Specifically, we demonstrate the architecture of the network
and then explain the novelty of sEMGXCM.

Existing networks for sEMG-based gesture recognition tend to only extract tempo-
ral features (e.g., XceptionTime [9]) or spatial features (e.g., GengNet [5]). The spatial
information of sEMG signals could indicate the spatial arrangement of electrodes, such as
ring-like and matrix-like arrangements, as well as the muscle activities of different muscle
groups. On the other hand, temporal information could provide valuable insights into the
dynamic nature of sEMG signals, and the temporal relationships between different signal
segments allow for a more comprehensive understanding of the underlying physiological
processes. These factors will lead to a more accurate classification of different hand ges-
tures. Although handcrafted features can be extracted to cover both spatial and temporal
scenarios [8], it is time-consuming to obtain them. Therefore, we follow the dual-stream
architecture of XCM [14], which is designed for multivariate time series data classification,
to simultaneously extract spatial and temporal features.

As shown in Figure 1, the temporal stream consists of two 1D convolution blocks, and
the spatial one contains two 2D convolution layers and two 2D locally connected layers.
The kernel size of the 1D convolution filters is set to W × C, where W and C denote the
time window size and the number of electrodes, respectively. As 1D convolution filters
slide over the time axis, the temporal stream shall capture the information across different
timestamps. On the other hand, the spatial stream follows the architecture of GengNet [5]
as shown in Figure 3. The locally connected layers of the spatial stream extract features
of which electrodes indicate the specific hand gesture. Note that the hand movements
are driven by specific muscle groups, and the features extracted by the spatial stream are
explainable. Given the temporal and spatial features, a fusion operation is conducted,
followed by a self-attention layer to learn the influence of different electrodes or time
steps on gesture recognition. Specifically, inspired by [13], a four-head self-attention layer
followed by a feedforward layer was adopted to not just focus on the current electrode
or time step but also obtain information about the context. In the following step, we
added the same aforementioned 1D convolution block and a 1D global average pooling to
improve the generalization ability of sEMGXCM. Finally, we performed classification with
a softmax layer.

Conv64 
@3x3

Conv64 
@3x3

LC64 
@1x1

LC64 
@1x1

Figure 3. The architecture of the GengNet Module in the network sEMGXCM. Conv and LC, respec-
tively, denote the 2D convolutional layer and 2D locally connected layer. The number following the
layer name and the number after the ampersand denote the number of filters and the convolutional
kernel size, respectively.

In the field of image classification, 2D convolutional layers that apply multiple filters,
each with different weights, can learn to extract different types of spatial information
from images [42]. On the other hand, 1D convolutional layers are mainly used to extract
temporal information from time-series signals, such as audio and speech [43,44]. In our
network sEMGXCM, two streams that use 2D and 1D convolutional layers, respectively,
to extract spatial and temporal features. In contrast, GengNet only uses 2D convolutional
layers and XceptionTime only for 1D convolutional layers. Therefore, sEMGXCM can make
use of both spatial and temporal information from the input sEMG signals. In addition to
XCM [14], a self-attention layer is added to learn the information across different electrodes
or time steps.
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3.2. sEMGPoseMIM

In this subsection, we present a novel two-stage training scheme to enhance the
networks for sEMG-based gesture recognition. As an instance of hybridization engineer-
ing [45], this training scheme (called sEMGPoseMIM, shown in Figure 2) is inspired by
mutual information across different trials, as well as the inherent relationship between
sEMG signals and hand movements. Specifically, we aim to generate trial-invariant repre-
sentations from sEMG signals via maximizing cross-trial mutual information in the first
stage. In the second stage, the initialized model is fine-tuned via cross-modal learning with
another modality (i.e., hand movements).

In this work, mutual information maximization is applied during the training phase to
learn a trial-invariant representation, which is significantly different from previous works,
in which mutual information is used for channel or feature selection [46,47]. In addition,
cross-modal knowledge distillation is utilized to capture the inherent correlation between
sEMG signals and hand movements, enhancing the learned trial-invariant representation.

3.2.1. Stage 1: Cross-Trial Mutual Information Maximization

Given an input sEMG sequence x, we aim to learn an encoder Esemg to produce a
trial-relevant representation v and a gesture-relevant representation u, while v and u are
expected to be disentangled. In other words, two conditional distributions p(v|x) and
p(u|x) are estimated by training the encoder Esemg. Therefore, we can recognize the same
gesture of one subject from different trials.

An anchor sEMG sequence xt
i is constructed by capturing sEMG signals starting from

time step t of the i-th trial. For each anchor sEMG sequence, we match a positive sEMG
sequence xt

j that is sampled from the same time step of another trial j. Then, an encoder

Esemg is employed to generate a trial-relevant representation vt
i ∈ Rd and a gesture-relevant

representation ut
j ∈ Rd given an sEMG sequence xt

i . To learn a cross-trial representation,
Esemg is trained via the maximization of cross-trial mutual information using the following
objective Equation (1):

max

∑
i
I(xt

i ; vt
i , ut

i)︸ ︷︷ ︸
MI

+∑
i 6=j
I(xt

i ; vt
i , ut

j)︸ ︷︷ ︸
cross−trial MI

 (1)

where the first term is a conventional MI-based representation objective, and the second
term maximizes the MI between the input sEMG sequence and its cross-trial counterpart.
In this way, the learned representation, i.e., (vt

i , ut
i), could capture the gesture-relevant

information maintained from different trials.
In fact, the gesture-relevant representation u and trial-relevant representation v are

conditionally independent as they are assumed to be disentangled. To ensure this disentan-
glement between u and v, a regularization term Linter based on their mutual information
is introduced. The information for u and v shall be made mutually exclusive by minimizing
this regularization term Linter.

Considering that the contrastive log-ratio upper-bound MI estimator [48] is consistent
with disentanglement, we leverage it to estimate the probability log-ratio between the
positive pair log p(v|u) and the negative one log p(v′|u). But the conditional relation
between v and u is unavailable in our case. Hence, we utilize a likelihood estimator Q to
predict a variational distribution q(v|u) for approximating p(v|u). Overall, the objective
function of the encoder Esemg can be formulated as Equation (2).

min
Esemg
Linter(u; v) = E(u,v)∼p(u,v)[log(q(v|u)]

−E(u,v′)∼p(u)p(v)[log(q(v′|u)]
(2)
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where q denotes the estimated possibility likelihood with the estimator Q. Meanwhile,
Q is trained to minimize the KL divergence [49] between the true conditional probability
distribution p(v|u) and the variational one q(v|u) as Equation (3).

min
Q
LKL(u, v) = DKL[q(v|u)||p(v|u)] (3)

In this paper, we assume that q(v|u) follows a Gaussian distribution, so Equation (3) can
be solved via maximum likelihood estimation.

Overall Objectives Given the pairs of input sEMG sequences (xt
i , xt

j), the overall objective
in the first stage is shown as Equation (4):

min
E

[∑
i

MI(xt
i ; ut

i � vt
i) + λ1 ∑

i 6=j
MI(ut

i ; ut
j)]

+min
E

λ2 ∑
i
Linter(ut

i ; vt
i) + min

Q
∑

i
LKL(ut

i , vt
i)

(4)

where ut
i and vt

i denote the gesture-relevant representation and trial-relevant representation
by feeding xt

i into Esemg. And ut
j and vt

j are similarly obtained by feeding xt
j into Esemg. In

addition, lambda1 and lambda2 denote the weights of corresponding loss items.

3.2.2. Stage 2: Cross-Modal Knowledge Distillation

To further enhance the discrimination of the representation learned in the first stage,
we leverage cross-modal knowledge distillation to model the relationship between sEMG
signals and hand movements. Specifically, we utilize a typical knowledge-distillation [41]
method to map the feature spaces between these two modalities. Our target is to learn
the invariant information that hand movements carry across different trials and force the
sEMG encoder to mimic it. The procedure for this stage is as follows: Firstly, a teacher
network (i.e., Epose ◦ Cpose) is trained with supervision to classify hand gestures using the
modality of hand movements. Usually, the hand movements are captured using data
gloves or artificially generated in accordance with the transition of a specific hand gesture.
Secondly, a student network (Esemg ◦ Csemg), which is initialized in the first stage, is trained
jointly with classification loss and Kullback–Leibler (KL) divergence loss [41] to the output
of the teacher network Epose ◦ Cpose.

Objectives We denote the input of the Softmax layer in the teacher network and the student
network as Z′ = (z′1, z′2, . . . , z′N) and Z = (z1, z2, . . . , zN), respectively. The classification
loss is computed via the cross-entropy loss between predictions and ground truth as
Equation (5).

LCE = −E

 N

∑
c=1

Ic(yi) log(
ezc

∑
j

ezj
)

 (5)

where Ic is the indicator function for yi equal to c and N denotes the number of gestures
to be identified. On the other hand, the formulation of KL divergence loss for the two
modalities (i.e., sEMG signals and hand movements) is given as Equation (6).

LKL = E
[

N

∑
c=1

(p(xc) log p(xc)− p(xc) log q(xc))

]
(6)

In Equation (6), p(xc) and q(xc) are obtained by feeding Z′ and Z into the Softmax
layer, respectively. Their formulations are displayed in Equation (7):

p(xc) =
e

z′c
T

∑j e
z′j
T

, q(xc) =
e

zc
T

∑j e
zj
T

(7)



Bioengineering 2023, 10, 1101 8 of 14

where T denotes the temperature-scaling hyperparameter. It is commonly set to 1; a higher
value makes the probability distribution over gesture labels softer [41]. Then, the overall
loss is computed as Equation (8):

Loverall = (1− α)LCE + αLKL (8)

where α is the balance weight of KL divergence loss.

4. Results
4.1. Datasets and Evaluation Metrics
4.1.1. Datasets and Data Preprocessing

We conducted evaluations on seven sparse multichannel sEMG datasets [20–23]
(denoted as NinaPro DB1-NinaPro DB7). The specific information of these seven datasets
is displayed in Table 1. There are multiple trials in each NinaPro dataset, where a trial
represents a repetition of performing a gesture with equipped electrodes. In some NinaPro
databases (i.e., NinaPro DB1, NinaPro DB2 and NinaPro DB5), additional modalities
such as acceleration and hand poses are recorded. However, hand poses are unavailable
in the remaining NinaPro datasets. With regard to this situation, pseudo hand poses
are generated by simulating the dynamic process of hand pose variation following [16].
Specifically, the hand pose that a hand gesture ends with is estimated at first, and then a
spherical interpolation between the neutral hand pose and the estimated ending hand pose
is conducted to obtain hand movements aligned with sEMG signals.

Table 1. Specifications of the Evaluated NinaPro Datasets. The link to the NinaPro data repositories
is https://ninapro.hevs.ch/ (accessed on 9 February 2022).

Dataset Labels Subjects Trials Hand Kinematic Channels Sampling Rate Training Trials Test Trials

Ninapro DB1 [20] 52 27 10 w 10 100 Hz 1, 3, 4, 6, 7, 8, 9 2,5,10
Ninapro DB2 [20] 50 40 6 w 12 2000 Hz 1, 3, 4, 6 2, 5
Ninapro DB3 [20] 50 11 6 w/o 12 2000 Hz 1, 3, 4, 6 2, 5
Ninapro DB4 [21] 53 10 6 w/o 12 2000 Hz 1, 3, 4, 6 2, 5
Ninapro DB5 [21] 53 10 6 w 16 200 Hz 1, 3, 4, 6 2, 5
Ninapro DB6 [22] 7 10 10 w/o 16 2000 Hz 1, 3, 5, 7, 9 2, 4, 6, 8, 10
Ninapro DB7 [23] 41 22 6 w/o 12 2000 Hz 1,3,4,6 2, 5

We adopt the same data-preparation procedure as the previous work [8,9,16] for a
fair comparison. To mitigate noise, a low-pass Butterworth filter and an RMS filter are
utilized for NinaPro DB1 and the remaining datasets, respectively. Subsequently, each trial
of sEMG signals is segmented using a sliding window over 200 ms to satisfy real-time
usage constraints [50] following previous work [8]. Lastly, µ-law normalization [51] is
leveraged to normalize the filtered sEMG signals in terms of Equation (9).

T(xt
i ) = sign(xt

i )
ln(1 + µ|xt

i |)
ln(1 + µ)

(9)

where sign is an indicator function that equals 1 if the input is larger than 0 and otherwise
is −1. And µ is set to 256 in this work.

4.1.2. Evaluation Metrics

The evaluation metric in this paper is cross-trial gesture recognition accuracy, which is
the same as [8,16]. Specifically, all the trials of each subject are divided into a training set
and a testing set. The gesture-recognition accuracy is obtained by training our model on
the training set and evaluating it on the testing set. Then, the mean gesture-recognition
accuracy of all the subjects is computed as the evaluation metric. The specific split strategy
of trials is described in Table 1.

https://ninapro.hevs.ch/
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4.2. Implementation Details

Our network sEMGXCM and training scheme sEMGPoseMIM are implemented with
PyTorch, and their codes will be open-sourced online upon acceptance. In the first stage
of sEMGPoseMIM, Esemg is initialized using the Xavier Initialization method, and an SGD
optimizer with a batch size of 128 is leveraged for all the datasets. The likelihood estimation
network Q consists of two fully connected layers. Esemg and Q are simultaneously trained,
and their learning rates are initialized at 0.001 and 0.005, respectively. The training epochs
of Esemg and Q are both set to 30. In the second stage of sEMGPoseMIM, the architecture of
Epose is derived from XceptionTime. Both Csemg and Cpose consist of a fully connected layer
and a Softmax layer whose output dimension equals the number of gestures to be classified.
An SGD optimizer with a learning rate set to 0.1 is employed and 28 training epochs are
conducted while the learning rate is reduced by a factor of 0.1 at the 16th and 24th epochs.

Next, we present how to generate pairs of sEMG signals of the first stage. We need to
align the trials of each subject, due to the fact that the time lengths of trials slightly vary.
Note that all the trials of each gesture follow the same dynamic process, which consists
of three phases, making, holding, and ending gestures; we can align the trials via their
minimum length by dismissing the information of the ending phase. After that, given an
anchor sEMG xt

i from trial i, we randomly select another trial j and sample from it at time
step t to obtain the positive sEMG xt

j .

4.3. Comparison of Networks on Cross-Trial sEMG-Based Gesture Recognition

In this part, we conduct a fair comparison between four different networks, GengNet [5],
XceptionTime [9], XCM [14] and the proposed network sEMGXCM, on seven sparse mul-
tichannel sEMG databases (i.e., NinaPro DB1-NinaPro DB7). We train these networks
from scratch on these seven datasets using the evaluation metric of cross-trial gesture
recognition accuracy. As shown in the parentheses of Table 2, the proposed improved net-
work sEMGXCM outperforms the other three networks. Among these networks, GengNet
achieves the lowest cross-trial gesture recognition accuracy, and it exhibits the highest per-
formance on NinaPro DB1 while demonstrating the lowest performance on NinaPro DB3.
Compared with the state-of-the-art network (i.e., XceptionTime), our network sEMGXCM
achieves significant improvements of +5.4%, +2.9%, +1.2%, +7.5%, +5.6%, +5.7% and +5.3%
on NinaPro DB1-NinaPro DB7.

Note that sEMGXCM is derived from XCM [14]; we compare their performances
to validate the superiority of sEMGXCM for the specific task of sEMG-based gesture
recognition. Table 2 shows that sEMGXCM achieves higher recognition accuracies than
XCM on the evaluated datasets. On the other hand, we leverage the Wilcoxon signed rank
test (p < 0.05) on each dataset to demonstrate the significance of the improvements brought
by sEMGXCM. And the improvements and p-values (in brackets) are +0.7% (0.0176), +1.3%
(0.0067), +0.5% (0.0218), +0.8% (0.0149), +1.1% (0.0097), +0.3% (0.0432) and +0.3% (0.0419),
respectively. Thus, we can infer that the additional self-attention layer and the modified
spatial stream contributed to the significant improvements.

Table 2. Gesture-recognition performance of the four networks through training from scratch (shown
in parentheses) and training using sEMGPoseMIM on NinaPro DB1-NinaPro DB7. The bold entries
indicate the best performance on the corresponding dataset.

Backbone NinaPro DB1 NinaPro DB2 NinaPro DB3 NinaPro DB4 NinaPro DB5 NinaPro DB6 NinaPro DB7

GengNet [5] 78.9% (77.8%) 59.4% (50.2%) 57.0% (41.0%) 67.4% (64.8%) 78.9% (74.0%) 60.1% (56.4%) 77.8% (74.6%)
XceptionTime [9] 85.0% (83.6%) 83.4% (82.1%) 55.0% (53.0%) 71.7% (70.2%) 89.0% (86.7%) 61.3% (59.5%) 86.5% (84.1%)
XCM [14] 90.5% (88.3%) 84.8% (83.7%) 65.0% (63.7%) 78.1% (77.4%) 94.0% (92.0%) 66.4% (64.9%) 90.5% (89.1%)
sEMGXCM 91.4% (89.0%) 86.3% (85.0%) 66.5% (64.2%) 78.7% (77.7%) 94.2% (92.3%) 66.9% (65.2%) 91.2% (89.4%)

4.4. Effectiveness of sEMGPoseMIM

To demonstrate the effectiveness of the proposed training scheme sEMGPoseMIM,
we trained four networks, GengNet [5], XceptionTime [9], XCM [14], and the improved
network sEMGXCM, using the training scheme sEMGPoseMIM. The experiments were also
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conducted on NinaPro DB1-NinaPro DB7, and cross-trial gesture recognition was adopted
as the evaluation metric. The comparisons between training from scratch and training
via sEMGPoseMIM are displayed in Table 2. We can see that sEMGPoseMIM outperforms
the scheme of training from scratch regardless of the network architectures. The improve-
ments achieved by training GengNet using sEMGPoseMIM are +1.1%, +9.2%, +16.0%,
+2.6%, +4.9%, +3.7%, and +3.2%. As the performance of GengNet is far from optimal, the
improvements brought about by sEMGPoseMIM are much more significant compared with
the other three networks. With regard to the other three networks, sEMGPoseMIM could
achieve improvements of at least +1.2% on the evaluated datasets. These results indicate
the significant effectiveness of the proposed training scheme sEMGPoseMIM.

Furthermore, we compared the performance of training sEMGXCM using the training
scheme sEMGPoseMIM with that of existing sEMG-based gesture recognition approaches.
This comparison was also conducted on NinaPro DB1-NinaPro DB7, and the evaluation
metric of cross-trial gesture recognition accuracy was adopted. As shown in Table 3,
our method (i.e., sEMGXCM+sEMGPoseMIM) outperformed the state-of-the-art approach
CMAM [16], where hand poses were directly generated using sEMG signals and then
fused with the input sEMG. The specific improvements achieved using our method on
NinaPro DB1-NinaPro DB7 were +1.3%, +1.5%, +0.8%, +2.6%, +1.7%, +0.8%, and +0.6%,
which provides further evidence of the effectiveness of sEMGPoseMIM.

Table 3. Gesture-recognition accuracies (%) on the benchmark NinaPro sEMG databases. The
reported performance was achieved with sEMG windows of 200 ms. The bold entries indicate the
best performance on the corresponding dataset.

NinaPro DB1 NinaPro DB2 NinaPro DB3 NinaPro DB4 NinaPro DB5 NinaPro DB6 NinaPro DB7

GengNet [5] 77.8% 50.2% 41.0% 64.8% 74.0% 56.4% 74.6%
DuNet [52] 79.4% 52.6% 41.3% 64.8% 77.9% 56.8% 74.2%
HuNet [11] 87.0% 82.2% 46.7% 68.6% 81.8% 58.0% 80.7%
WeiNet [8] 88.2% 83.7% 64.3% 51.6% 90.0% 64.1% 88.3%
CMAM [16] 90.1% 84.8% 65.7% 76.1% 92.5% 66.1% 90.6%

Our Method 91.4% 86.3% 66.5% 78.7% 94.2% 66.9% 91.2%

4.5. Variation on Each Stage

We also validated the effects of each stage in sEMGPoseMIM by comparing four
training schemes, training from scratch, only on the first stage, only on the second stage,
and on both stages (i.e., sEMGPoseMIM). To train sEMGXCM only on the first stage, we
fine-tuned the sEMGXCM, whose parameters are initialized in the first stage via cross-trial
mutual information maximization. With regard to the second stage, we initialized the
sEMG encoder using the Xavier Initialization method and trained the sEMGXCM, as in the
second stage.

As shown in Table 4, each stage of sEMGPoseMIM contributes to its performance
improvement. Compared with training from scratch, the cross-trial mutual information
maximization in the first stage brought improvements of +0.7%, +0.2%, +2.1%, +0.7%, +0.8%,
+0.8% and +0.7% over NinaPro DB1-NinaPro DB7. The effects of cross-modal knowledge
distillation in the second stage over NinaPro DB1-NinaPro DB7 are +0.5%, +0.8%, +1.7%,
−0.9%, +0.6%, 0.0% and +0.2%. On most datasets except NinaPro DB4 and NinaPro DB6,
training only in the second stage outperformed training from scratch. When both stages
were utilized, the performance improvements over the evaluated datasets were significant
and improvements of at least +1.0% were achieved. These experimental results indicate
that both stages of sEMGPoseMIM are essential for enhancing the classification model.
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Table 4. Effects of each stage on gesture-recognition performance over NinaPro databases. The
baseline method in this table refers to directly training sEMGXCM from scratch. The bold entries
indicate the best performance on the corresponding dataset.

NinaPro DB1 NinaPro DB2 NinaPro DB3 NinaPro DB4 NinaPro DB5 NinaPro DB6 NinaPro DB7

From Scratch 89.0% 85.0% 64.2% 77.7% 92.3% 65.2% 89.4%
Stage 1 Only 89.7% 85.2% 66.3% 78.4% 93.1% 66.0% 90.1%
Stage 2 Only 89.5% 85.8% 65.9% 76.8% 92.9% 65.2% 89.6%
Two Stages 91.4% 86.3% 66.5% 78.7% 94.2% 66.9% 91.2%

5. Discussion

In the proposed network sEMGXCM, we used the GengNet architecture to extract
spatial features. The reason why we chose it lies in a good trade-off between the number
of parameters and performances on the NinaPro datasets. In addition, GengNet achieved
superb performance on high-density sEMG-based gesture recognition [5], indicating that
GengNet extracts more discriminative spatial features.

Furthermore, we compared the results of classic models on NinaPro DB1 and Ni-
naPro DB2 in previous works with the experimental results of training four networks to
gain a more comprehensive insight. As depicted in [20], Random Forests was adopted to
train on the NinaPro DB1 and NinaPro DB2, and then recognition accuracies of 75.32% and
75.27% were obtained, respectively. We can see that sEMGXCM largely outperforms classic
models, which further indicates the effectiveness of the proposed network.

6. Conclusions

In this paper, we propose a novel end-to-end convolutional neural network for cross-
trial gesture recognition based on sparse sEMG signals, namely sEMGXCM. By capturing
the spatial and temporal information of sEMG signals, as well as the correlation across
different electrodes (i.e., channels), sEMGXCM achieves superior performances on seven
sparse sEMG datasets (i.e., NinaPro DB1-NinaPro DB7). Additionally, we introduced
a novel two-stage training scheme called sEMGPoseMIM to enhance the classification
model. Specifically, a trial-invariant representation is learned using mutual information
maximization in the first stage. Subsequently, the inherent relation between the sEMG
signals and hand movements is modeled via cross-modal knowledge distillation to obtain
a more discriminative representation. To the best of our knowledge, mutual information
and cross-modal knowledge distillation are for the first time simultaneously employed for
sEMG-based gesture recognition. Moreover, our training scheme sEMGPoseMIM is network-
agnostic and can be applied to most convolutional networks for gesture recognition based
on sEMG.

To validate the effectiveness of sEMGXCM and sEMGPoseMIM, we conducted compre-
hensive experiments on NinaPro DB1-NinaPro DB7. The comparison between sEMGXCM
and existing networks for sEMG-based gesture recognition was performed by training these
networks from scratch on the seven datasets. The experimental results show that sEMGXCM
outperforms the state-of-the-art network for cross-trial gesture recognition based on sparse
sEMG signals. Furthermore, the proposed training scheme sEMGPoseMIM is utilized to train
four different networks (i.e., GengNet, XceptionTime, XCM and sEMGXCM) for validating
the effectiveness of sEMGPoseMIM. The results demonstrate that sEMGPoseMIM can bring
improvement for cross-trial gesture recognition based on sEMG. Furthermore, an ablation
study on the effect of each stage in sEMGPoseMIM was conducted, and the results suggest
that every stage is required, as skipping any stage leads to reduced performance.

Our future work will focus on the extension of the proposed training scheme on
inter-subject or inter-session sEMG-based gesture recognition, which is much more difficult
than cross-trial sEMG-based gesture recognition. We also plan to leverage a more effective
approach to model the relationship between sEMG signals and hand movements, such as
causal representation learning [53] and contrastive learning [54]. Furthermore, our method
may lack resilience [55] because the sEMG signals are sensitive to the electrodes. However,
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it is truly important for human–computer interfaces to retain the resilience. We will also
pay more attention to it in our future work.

Author Contributions: Conceptualization, Q.D. and W.G.; methodology, Q.D.; software, Q.D.; vali-
dation, Q.D.; formal analysis, Q.D. and W.G.; investigation, Q.D.; resources, Q.D.; data curation, Q.D.;
writing—original draft preparation, Q.D.; writing—review and editing, Q.D. and Y.W.; visualization,
Q.D.; supervision, M.K. and W.G.; project administration, Q.D.; funding acquisition, W.G. and X.L.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (No. 61972346,
No. 92148205) and Science and Technology Planning Project of Zhejiang, China (No. 2023C01045,
No. 2022C03103).

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wu, J.; Jafari, R. Orientation independent activity/gesture recognition using wearable motion sensors. IEEE Internet Things J.

2018, 6, 1427–1437. [CrossRef]
2. Oudah, M.; Al-Naji, A.; Chahl, J. Hand gesture recognition based on computer vision: a review of techniques. J. Imaging 2020,

6, 73. [CrossRef] [PubMed]
3. Abdelnasser, H.; Youssef, M.; Harras, K.A. WiGest: A ubiquitous WiFi-based gesture recognition system. In Proceedings of the

IEEE Conference on Computer Communications, Hong Kong, China, 26 April–1 May 2015; pp. 1472–1480.
4. Ahmed, S.; Kallu, K.D.; Ahmed, S.; Cho, S.H. Hand gestures recognition using radar sensors for human-computer-interaction:

A review. Remote Sens. 2021, 13, 527. [CrossRef]
5. Geng, W.; Du, Y.; Jin, W.; Wei, W.; Hu, Y.; Li, J. Gesture recognition by instantaneous surface EMG images. Sci. Rep. 2016, 6, 36571.

[CrossRef]
6. He, J.; Jiang, N. Biometric from surface electromyogram (sEMG): Feasibility of user verification and identification based on

gesture recognition. Front. Bioeng. Biotechnol. 2020, 8, 58. [CrossRef]
7. Phinyomark, A.; Scheme, E. EMG pattern recognition in the era of big data and deep learning. Big Data Cogn. Comput. 2018, 2, 21.

[CrossRef]
8. Wei, W.; Dai, Q.; Wong, Y.; Hu, Y.; Kankanhalli, M.; Geng, W. Surface-electromyography-based gesture recognition by multi-view

deep learning. IEEE Trans. Biomed. Eng. 2019, 66, 2964–2973. [CrossRef]
9. Rahimian, E.; Zabihi, S.; Atashzar, S.F.; Asif, A.; Mohammadi, A. XceptionTime: independent time-window xceptiontime

architecture for hand gesture classification. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal
Processing, Virtual, 4–8 May 2020; pp. 1304–1308.

10. Bittibssi, T.M.; Genedy, M.A.; Maged, S.A. sEMG pattern recognition based on recurrent neural network. Biomed. Signal Process.
Control 2021, 70, 103048. [CrossRef]

11. Hu, Y.; Wong, Y.; Wei, W.; Du, Y.; Kankanhalli, M.; Geng, W. A novel attention-based hybrid CNN–RNN architecture for
sEMG-based gesture recognition. PLoS ONE 2018, 13, e0206049. [CrossRef]

12. Sun, T.; Hu, Q.; Gulati, P.; Atashzar, S.F. Temporal dilation of deep LSTM for agile decoding of sEMG: Application in prediction
of Upper-Limb motor intention in NeuroRobotics. IEEE Robot. Autom. Lett. 2021, 6, 6212–6219. [CrossRef]

13. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need.
In Proceedings of the Advances in Neural Information Processing Systems 30, Long Beach, CA, USA, 4–9 December 2017;
pp. 5998–6008.

14. Fauvel, K.; Lin, T.; Masson, V.; Fromont, É.; Termier, A. XCM: An Explainable Convolutional Neural Network for Multivariate
Time Series Classification. Mathematics 2021, 9, 3137. [CrossRef]

15. Castellini, C.; Van Der Smagt, P. Surface EMG in advanced hand prosthetics. Biol. Cybern. 2009, 100, 35–47. [CrossRef] [PubMed]
16. Hu, Y.; Wong, Y.; Dai, Q.; Kankanhalli, M.; Geng, W.; Li, X. SEMG-based gesture recognition with embedded virtual hand poses

and adversarial learning. IEEE Access 2019, 7, 104108–104120. [CrossRef]
17. Zhao, L.; Wang, Y.; Zhao, J.; Yuan, L.; Sun, J.J.; Schroff, F.; Adam, H.; Peng, X.; Metaxas, D.; Liu, T. Learning View-Disentangled

Human Pose Representation by Contrastive Cross-View Mutual Information Maximization. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 12793–12802.

18. Belghazi, M.I.; Baratin, A.; Rajeshwar, S.; Ozair, S.; Bengio, Y.; Courville, A.; Hjelm, D. Mutual information neural estimation. In
Proceedings of the International Conference on Machine Learning, PMLR, Stockholm, Sweden, 10–15 July 2018; pp. 531–540.

19. Thoker, F.M.; Gall, J. Cross-modal knowledge distillation for action recognition. In Proceedings of the IEEE International
Conference on Image Processing, Taipei, Taiwan, 22–25 September 2019; pp. 6–10.

http://doi.org/10.1109/JIOT.2018.2856119
http://dx.doi.org/10.3390/jimaging6080073
http://www.ncbi.nlm.nih.gov/pubmed/34460688
http://dx.doi.org/10.3390/rs13030527
http://dx.doi.org/10.1038/srep36571
http://dx.doi.org/10.3389/fbioe.2020.00058
http://dx.doi.org/10.3390/bdcc2030021
http://dx.doi.org/10.1109/TBME.2019.2899222
http://dx.doi.org/10.1016/j.bspc.2021.103048
http://dx.doi.org/10.1371/journal.pone.0206049
http://dx.doi.org/10.1109/LRA.2021.3091698
http://dx.doi.org/10.3390/math9233137
http://dx.doi.org/10.1007/s00422-008-0278-1
http://www.ncbi.nlm.nih.gov/pubmed/19015872
http://dx.doi.org/10.1109/ACCESS.2019.2930005


Bioengineering 2023, 10, 1101 13 of 14

20. Atzori, M.; Gijsberts, A.; Castellini, C.; Caputo, B.; Hager, A.G.M.; Elsig, S.; Giatsidis, G.; Bassetto, F.; Müller, H. Electromyography
data for non-invasive naturally-controlled robotic hand prostheses. Sci. Data 2014, 1, 140053. [CrossRef] [PubMed]

21. Pizzolato, S.; Tagliapietra, L.; Cognolato, M.; Reggiani, M.; Müller, H.; Atzori, M. Comparison of six electromyography acquisition
setups on hand movement classification tasks. PLoS ONE 2017, 12, e0186132. [CrossRef]

22. Palermo, F.; Cognolato, M.; Gijsberts, A.; Müller, H.; Caputo, B.; Atzori, M. Repeatability of grasp recognition for robotic hand
prosthesis control based on sEMG data. In Proceedings of the International Conference on Rehabilitation Robotics, London, UK,
17–20 July 2017; pp. 1154–1159.

23. Krasoulis, A.; Kyranou, I.; Erden, M.S.; Nazarpour, K.; Vijayakumar, S. Improved prosthetic hand control with concurrent use of
myoelectric and inertial measurements. J. Neuroeng. Rehabil. 2017, 14, 71. [CrossRef]

24. Dai, Q.; Li, X.; Geng, W.; Jin, W.; Liang, X. CAPG-MYO: A muscle–computer interface Supporting User-defined Gesture
Recognition. In Proceedings of the The 2021 9th International Conference on Computer and Communications Management,
Singapore, 16–18 July 2021; pp. 52–58.

25. Mitra, S.; Acharya, T. Gesture recognition: A survey. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 2007, 37, 311–324.
[CrossRef]

26. Guo, K.; Orban, M.; Lu, J.; Al-Quraishi, M.S.; Yang, H.; Elsamanty, M. Empowering Hand Rehabilitation with AI-Powered
Gesture Recognition: A Study of an sEMG-Based System. Bioengineering 2023, 10, 557. [CrossRef]

27. Khushaba, R.N.; Al-Timemy, A.H.; Al-Ani, A.; Al-Jumaily, A. A framework of temporal-spatial descriptors-based feature
extraction for improved myoelectric pattern recognition. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 1821–1831. [CrossRef]

28. Duan, F.; Dai, L.; Chang, W.; Chen, Z.; Zhu, C.; Li, W. sEMG-based identification of hand motion commands using wavelet neural
network combined with discrete wavelet transform. IEEE Trans. Ind. Electron. 2015, 63, 1923–1934. [CrossRef]

29. Kilby, J.; Hosseini, H.G. Extracting effective features of SEMG using continuous wavelet transform. In Proceedings of the 2006
International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, 30 August–3 September
2006; pp. 1704–1707.

30. Doswald, A.; Carrino, F.; Ringeval, F. Advanced processing of sEMG signals for user independent gesture recognition. In
Proceedings of the XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013, Seville, Spain,
25–28 September 2013; Springer: Berlin/Heidelberg, Germany, 2014; pp. 758–761.

31. Côté-Allard, U.; Fall, C.L.; Campeau-Lecours, A.; Gosselin, C.; Laviolette, F.; Gosselin, B. Transfer learning for sEMG hand
gestures recognition using convolutional neural networks. In Proceedings of the 2017 IEEE International Conference on Systems,
Man, and Cybernetics, Banff, AB, Canada, 5–8 October 2017; pp. 1663–1668.

32. Gao, Q.; Liu, J.; Ju, Z. Hand gesture recognition using multimodal data fusion and multiscale parallel convolutional neural
network for human–robot interaction. Expert Syst. 2021, 38, e12490. [CrossRef]

33. Xu, L.; Zhang, K.; Yang, G.; Chu, J. Gesture recognition using dual-stream CNN based on fusion of semg energy kernel phase
portrait and IMU amplitude image. Biomed. Signal Process. Control 2022, 73, 103364. [CrossRef]

34. MacKay, D.J. Information Theory, Inference and Learning Algorithms; Cambridge University Press: Cambridge, UK, 2003.
35. Jeon, E.; Ko, W.; Yoon, J.S.; Suk, H.I. Mutual information-driven subject-invariant and class-relevant deep representation learning

in BCI. IEEE Trans. Neural Netw. Learn. Syst. 2021, 34, 739–749. [CrossRef]
36. Bachman, P.; Hjelm, R.D.; Buchwalter, W. Learning representations by maximizing mutual information across views. Adv. Neural

Inf. Process. Syst. 2019, 32,15535–15545.
37. Bai, D.; Chen, S.; Yang, J. Upper arm motion high-density sEMG recognition optimization based on spatial and time-frequency

domain features. J. Healthc. Eng. 2019, 2019, 3958029. [CrossRef] [PubMed]
38. Wen, R.; Wang, Q.; Ma, X.; Li, Z. Human Hand Movement Recognition based on HMM with Hyperparameters Optimized by

Maximum Mutual Information. In Proceedings of the 2020 Asia-Pacific Signal and Information Processing Association Annual
Summit and Conference, Auckland, New Zealand, 7–10 December 2020; pp. 944–951.

39. Liu, Y.; Neophytou, A.; Sengupta, S.; Sommerlade, E. Cross-modal spectrum transformation network for acoustic scene
classification. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Toronto, ON,
Canada, 6–11 June 2021; pp. 830–834.

40. Gu, X.; Guo, Y.; Deligianni, F.; Lo, B.; Yang, G.Z. Cross-subject and cross-modal transfer for generalized abnormal gait pattern
recognition. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 546–560. [CrossRef]

41. Hinton, G.; Vinyals, O.; Dean, J. Distilling the knowledge in a neural network. arXiv 2015, arXiv:1503.02531.
42. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Advances in

Neural Information Processing Systems; Pereira, F., Burges, C., Bottou, L., Weinberger, K., Eds.; Curran Associates, Inc.: Red Hook,
NY, USA, 2012; Volume 25.

43. Van den Oord, A.; Dieleman, S.; Zen, H.; Simonyan, K.; Vinyals, O.; Graves, A.; Kalchbrenner, N.; Senior, A.; Kavukcuoglu, K.
WaveNet: A Generative Model for Raw Audio. arXiv 2016, arXiv:1609.03499.

44. Sainath, T.N.; Mohamed, A.R.; Kingsbury, B.; Ramabhadran, B. Deep convolutional neural networks for LVCSR. In Proceedings
of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013;
pp. 8614–8618. [CrossRef]

http://dx.doi.org/10.1038/sdata.2014.53
http://www.ncbi.nlm.nih.gov/pubmed/25977804
http://dx.doi.org/10.1371/journal.pone.0186132
http://dx.doi.org/10.1186/s12984-017-0284-4
http://dx.doi.org/10.1109/TSMCC.2007.893280
http://dx.doi.org/10.3390/bioengineering10050557
http://dx.doi.org/10.1109/TNSRE.2017.2687520
http://dx.doi.org/10.1109/TIE.2015.2497212
http://dx.doi.org/10.1111/exsy.12490
http://dx.doi.org/10.1016/j.bspc.2021.103364
http://dx.doi.org/10.1109/TNNLS.2021.3100583
http://dx.doi.org/10.1155/2019/3958029
http://www.ncbi.nlm.nih.gov/pubmed/31080576
http://dx.doi.org/10.1109/TNNLS.2020.3009448
http://dx.doi.org/10.1109/ICASSP.2013.6639347


Bioengineering 2023, 10, 1101 14 of 14

45. Zhang, W.J.; Ouyang, P.R.; Sun, Z.H. A novel hybridization design principle for intelligent mechatronics systems. In The Abstracts
of the International Conference on Advanced Mechatronics: Toward Evolutionary Fusion of IT and Mechatronics: ICAM, Tokyo, Japan,
4–6 May 2010; The Japan Society of Mechanical Engineers: Tokyo, Japan, 2010; pp. 67–74.

46. Mukhopadhyay, A.K.; Samui, S. An experimental study on upper limb position invariant EMG signal classification based on
deep neural network. Biomed. Signal Process. Control 2020, 55, 101669. [CrossRef]

47. Zhang, Y.; Chen, Y.; Yu, H.; Yang, X.; Lu, W. Learning Effective Spatial–Temporal Features for sEMG Armband-Based Gesture
Recognition. IEEE Internet Things J. 2020, 7, 6979–6992. [CrossRef]

48. Cheng, P.; Hao, W.; Dai, S.; Liu, J.; Gan, Z.; Carin, L. Club: A contrastive log-ratio upper bound of mutual information. In
Proceedings of the International Conference on Machine Learning, PMLR, Virtual, 13–18 July 2020; pp. 1779–1788.

49. Rubner, Y.; Puzicha, J.; Tomasi, C.; Buhmann, J.M. Empirical evaluation of dissimilarity measures for color and texture. Comput.
Vis. Image Underst. 2001, 84, 25–43. [CrossRef]

50. Hudgins, B.; Parker, P.; Scott, R.N. A new strategy for multifunction myoelectric control. IEEE Trans. Biomed. Eng. 1993, 40, 82–94.
[CrossRef] [PubMed]

51. Recommendation, C. Pulse Code Modulation (PCM) of Voice Frequencies; ITU: Geneva, Switzerland, 1988.
52. Du, Y.; Wong, Y.; Jin, W.; Wei, W.; Hu, Y.; Kankanhalli, M.S.; Geng, W. Semi-Supervised Learning for Surface EMG-based Gesture

Recognition. In Proceedings of the IJCAI, Melbourne, Australia 19–25 August 2017; pp. 1624–1630.
53. Liu, Y.; Wei, Y.; Yan, H.; Li, G.; Lin, L. Causal Reasoning Meets Visual Representation Learning: A Prospective Study. Mach. Intell.

Res. 2022, 19, 485–511. [CrossRef]
54. Khosla, P.; Teterwak, P.; Wang, C.; Sarna, A.; Tian, Y.; Isola, P.; Maschinot, A.; Liu, C.; Krishnan, D. Supervised contrastive learning.

Adv. Neural Inf. Process. Syst. 2020, 33, 18661–18673.
55. Han, B.; Liu, C.; Zhang, W. A method to measure the resilience of algorithm for operation management. IFAC-PapersOnLine 2016,

49, 1442–1447. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.bspc.2019.101669
http://dx.doi.org/10.1109/JIOT.2020.2979328
http://dx.doi.org/10.1006/cviu.2001.0934
http://dx.doi.org/10.1109/10.204774
http://www.ncbi.nlm.nih.gov/pubmed/8468080
http://dx.doi.org/10.1007/s11633-022-1362-z
http://dx.doi.org/10.1016/j.ifacol.2016.07.774

	Introduction
	Related Work
	sEMG-Based Gesture Recognition
	Mutual Information and Cross-Modal Learning

	Materials and Methods
	sEMGXCM
	sEMGPoseMIM
	Stage 1: Cross-Trial Mutual Information Maximization
	Stage 2: Cross-Modal Knowledge Distillation


	Results
	Datasets and Evaluation Metrics
	Datasets and Data Preprocessing
	Evaluation Metrics

	Implementation Details
	Comparison of Networks on Cross-Trial sEMG-Based Gesture Recognition
	Effectiveness of sEMGPoseMIM
	Variation on Each Stage

	Discussion
	Conclusions
	References

