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Abstract: Directly applying brain signals to operate a mobile manned platform, such as a vehicle, may
help people with neuromuscular disorders regain their driving ability. In this paper, we developed a
novel electroencephalogram (EEG) signal-based driver–vehicle interface (DVI) for the continuous and
asynchronous control of brain-controlled vehicles. The proposed DVI consists of the user interface, the
command decoding algorithm, and the control model. The user interface is designed to present the
control commands and induce the corresponding brain patterns. The command decoding algorithm
is developed to decode the control command. The control model is built to convert the decoded
commands to control signals. Offline experimental results show that the developed DVI can generate
a motion control command with an accuracy of 83.59% and a detection time of about 2 s, while it has
a recognition accuracy of 90.06% in idle states. A real-time brain-controlled simulated vehicle based
on the DVI was developed and tested on a U-turn road. Experimental results show the feasibility of
the DVI for continuously and asynchronously controlling a vehicle. This work not only advances
the research on brain-controlled vehicles but also provides valuable insights into driver–vehicle
interfaces, multimodal interaction, and intelligent vehicles.

Keywords: brain signals; brain-controlled vehicles; command decoding algorithm; driver–vehicle
interfaces

1. Introduction

Vehicles controlled directly by brain signals rather than using limbs are called brain-
controlled vehicles [1]. Brain-controlled vehicles can provide an alternative or novel way for
individuals with severe neuromuscular disorders to expand the scope of their life activities
and thus enhance their quality of life. Brain signals-based driver–vehicle interfaces (DVIs),
which are responsible for translating brain signals into driving commands, are the core
part of these brain-controlled vehicles. Compared to DVIs based on eye tracking [2–4] and
speech recognition [5–7], brain signals-based DVIs do not need speech input and have
low or no requirements in terms of neuromuscular control capabilities. Therefore, they
are especially desirable for severely disabled people (or wounded soldiers on battlefields)
to operate a vehicle. Even for healthy drivers or special service drivers, such as military
vehicle drivers, brain signals-based DVIs could represent a new form of driving assistance.
For example, soldiers can use such DVIs to perform a secondary task (e.g., turning on/off
a device), while they need to use limbs to control a vehicle and cannot free their limbs to
perform a secondary task [8–10]. Thus, brain signals-based DVIs have important value for
military and civil applications.

Recently, due to the low cost and convenient use of electroencephalogram (EEG)
recording in practice [11–13], EEG signals have been explored for the development of DVIs.
According to the type of output command, EEG-based DVIs can be classified into two
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groups: (1) DVIs for selecting a task and (2) DVIs for issuing a motion control command.
For the first type, users first need to use brain signals to choose a task command from a
predefined list and convey it to an autonomous control system, and then the autonomous
control system has the responsibility of performing this selected task.

For the former, users first need to use brain signals to select a particular task from an
available list of predefined tasks, which is transmitted to an autonomous control system,
and then the autonomous control system has the responsibility of executing the selected
task. Gohring et al. [14] applied a commercial event-related desynchronization/event-
related synchronization (ERD/ERS)-based brain–computer interface (BCI) product from
the Emotiv company to build a DVI that allows for path selection at the intersection of a
road. Upon making a selection, the autonomous vehicle will perform the chosen direction
and reach the desired destination. Bi et al. [15] also built a DVI using P300 potentials,
which enable the user to select a destination from a list of nine predefined destinations.
The brain-controlled vehicle can first detect the desired destination of the user through
their brain signals, and then a vehicle autonomous navigation system is employed to
transport the user to the desired destination. Fan et al. [16] further enhanced the destination
detection performance of the DVI that was developed in [15] by combining steady-state
visual evoked potentials (SSVEP) with P300 signals. However, a major weakness of this
type of brain-controlled vehicle is that once the task is selected, the autonomous control
system takes over the vehicle until the selected task is completed. Therefore, the user
cannot further control the vehicle during vehicle motion.

For the second type of brain-controlled vehicle, users apply EEG signals to generate
specific vehicle control commands (e.g., direction and speed) to control the vehicles to reach
their destinations. Compared with the first type of vehicle, the second type allows drivers
to control vehicle motion throughout the whole process of driving. Gohring et al. [14] devel-
oped a DVI based on a commercial ERD/ERS BCI product assisted by vehicle intelligence to
perceive environments. While the vehicle will collide with objects or travel out of the safety
zone, the intelligent system imminently executes braking action according to information
obtained from its sensors. The experimental results from one subject showed that it is
feasible to use EEG signals with the assistance of vehicle intelligence to discontinuously
control an intelligent vehicle. However, they have not shown the feasibility of using EEG
signals alone to continuously control a vehicle without the assistance of vehicle intelligence.
To address this, Bi et al. [1] built and combined two BCIs (i.e., a novel SSVEP BCI and a
BCI based on the alpha wave of EEG signals) to develop a DVI enabling the user to issue
commands, including turning left, turning right, going forward, and starting and stopping.
An online driving task, which included lane-keeping and avoiding obstacles, was tested on
a U-shaped road. The experimental results showed that it is feasible to use EEG signals
alone to continuously control a vehicle.

However, to the best of our knowledge, no studies have explored how to develop
a P300-based DVI to generate a motion control command for continuously controlling
a vehicle because the traditional P300 paradigm cannot issue a command rapidly and
accurately [15,17–19] which is necessary for real-time continuously controlling of a dynamic
system. However, P300-based DVIs have some advantages over other types of EEG-based
DVIs. Compared to ERD/ERS-based DVIs, P300-based DVIs can require less training,
and this is important for practical applications [20]. Compared to SSVEP-based DVIs,
P300-based DVIs may generate fewer false alarms when users look at the interface but
do not want to issue a command, and they annoy subjects less [21–23]. Also, it should be
noted that SSVEP stimuli (particularly low-frequency SSVEP stimuli) tend to make users
more annoyed, and high-frequency SSVEP responses are weaker and harder to accurately
detect [24,25]. Moreover, P300-based DVIs can be applied to users to whom the SSVEP or
ERD/ERS BCIs are not applicable due to BCI illiteracy [26].

Although some studies explored how to use P300 potentials to control a wheelchair
or humanoid robot by issuing motion control commands [27,28], the former are task-
level controlled systems, and the latter move slowly and discontinuously. Furthermore,
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controlling a vehicle using EEG signals is more challenging than controlling a mobile robot
since brain-controlled vehicles are more complicated due to their dynamic characteristics
and travel at higher speeds [1]. Mezzina and Venuto et al. [29,30] proposed a P300-based
BCI to control an acrylic prototype car with ultrasonic sensors. The limitation of the
two studies is that (1) the prototype car is really too small to simulate a realistic driving
experience; (2) the travel speed is too low (i.e., 10 cm/s); (3) the researchers did not take the
asynchronous control into consideration; and (4) the researchers did not set the controlling
task and did not test the online driving performance.

We have developed a P300-based BCI that can rapidly and accurately decode human
intention offline [31], which has not been applied to develop a brain-controlled vehicle.
More importantly, the asynchronous control was not taken into consideration, which can
reduce the workload by detecting the non-control willingness of the user in practice [32–35].
In this paper, we aim to develop a novel asynchronous P300-based DVI for continuously
controlling a brain-controlled vehicle and validate the proposed DVI by using driver-in-the-
loop online experiments. This work not only advances research on brain-controlled vehicles
but also provides valuable insights into DVI, multimodal interactions, and intelligent
vehicles.

The main contributions of this study are as follows:

(1) This work is the first to use P300 potentials to develop a DVI to enable users to control
a vehicle continuously and asynchronously.

(2) The control command decoding algorithm, including the asynchronous function, was
proposed for the development of the P300-based DVI.

(3) We tested and validated the feasibility of the P300-based DVI for controlling a brain-
controlled vehicle using a driver-in-the-loop online experiment.

2. Materials and Methods
2.1. System Architecture

As shown in Figure 1, the proposed brain signals-based DVI includes three main
components: (1) user interface, (2) command decoding algorithm, and (3) control model.
The DVI can provide four types of control, including turning left, turning right, switching
speed, and going forward. The working procedure is as follows. According to the vehicle
state and surroundings information, brain-controlled drivers decide whether to send control
commands or not to ensure the vehicle travels safely. If the direction or speed of the vehicle
needs to be changed, the driver needs to pay attention to the corresponding command
characters in the user interface. Otherwise, they do not need to pay attention to any of the
characters. Meanwhile, the detection system constantly collects EEG signals. The collected
EEG signals are first preprocessed and then transformed into independent components
(ICs) using independent component analysis (ICA). After that, the improved sequential
forward floating search (ISFFS) algorithm is used to select the optimal ICs. These selected
ICs are employed as original features. Then, the features compressed from the original
features using principal component analysis (PCA) are fed into a classifier. Finally, the
output of the classifier is transformed into the inputs of the control model.

2.2. User Interface

As shown in Figure 2, we designed a novel user interface in our previous [31], where
L, R, and S (including SL and SH for switching to low and high speeds, respectively)
represent turning left and right and switching speed commands. In the interface, nine
letters are distributed in a 3 × 3 matrix, and every three of the same letters denote one type
of command. These nine letters flash sequentially in a random order every round, similar
to the odd-ball P300 paradigm [36,37]. Each round refers to a flashing cycle of the nine
characters, in which each letter flashes and lasts for 120 ms only once. The interval between
two consecutive letter flashings is set to zero in the paradigm. Thus, the time period for
one complete round is 1.08 s (120 ms × 9).
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Figure 1. Structure of brain signals-based driver-vehicle interface.

Intuitively, the total flashing repetition number of every command (i.e., L, S, or R) is
three in one round and six in two rounds because every three of the same letters denote one
type of command. However, in some random flashing sequences, two or all of the three
same characters corresponding to one command in a round may successively flash in a
single round. On the basis of the findings in [38–40], in case the stimulus onset asynchrony
(SOA) is less than 500 ms, an attention blink occurs. Therefore, for a command in these
flashing sequences, only the first corresponding flashing character may catch the user’s
attention, and the last one or two may not. Therefore, compared to traditional paradigms,
the segmentation and summation rule of the continuous EEG data needs to be modified to
avoid extracting useless information (for more detail, see Section 2.3.1).
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2.3. Command Decoding Algorithm

Figure 3 shows the signal flow chart of the command decoding algorithm. The
flow chart includes both the training and testing phases. Each phase includes signal
preprocessing, feature extraction, and classification. In the training phase, after the EEG
signals were collected, the unmixing matrix of ICA, labels of optimal ICs selected by
using ISFFS, transformation matrix of PCA, parameters of the classifier, and threshold
were determined for online command decoding. In the testing phase, all of the trained
parameters are utilized to decode the desired command from EEG signals for real-time
control of a vehicle.
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2.3.1. Training Phase

Data collection: Sixteen standard locations are set according to the international
standard 10–20 montage. EEG signals are collected from each of these locations through a
16-channel amplifier made by SYMTOP, as shown in Figure 4. The mean potential of the
left and right earlobes is set as the reference potential to other channels. EEG signals are
amplified and digitalized with a sampling rate of 1000 Hz, and line noise is removed using
a power-line notch filter.

Preprocessing: Once the interface completes all rounds of flashing, the collected EEG
data are filtered from 0.53 Hz to 15 Hz using a bandpass filter and down-sampled by a factor
of two. EEG segments are then extracted for each command according to the following
two rules. Rule 1: Command labels of all characters in all rounds are recorded, and all
the corresponding EEG signals of all letters are segmented from the onset of each letter
flashing to post-stimulus T. Rule 2: If there exist two, three or more successive same flashing



Bioengineering 2023, 10, 1105 6 of 17

letters in each command label, only the first letter is considered as an effective flashing
letter and the corresponding EEG segment is extracted for further processing; otherwise
all the flashing letters are considered as effective and all of the EEG segments are used for
decoding commands. Figure 5 shows the illustration of the segment extraction procedure.
Finally, the extracted EEG segments associated with each command are summed.
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ICA: Original features are extracted from the IC domain. The extracted 16-channel
EEG segment associated with each command is taken as the input of ICA, and ICs are then
obtained by

Y(t) = UX(t) (1)

where X(t) = [X1(t), X2(t), . . . , Xi(t), . . . , XL(t)]
T represents the extracted EEG segment

with a length of 512 ms, as shown in Figure 5 from the ith channel, and L represents the num-
ber of all channels and is set as 16 in this work. Y(t) = [Y1(t), Y2(t), . . . , Yi(t), . . . , YL(t)]

T

represents the independent component vector, t denotes the sampling time instance, and
U ∈ <L×L represents the unmixing matrix, which can be obtained by using the Infomax
method [41].
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ISFFS: ISFFS is an improved SFFS and is used to select the optimal ICs from all ICs
proposed in our previous study [31]. The feature pool F can be written as

F = { f1, f2, . . . , fk, . . . , fL}
fk = [ak(1), ak(2), . . . , ak(i), . . . , ak(N)]

(2)

where fk represents the feature vector associated with kth IC; ak(i) represents the ith time
domain feature of fk; L represents all the number of ICs and is equal to the number of all
channels; N represents the dimensionality of every IC and is set to 256 due to the down
sample factor of 2.

The SFFS is a bottom-up search procedure. During the optimal feature subset search
procedure, the most significant feature is included in the current optimal subset. Meanwhile,
the least significant feature of the current optimal subset will be excluded. Considering the
long period of high computational complexity, especially for time domain features with a
high resampling rate of EEG signals in this study, we apply principal component analysis to
decrease the dimensionality of the time domain features and thus significantly reduce the
computational time and make it feasible in practice. This method is subsequently referred
to as ISFFS. More details about the ISFFS algorithm can be seen in our previous study [29].

Classifier: After the optimal ICs are obtained, the PCA is used to decrease the di-
mensionality of the selected features, which are obtained by concatenating the optimal
ICs. Assume that the number of optimal ICs selected by ISFFS for each subject is K,
and thus, the number of the original features is K × N. The components with the high-
est P eigenvalues are chosen as feature weights, and new features can be presented as
x = [x(1), x(2), . . . , x(i), . . . , x(P)]T , which can cover more than 95% information of all
the original features. P is set to 50 for all users in this work to meet the above requirement.

We apply both Fisher linear discriminant analysis (FLDA) and the support vector
machine (SVM) to build the classifiers. The classifier built by the FLDA can be denoted as

y = wTx (3)

where w represents the projection direction. The value of threshold η is determined by
the receiver of curve (ROC) method. If the score y is larger than η, the sample is classified
into the target class; otherwise, the sample will be classified into the non-target class or
idle class.

The classifier built using the SVM with the radial basis function (RBF) as the kernel
function can be represented as

y =
n

∑
i=1

wi exp
(
−g‖xi − x‖2

)
+ b (4)

where xi is the ith support vector (SV) of the classifier, wi is the weight of the ith SV of
the classifier, n is the number of the SV of the classifier, g is the width of the RBF of the
classifier, and b is the bias of the classifier. We used the LIBSVM software (Version 2.0)
library proposed by Chang and Lin [42] to train the parameters of the SVM classifier.

2.3.2. Testing Phase

As shown in Figure 3, the testing experiment is performed using the following three
steps. First, EEG signals associated with three types of command characters are extracted,
and the corresponding features are computed in each cycle. Next, these features are fed
into the classifier, and scores associated with three types of commands are all obtained.
Third, if the maximum of the three scores is larger than η, then the corresponding type of
command character is recognized as the target. If the maximum is smaller than η, then an
idle state (i.e., a going forward command) is issued.
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2.4. Control Model

Two control models, lateral and longitudinal, were designed in the proposed DVI. The
lateral control model is defined as follows:

θ(n) = min{|θ(n− 1) + ∆θ ×Ω(n)|, θmax}
Ω(n) ∈ {−1, 0, 1}
∆θ = α
θ(0) = 0◦

θmax = 90◦

n ≥ 1

(5)

where θ(n) represents the steering angle at the nth update and Ω(n) represent the output
command of the decoding algorithm, with Ω(n) = −1 for turning right, Ω(n) = 0 for
going forward, and Ω(n) = 1 for turning left. In addition, ∆θ is a positive constant angle
value set as α. The value of α can be calibrated for different subjects (e.g., 15◦, 20◦, or 30◦)
before the formal online experiment.

The longitudinal control model is defined as follows:

V(n) =


V(n− 1), if Ω(n) 6= 2
V1, if Ω(n) = 2, V(n− 1) = V2
V2, if Ω(n) = 2, V(n− 1) = V1

V(0) = V1
n ≥ 1

(6)

where V(n) represents the speed. V1 is set to be about 7 km/h and V2 is set to be about
8 km/h. Ω(n) represents the output command with Ω(n) = 2 for the switching speed.

3. Experiment
3.1. Subjects

Six healthy subjects (aged between 21 and 25) participated in the experiment. All of the
subjects had no history of brain disease and had normal or corrected-to-normal vision. The
study adhered to the principles of the 2013 Declaration of Helsinki and was conducted in
accordance with the Declaration of Helsinki. All subjects signed an informed consent form
after the experiment’s purpose, required tasks, and possible consequences of participation
were explained.

3.2. Experimental Platform

As shown in Figure 6, the experimental platform includes a simulated vehicle with
a virtual driving scene and the proposed DVI. The simulated vehicle was supported by
14-DOF vehicle dynamics from CarSim software (version 8.02), and the virtual scene was
developed with Matlab/Simulink. The command decoding algorithm is composed of
an EEG amplifier for collecting EEG signals and signal processing and a classification
algorithm coded in C. The communication system between the computer running the
command decoding algorithm based on EEG signals and the computer running the control
model and virtual vehicle was built with the Transmission Control Protocol/Internet
Protocol (TCP/IP).
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3.3. Experimental Procedure

Prior to conducting the experiments, some preparations were made. We adjusted the
distance between the subjects and the screen displaying the user interface to make subjects
feel comfortable. All of the subjects were informed of the entire experimental procedure to
make them fully aware of the experiment protocol. Electrodes were appropriately attached
at corresponding locations, and all the contact impedances between the scalp and electrodes
were adjusted to be below 10 kΩ. In the online experiment, the user interface was presented
as a head-up display system. This allowed the users to pay attention to the interface to
issue control commands as well as observe the road conditions in case of traveling out of
the road. All apparatuses were examined before EEG collection to ensure normal operation
during the experiment.

The experiment consisted of two parts: (1) training and testing the command decoding
algorithm and (2) testing the developed brain-controlled vehicle based on the proposed
brain signals-based DVI. In the training part, the training data were collected and used to
determine the parameters and test the performance of the command decoding algorithm.
EEG data from all three rounds in one trial were collected for evaluation of the performance
of the command decoding algorithm offline, given different round numbers.

As shown in Figure 7, the data collection consisted of two phases: the first phase for
control states (target and nontarget samples) and the second phase for idle states. After
twelve sessions were completed for control command data collection, four sessions were
conducted for idle state data collection. Each session included nine trials, and every trial
included three rounds. In the first phase, the subjects concentrated their visual attention
on the user interface and counted the flashing number of the predefined target letter
immediately every time it flashed during the trials until the session was concluded. In the
second phase, subjects were asked not to attend to any characters in every session while
the user interface worked all the time. A few minutes were permitted for the subjects to
rest between two consecutive sessions for each phase.

In total, we obtained 108 target samples, 216 non-target samples, and 108 idle samples.
These samples were classified into two classes. Class 1 consisted of all 108 target samples.
Class 2 consisted of all 216 non-target samples when we evaluated the algorithm without
considering the idle states. When we took idle states into consideration, Class 1 consisted
of all 108 target samples, and Class 2 consisted of all 216 non-target and 108 idle samples.
The whole offline training phase was completed within 40 min.

During the part of testing the brain signals-based DVI, subjects were required to
perform the driving task: controlling the simulated vehicle to travel along the centerline
of the road from the starting point to the destination using the proposed DVI. Subjects
should try their best to drive the vehicle to stay inside the road boundaries while driving.
If the vehicle travels out of the road boundaries, subjects should try their best to control
the vehicle back to the road. Before the formal testing, subjects practiced some runs to
learn how to control the brain-controlled vehicle by using the brain signals-based control
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system. Every subject performed five runs and was given a few minutes to rest between
two consecutive runs.
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4. Results and Discussion
4.1. EEG Response under the Paradigm

Figure 8 shows the ground-average EEG responses across all the participants to the
target and non-target stimuli at channel Cz. The horizontal axis represents the time from
the onset of the flashing to the post-stimuli 600 ms, and the vertical axis represents the
amplitude of the EEG signals. The red solid line denotes the EEG wave morphology elicited
by the target stimuli, and the blue dashed line denotes the EEG wave morphology elicited
by the non-target stimuli. The shadow areas around the lines represent the standard errors
corresponding to the sampling time point. We can see that the amplitude of EEG wave
morphology ranged from −2 µV to 5 µV. The typical P300 component is elicited with an
evident positive going wave at about 420 ms, and the N200 component is also elicited near
200 ms. Both components are present in the EEG response to the target stimuli, yet they are
absent in the EEG response to nontarget stimuli.
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4.2. Performance of the Proposed DVI

We ran 100 × 6-fold cross-validations to evaluate the performance of the proposed
BCI based on the samples as mentioned in section III (C) and took the idle states into
consideration. Thus, the used samples for training and testing included 108 target samples,
216 non-target samples, and 108 idle samples.

Tables 1 and 2 show the accuracy of the proposed DVI with FLDA and SVM classifiers
as a function of the detection time. We can see that for the two classifiers, the accuracies
in control and idle states both increase over the detection time. The FLDA significantly
outperforms the SVM in both control states and idle states on average, given the different
detection times (p = 0.005, p = 0.024, p = 0.043, p = 0.039, p = 0.025, p = 0.003).

Table 1. The accuracy in the control state and idle state for the FLDA as a function of detection time
across all subjects (%).

Subject
Control State Idle State

1.08 s 2.16 s 3.24 s 1.08 s 2.16 s 3.24 s

1 84.42 90.71 95.44 91.44 96.76 99.84
2 83.15 89.19 92.15 86.78 93.64 98.23
3 77.32 88.97 92.43 91.06 97.01 96.03
4 73.20 81.42 84.72 81.38 88.44 90.60
5 72.96 77.31 82.72 84.81 78.69 83.98
6 73.00 73.96 77.72 85.29 85.82 87.48

Mean ± std. error 77.34 ± 1.96 83.59 ± 2.62 87.53 ± 2.55 86.79 ± 1.45 90.06 ± 2.67 92.69 ± 2.36

Table 2. The accuracy in the control state and idle state for the SVM as a function of detection time
across all subjects (%).

Subject
Control State Idle State

1.08 s 2.16 s 3.24 s 1.08 s 2.16 s 3.24 s

1 80.54 87.89 94.44 87.46 91.36 95.44
2 73.70 88.49 94.02 85.38 86.45 90.76
3 64.14 74.03 83.67 80.59 85.40 88.57
4 63.96 76.29 79.47 81.62 82.36 83.75
5 58.73 68.25 72.70 80.58 81.10 82.97
6 50.85 59.03 69.90 75.35 77.60 79.80

Mean ± std. error 65.32 ± 3.94 75.66 ± 4.25 82.37 ± 3.87 81.83 ± 1.58 84.05 ± 1.78 86.88 ± 2.15

For the DVI with the FLDA classifier, the average accuracies with standard errors
in control states are 77.3 ± 2.0%, 83.6 ± 2.6%, and 87.5 ± 2.6%, respectively, whereas the
average accuracies with standard errors in idle states are 86.8 ± 1.4%, 90.1 ± 2.7%, and
92.7 ± 2.4%, respectively, given detection times of 1.08 s, 2.16 s, and 3.24 s. Furthermore,
half of all subjects performed well with an accuracy near 90% in control states and higher
than 93% in idle states, given a detection time of 2.16 s. In this paper, we took a detection
time of 2.16 s for online control of a vehicle.

To make sure that the proposed method could be implemented in real-time without
incurring a substantial delay, we calculated the computational time of the entire com-
mand decoding algorithm with an Intel® Core TM i7-3770 CPU (3.40 GHz). The average
computational time was about 340 ms.

4.3. Performance of Brain-Controlled Vehicles Based on the Proposed Novel Asynchronous Brain
Signals-Based DVI

The real-time brain-controlled simulated vehicle based on the proposed DVI was
developed and tested on a U-turn road for six subjects. The task completion time and mean
lateral error were selected as evaluation indexes to rate the performance of the vehicles.
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The task completion time was defined as the time taken for the vehicle to travel from the
starting point to the destination. When the task completion time was longer than twice
that of the nominal time, the task was stopped and defined as a failed task. The nominal
time was calculated as the length of the centerline of the road from the starting point to the
destination over the maximum speed. The mean lateral error was defined as the mean of
the lateral error between the trajectory of the simulated vehicle and the centerline of the
road from the starting point to the destination. It should be noted that the two measures
are applicable only when an experimental run is successfully completed.

Figure 9 shows the trajectories of the brain-controlled vehicles based on the proposed
DVI in the five consecutive runs for each subject. The two solid blue lines represent the
road boundaries. Other color lines represent the vehicle trajectories of the successful
tasks. Subjects 1, 2, and 3 achieved good performance in brain-controlled tasks, and they
completed all five runs. Subjects 4 and 5 did not perform as well as Subjects 1, 2, and 3 and
completed only four out of five runs. Subject 6 exhibited the worst performance and did not
complete any of the runs. The task completion times of the subjects were 250.01 ± 2.79 s,
253.21 ± 1.68 s, 263.20 ± 3.17 s, 261.97 ± 5.64 s, and 265.33 ± 19.98 s and the mean lateral
errors were 2.43 ± 0.48 m, 4.21 ± 0.92 m, 8.85 ± 2.05 s, 9.09 ± 1.91 s, and 18.2 ± 5.37 s,
respectively. Subject 1 performed the task best of all subjects with the lowest mean lateral
error and the lowest mean task completion time of about 250 s, which is close to the ideal
task completion time of 245 s. Other subjects, especially Subjects 5 and 6, performed poorly.
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The major reason for the performance difference in controlling a vehicle among the
subjects is that the control command recognition accuracies in control and idle states are
different between the subjects. As shown in Table 1, the accuracies in control states for
Subjects 1, 2, and 3 were both near 90%, while the accuracies in control states for Subjects
5 and 6 were under 80%. The accuracies in idle states for Subjects 1, 2, and 3 were both
higher than 93%, while the accuracies in idle states for Subjects 5 and 6 were under 90%. A
possible reason for this disparity may have involved difficulties associated with eliciting
specific brain activity patterns. It has been demonstrated that BCIs do not work for some
users, which is referred to as “BCI illiteracy” [43–45].
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Another possible reason for the task performance difference is that subjects need to
learn how to use the proposed DVI rather than their limbs to drive the brain-controlled
vehicle, which is a completely new operation mode for them. Some subjects may not learn
well or need more practice. For example, although Subject 3 had the same accuracy in
control states as Subject 2 and even higher performance in idle states than Subject 2 at the
same detection time, the latter performed the tasks in both less time and with a lower mean
lateral error in brain-controlled tracking than the former in all five runs.

Compared to the brain-controlled vehicle reported in [1], which enabled users to issue
lateral control and starting/stopping commands to control a vehicle continuously, the pro-
posed brain-controlled vehicle can provide lateral control and switching speed commands
and shows comparable performance. It should be noted that experimental results in this
paper and [1] are from different subjects (four subjects used in [1] and six subjects used in
this paper are not any of the same subjects). Furthermore, the proposed brain-controlled
vehicle does not require subjects to issue commands by closing their eyes and thus has
lower requirements for the neuromuscular control capabilities of subjects. Finally, the
proposed brain-controlled vehicle may provide an alternative way for some subjects who
have a relatively low accuracy in using the brain-controlled vehicle developed in [1]. For
other brain-controlled systems, such as telepresence controlling an NAO humanoid robot
in [28], the robot moved slowly and discontinuously and was not controlled in the first
perspective. The comparison between this work and the related articles is also shown
below. Table 3 shows the thorough comparison of the proposed system between this work
and the related articles, including the controlled objective, whether it is a dynamic system
or not, whether it is continuously controlled or not, with or without asynchronous function,
active or passive BCI, and some notes, if any. Table 4 shows the thorough comparison of
the performance between this work and the related articles, including the type of EEG
signals, offline classification accuracy, detection time (s), online performance, and some
notes, if any. Venuto et al. [29] and Mezzina et al. [30] proposed a continuously controlled
dynamic system without the asynchronous function using P300 signals. The detection time
is relatively low, and the online accuracy is comparable. However, the speed is relatively
low, and the online driving performance is not available.

Table 3. A thorough comparison of the proposed system between this work and the related articles.

Literature Controlled
Objective

Dynamic
System

Continuously
Control Asynchronous Active or

Passive Notes

Fan et al. [16] Simulated Vehicle No No No Active -

Venuto et al. [29] Remotely Driving
Mechanical Devices Yes Yes No Active With ultrasonic

sensors

Mezzina et al. [30] An acrylic
prototype car Yes Yes No Active With peripheral

sensors

Teng et al. [46] Simulated Vehicle Yes Yes Yes Passive -

Bi et al. [47] Simulated Vehicle No No No Active -

Bai et al. [48] Speller No No No Active -

Our current work Simulated Vehicle Yes Yes Yes Active -

There are some limitations in this study. First, it is necessary to expand the subject pool
with more diverse subjects for data collection. Experiments with a larger and more diverse
group of participants could provide a more comprehensive understanding of the system’s
effectiveness and potential limitations. Second, although a higher information transfer rate
(ITR) does not mean better controlling performance, there is a need to conduct a compara-
tive analysis of ITR in real-time tasks when conducting the online experiment against other
relevant studies to achieve a more comprehensive evaluation of the performance of these
brain-controlled systems, like that in [30].
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Table 4. A thorough comparison of the performance between this work and the related articles.

Literature Type of EEG
Signals

Offline Classification
Accuracy

Detection
Time (s)

Online
Performance Notes

Fan et al. [16] P300 - 26 99% -

Venuto et al. [29] P300 - 1.03 69.54% for
direction selection

Online driving
performance was

not available.

Mezzina et al. [30] P300 - 2.8 84.28 ± 0.87%

Speed at 10 cm/s;
Online driving

performance was
not available.

Teng et al. [46] Emergency-related
EEG signals 94% 0.42 - -

Bi et al. [47] P300 84.72% 2.16 - -

Bai et al. [48] P300 and SSVEP 96.86% 39.3 94.29% Speller

Our current work P300

83.59 ± 2.62% for
control state;

90.06 ± 2.67% for
idle state

2.16
Details were

shown in
Section 4.3

-

5. Conclusions

This paper developed a novel asynchronous brain signals-based DVI that can be
used to control the speed and direction of a vehicle. The proposed DVI consists of a
user interface, command decoding algorithm, and control model. The real-time brain-
controlled simulated vehicle based on the proposed DVI was developed and tested on a
U-turn road. The experimental results demonstrate the feasibility of the proposed DVI in
controlling a vehicle, at least for some users who have high recognition accuracy in control
command and idle states. The study is important for the future development of brain-
controlled dynamic systems (especially based on event-related potentials), driver–vehicle
interfaces, intelligent vehicles, and multimodal interactions with several implications. First,
it highlights the difference between evaluating BCIs and brain-controlled dynamic systems.
Controlling a dynamic system is more difficult and challenging. Second, compared to
brain-controlled wheelchairs and robots (e.g., NAO robots), brain-controlled vehicles are
more complicated, and they travel at higher speeds. Thus, the proposed method should
be useful for improving the control of brain-controlled wheelchairs and robots. Third, the
proposed DVI can be applied to perform a secondary driving task (e.g., turning on/off
a GPS device) while healthy drivers use limbs to control a vehicle, which provides new
insights into multimodal interaction and intelligent vehicles.

Our future work aims to improve the recognition accuracy of the DVI by using deep
learning methods [49,50], validate the proposed DVI with more diverse subjects in various
driving scenes, design an assistive controller to improve the overall driving performance
and evaluate the impact of fatigue on DVI system performance, ideally by comparing it to
real driving tasks during fatigue states. We will consider user satisfaction and subjective
workload assessment to offer a more holistic evaluation. We also plan to apply the proposed
method to control other dynamic systems and extend the proposed DVI to perform a
secondary driving task while healthy drivers use limbs to control a vehicle.
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