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Abstract: The surge in deep learning-driven EMR research has centered on harnessing diverse data
forms. Yet, the amalgamation of diverse modalities within time series data remains an underexplored
realm. This study probes a multimodal fusion approach, merging temporal and non-temporal clinical
notes along with tabular data. We leveraged data from 1271 myocardial infarction and 6450 stroke
inpatients at a Beijing tertiary hospital. Our dataset encompassed static, and time series note data,
coupled with static and time series table data. The temporal data underwent a preprocessing phase,
padding to a 30-day interval, and segmenting into 3-day sub-sequences. These were fed into a
long short-term memory (LSTM) network for sub-sequence representation. Multimodal attention
gates were implemented for both static and temporal subsequence representations, culminating in
fused representations. An attention-backtracking module was introduced for the latter, adept at
capturing enduring dependencies in temporal fused representations. The concatenated results were
channeled into an LSTM to yield the ultimate fused representation. Initially, two note modalities were
designated as primary modes, and subsequently, the proposed fusion model was compared with
comparative models including recent models such as Crossformer. The proposed model consistently
exhibited superior predictive prowess in both tasks. Removing the attention-backtracking module
led to performance decline. The proposed model consistently shows excellent predictive capabilities
in both tasks. The proposed method not only effectively integrates data from the four modalities, but
also has a good understanding of how to handle irregular time series data and lengthy clinical texts.
An effective method is provided, which is expected to be more widely used in multimodal medical
data representation.

Keywords: multimodal fusion; time-series electronic medical records; prediction; multimodal
adaptation gate; attention backtracking

1. Introduction

With the vigorous development of internet information technology, data management
and transmission have become more efficient, and medical institutions have also built
many electronic medical records (EMRs) information databases. Among the many modern
medical data, electronic medical record data are one of the most important medical data
resources [1–3]. Particularly noteworthy is the growing adoption of EMR systems in
numerous hospitals, owing to the improved implementation of global hospital information
systems [4].

Unlike data from clinical trials or other forms of biomedical research, EMR data are
not generated for a specific purpose, the primary purpose of employing EMR systems is
to record the health status of patients. It encompasses a multitude of data from various
sources and of different natures [1,5,6], including medical history, diagnostic test results,
medication usage, and demographic information [7]. Characterized by its diversity and
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complexity. This makes the effective extraction of patient features and the establishment of
a multimodal representation from the raw EMR data a challenging task.

In the medical domain, research employing multimodal data has exhibited notable
diagnostic proficiency, thereby aiding the enhancement of healthcare practices and cost
reduction [8,9]. Nevertheless, prior investigations concerning EMRs have often been
confined to predictive modeling employing structured tabular data or unstructured clinical
notes [10–12] alone. For instance, some studies have employed clinical notes to predict
in-hospital patient mortality and disease outcomes [10], utilized international classification
of disease (ICD) codes for patient disease prediction, and similarity clustering analysis [13],
or employed temporal text to forecast congestive heart failure and chronic obstructive
pulmonary disease [14]. While these studies have achieved satisfactory results, in practice,
clinical experts often evaluate patients based on information from multiple sources rather
than a single modality of data. Research has shown that deep learning models based on
multimodal medical data have higher predictive performance than using a single modality,
providing valuable insights for clinical decision making [8].

Furthermore, EMR data not only encompasses data from multiple modalities but also
reflects the static and temporal health status of patients during their hospitalization. Among
these, the temporal features of a patient encapsulate the progression of their condition and
the course of treatment, providing vertical information into their health. This information
aids clinical practitioners in making more precise diagnoses and treatment decisions. In
recent years, deep learning, endowed with potent modeling and generalization capabilities,
has garnered significant attention as an emerging approach for handling temporal data.
However, due to the sparsity and varying lengths of medical temporal data, commonly
used deep learning methods such as recurrent neural network (RNN) and long short-term
memory (LSTM) often struggle to effectively represent the temporal features of patients.

Therefore, various relevant studies have proposed solutions: Lee et al. extracted
continuous vital sign parameters measured within the first 24 h after a patient’s admission to
the intensive care unit (ICU), calculating the maximum and minimum values to predict the
risk of post-discharge mortality [15]. Wang et al. transformed the original time series of vital
signs and laboratory measurement data into usable hourly features through interpolation
and organization, aiming to reduce missing data and enhance robustness [16]. Although
both methods have achieved satisfactory results, they still have some limitations. Both only
predict data within a few hours after entering the ICU, while the patient’s condition during
hospitalization also plays a crucial role in predicting subsequent tasks. Additionally, for
the former, although the model’s predictive performance is improved compared to models
using only static data, selecting extremes within a short period for time series data may lead
to the loss of essential information. As for the latter, segmenting data into hourly intervals
results in a loss of granularity present in the original data. Furthermore, both approaches
overlook clinical records, especially those in the form of time series data with significant
clinical value [17,18]. Currently, the integration of temporal information with textual data
are becoming a popular choice to enhance the performance of prediction tasks. Common
approaches include using RNN and its variants or architectures based on transformers [19].
However, for time series medical data, the uneven distribution of data and the longer
length of clinical texts pose challenges in employing conventional models like transformers.
Thus, there is a need for a class of models that can handle both time-series medical data
and lengthy medical texts simultaneously.

Cardiovascular disease is one of the most threatening health conditions [20]. Global
statistics show that cardiovascular diseases account for one third of deaths every year, with
acute myocardial infarction (AMI) having the highest morbidity and mortality. Stroke is a
serious disease with high morbidity, mortality, and disability rates [21]. Especially in China,
where 1.8 million people died of stroke in 2016 [22]. Therefore, using AMI and stroke
patient data for tasks such as in-hospital mortality prediction is crucial in clinical practice.
This predictive approach plays a key role in enabling medical professionals to enhance
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patient insights, produce timely tailored treatment plans, and reduce healthcare-related
costs [23–25].

Research indicates that incorporating patients’ time series data into predictive models
can improve the model’s predictive performance [26]. Therefore, how to effectively inte-
grate heterogeneous data types, including time series and static data, as well as text and
tabular data, has become a new challenge in EMR modeling. This study aims to devise
a novel multimodal fusion model, termed the time series multimodal adaptation gate
(T-MAG). This model employs four encoders to handle four types of patient EMR data,
specifically: temporal tabular information, temporal notes, static tabular information, and
static notes. The multimodal adaptation gate (MAG) [27] is then employed to effectuate
multimodal fusion, with the addition of an attention-backtracking module to enhance the
model’s capacity to address long-term dependencies. An overview of the multimodal
fusion model we propose, and its application, are depicted in Figure 1.
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Figure 1. An overview of the study.

The contributions of this paper can be summarized as follows:

• We propose an integrative approach that combines time series clinical note data,
time series tabular data, static clinical note data, and static tabular data, resulting in
improved performance on two types of predictive tasks;

• Addressing the irregularity and non-uniformity of medical time series data, we employ
a time window to mitigate these challenges. Simultaneously, the integration of an
attention-backtracking module enhances our model’s ability to capture long-term
dependencies;

• By comparing two types of prediction models, utilizing LSTM and a deep neural
network (DNN), we demonstrate that neglecting the temporal sequence information
embedded in time series data can have detrimental effects on the predictive perfor-
mance of the model.

The remainder of this paper is organized as follows. Section 2 first introduces the
data used in the article, followed by a detailed description of the proposed time series
multimodal fusion method. Finally, the experimental and comparative methods used in
this study are presented, and the results are presented in Section 3. Section 4 discusses the
strengths and limitations of LSTM. The Appendix A provides information on how the time
window size used in this study was determined.

2. Materials and Methods
2.1. Dataset and Data Preprocessing

In this study, we employed a proprietary dataset sourced from the EMR system of
a tertiary hospital in Beijing, China, covering the period from January 2014 to December
2016. The data utilized in this study encompass patient demographic features, medica-
tions, laboratory tests, and clinical notes, comprising admission notes, progress notes, and
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discharge summaries. The personal information of patients (such as names, ID numbers,
addresses, and phone numbers) has been entirely removed from the dataset to ensure the
data are used in an anonymous and secure manner. The ethical approval for this research
was granted by the hospital’s Institutional Review Board.

The patient data we utilized consist of two types: tabular data and textual data. Each
data type can be further categorized into temporal and static data based on whether they
vary over time, resulting in a total of four data subsets. In this paper, we refer to each of
these data subsets as a kind of modality. Please refer to Table 1 for detailed introduction of
each data.

Table 1. Details and examples of each modal data.

Modal Feature Category AMI Dataset Stroke Dataset Example
Number of Features

Static
tabular

Gender 2 2 male, female
Age 2 2 >60 years, ≤60 years

Ethnicity 12 16 Han ethnicity, Hui ethnicity
Marital status 3 3 married, divorced, unmarried

Department 7 18 neurosurgery, vascular surgery
Admission method 2 2 emergency department

Basic indicators 7 7 height, weight, temperature

Static note

Chief Complaint 1 1 chief complaint
Medical History 5 5 current medical history, past medical history

Specialized
Examination 2 2 specialist examination, auxiliary examination

Admission Diagnosis 3 3 confirm diagnosis, supplementary diagnosis
Characteristics 1 1 patient characteristics

Diagnostic Basis 2 2 diagnostic basis, differential diagnosis
Treatment Plan 1 1 treatment plan

Temporal
tabular

Laboratory tests 73 71 serum triglyceride, serum creatinine

Medications 17 21 angiotensin-converting enzyme inhibitor,
heparin

Vital signs measured 5 5 respiratory rate, pulse rate

Temporal
note

Daily ward round
records 1 1 daily ward round records

The introduction of each modality is as follows:

1. Static tabular data: This is obtained from the admission records and includes 6 demo-
graphic attributes of the patient, as well as 7 basic physical examination parameters;

2. Static note data: Also obtained from admission records, this category encompasses
15 types of information, including the patient’s complaints, medical history, special-
ized examinations, admission diagnoses, and confirmed diagnoses. Additionally, due
to the absence of punctuation in some text data, such as in-patient diagnoses, we
utilized the Jieba segmentation tool for tokenization [28]. This tool is a specialized
Chinese tokenization tool that automatically identifies new words and proper nouns
based on Chinese text;

3. Temporal tabular data: Extracted from progress notes, this contains laboratory test
results and vital signs measured at two or more time points during the hospital stay.
It includes a total of 95 parameters;

4. Temporal note data: Derived from progress notes, this category consists of daily ward
round records for each day of the patient’s hospitalization. In cases where multiple
rounds occur on the same day, only the first-round record of the day is selected.

The two types of static data generally remain constant during the hospital stay, whereas
the two types of temporal data are subject to updates as time progresses.
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For the two types of time series data, dealing with them directly using traditional
algorithms poses a challenge due to the varying lengths of patient hospital stays and
the uneven distribution of time series data generated during hospitalization. Therefore,
we conducted the following preprocessing steps for the patient’s time-series information:
First, given the substantial presence of missing values in time series data, we employed
an interpolation method to fill in the gaps. Then, since patients’ lengths of stay varied
significantly, and only a small fraction of patients had stays exceeding 30 days, we merged
the data from stays exceeding 30 days with the data from the 30th day. We then padded
the data for patients with a hospital stay of less than 30 days to extend it to a uniform
length. To mitigate the impact of varying lengths of hospital stays, we use rolling time
windows to decompose time series note data and time series table data into n subsequences
of equal size, where n is the number of subsequences. In this study, n is set to 10. For details
regarding the setting of the time window size, please refer to Appendix A.

For the AMI dataset, we selected 1639 records corresponding to patients diagnosed
with AMI. The diagnosis of AMI was confirmed through ICD-10 codes I21 and I22. Subse-
quently, we excluded records with hospitalization durations of less than 1 day and records
lacking clinical notes or laboratory test results. This process resulted in a total of 1271
records meeting the specified criteria. Among these, 91 records (7.16%) had in-hospital mor-
tality outcomes, and 1029 records (81%) had hospitalization durations within two weeks.
For the Stroke dataset, the final number of records meeting the criteria was 6450. The diag-
nosis was confirmed through ICD-10 codes I60~I64, I66, and I67.8. Among these records,
107 (1.66%) had in-hospital mortality outcomes, and 5679 records (88%) had hospitalization
durations within two weeks.

2.2. The T-MAG Model

The fusion architecture proposed in this study, as illustrated in Figure 2, is divided into
two main components: representation and fusion. Initially, each of the four data modalities
is independently subjected to representation. Subsequently, they are individually fed into
static and temporal MAG for fusion, thereby yielding the static fusion representation and
temporal fusion representation. After concatenation, these representations are input to an
LSTM module to derive the ultimate fused representation for predictive purposes. In the
following sections, we will provide a detailed description of each of these components.
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2.2.1. Representation for Each Modality

In this section, we elaborate on patient representation for the four modalities used in
our research. For the four modalities of data, we employ distinct encoders to represent
each of them:

• Feature embedding for static tabular data

Our static tabular data are divided into two categories: continuous variables (such
as age, height, and weight) and discrete variables (such as gender and ethnicity). The
former needs to be discretized based on their respective reference standards; for example,
categorizing body temperature as high, normal, or low based on the normal range. Subse-
quently, we employed one-hot encoding to represent the data, generating the static tabular
representation, where each feature in the vector represents a unique dimension. For static
tabular data Ist, the computation method of static tabular representation Fst is as follows:

Fst = Onehot(Ist) (1)

• Feature Embedding for static note data

For the static note data, due to its relatively simple structure, we utilized a word
embedding technique like doc2vec on tokenized input to obtain the representation of the
patient’s static notes, the hidden layer dimension of Doc2Vec was set to 300. For static note
data Isn, the computation method of static note representation Fsn is as follows:

Fsn = doc2vec(Ist) (2)

• Feature Embedding for temporal tabular data

For the time series tabular data, we began by processing each subsequence of the
time series tables separately. Initially, we employed a fully connected neural network
with a rectified linear unit (ReLU) activation to encode each subsequence individually.
Subsequently, we fed each encoded subsequence into an LSTM neural network to obtain
the time-structured representation for each subsequence.

For time series tabular data Itt =
(

I1
tt, I2

tt, I3
tt . . . Ii

tt . . . In
tt
)
, we initially processed each

subsequence separately. Initially, we employed a fully connected neural network with
ReLU activation to independently encode each subsequence. Subsequently, we input
each encoded subsequence into a 2-layer LSTM to obtain the representation for each
subsequence. The computation method for the representation of each time series tabular
data Fi

tt is as follows:
Fi

tt
′
= ReLU

(
Linear

(
Ii
tt
))

Fi
tt = LSTM

(
Fi

tt
′) (3)

• Feature Embedding for temporal note data

Common methods for processing clinical records involve natural language processing
models such as Transformer and bidirectional encoder representations from transformers
(BERT). However, these methods impose certain limitations on the length of each input
text. When dealing with texts exceeding a fixed length, they are often split into multiple
segments for separate processing. This not only results in potentially incomplete semantics
in segmented portions but also makes it challenging to capture long-term dependencies.
Given the characteristics of lengthy and voluminous content in the time series clinical
note data Itn =

(
I1
tn, I2

tn, I3
tn . . . Ii

tn . . . In
tn
)
, in this study, we utilized Transformer-XL [29] for

encoding, which is a variant of the Transformer architecture, In this study, the number
of layers for Transformer-XL is set to 12. Transformer-XL introduces improvements such
as a recurrence mechanism and positional encoding, enabling more efficient processing
of lengthy annotations and adeptly capturing long-term dependencies. Subsequently,
we input each encoded subsequence into a 2-layer LSTM neural network to obtain the
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temporal structure information for each subsequence. The computation method for the
representation of each time series clinical note is as follows:

Fi
tn
′
= Trans f ormerXL

(
Ii
tn
)

Fi
tn = LSTM

(
Fi

tn
′) (4)

2.2.2. Fusion for Each Modality

The concept of a multimodal adaptation gate was initially introduced by Wang et al.
in 2019 [30], primarily in the context of multimodal sentiment analysis, and later extended
to the medical domain. The core idea involves treating one modality as the primary
modality and the others as auxiliary modalities. The influence of auxiliary modalities on
the primary modality is represented as a displacement vector H. The fusion of multiple
modalities is interpreted as the addition of the primary modality and the displacement
vector. The MAG constructs specific modality attention gates to simulate the influence
strength of other modalities on the primary modality, thereby controlling the importance
of auxiliary modality embeddings. This not only allows for comprehensive perception
of information across different modalities but also effectively removes redundant and
irrelevant information from the representation through gating mechanisms. The data from
various modalities in the EMR have varying degrees of importance in assessing the patient’s
condition, and there is redundancy between modalities. Therefore, we employ the MAG to
integrate data from the four modalities.

In this study, we utilized four modal representations; however, the direct fusion of
time series and static representations can obscure the inherent temporal sequence infor-
mation of the former. Hence, we performed separate fusions for the two categories: static
representations and time series representations, resulting in fused static representations and
fused time series representations. In the initial application of MAG in the field of sentiment
analysis, the choice of the primary modality is evident because text consistently contains,
in relative terms, the richest emotional information. However, in the medical domain, this
is harder to determine as each modality of data can provide its own unique information.
So, in the above formula, two types of notes are selected as the main modality, while the
selection of the primary modality will be further discussed in subsequent chapters. The
representations of the two modalities are fused separately through their corresponding
MAG. Here, the fusion of the static representation is taken as an example. Similar formulas
can also be used for the fusion of the time series representation. The static clinical note Fsn is
chosen as the primary modality, while the static tabular Fst serves as the auxiliary modality.

The static MAG is calculated as follows:

gS = σ
(
WgS[FSn; FSt] + bgS

)
(5)

where gS is the gating value of static tabular modality WgS is the weight matric and bgS is
the scalar base, and σ(x) is the sigmoid function.

The displacement vector HS is calculated by FSt multiplied by its gating values:

HS = gS·(WhSFSt) + bhS (6)

where WhS is the weight matric for static tabular modality and bhS is the bias vector.
Then, a weighted summation is performed between the main feature FSn and the

displacement vector HS to create a multimodal representation ES:

ES = FSn + αSHS

αS = min(

∣∣|FSn |
∣∣

2∣∣|HS |
∣∣

2

βS, 1)
(7)
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where βS is a randomly initialized hyper-parameter training with the model.
∣∣|FSn|

∣∣
2 and∣∣|HS|

∣∣
2 are the L2 norm of FSn and HS. The scaling factor αS is used to restrict the effect of

the displacement vector H to a desirable range.
For T-MAG, we introduce an additional attention-backtracking module to enhance

the model’s ability to capture long-term dependencies in temporal representations. We
employ a self-attention mechanism that utilizes information from previously represented
subsequences to complement the representation of the current subsequence. The purpose
of this is to strengthen the model’s capability to handle long-term dependencies within
the data. Specifically, for the representation Fi

t of each subsequence, we calculate atten-
tion weights between Fi

t and the representations of previous subsequences ( F1
t ∼ Fi−1

t )
using the self-attention mechanism. We then perform a weighted sum with each orig-
inal representation to complement Fi

t , generating a new subsequence representation Q.
This new representation not only incorporates information from the current time but also
includes crucial information from past times, enhancing the model’s capacity to handle
long-term dependencies.

After obtaining the two fusion representations separately, we treat the static fusion
representation as the representation for day 0, concatenating it before each time series
subsequence fusion representation. These concatenated representations are then input into
a 2-layer LSTM to obtain the final patient fusion representation, denoted as Z.

2.3. Evaluation of the T-MAG-Based Multimodal Fusion Model
2.3.1. Tasks and Indexes for the Performance Evaluation

The performance evaluation of the fusion model typically relies on the performance
of the classification model based on the fused representations. Therefore, we utilized the
following two classification tasks to assess the performance of our model: predicting in-
hospital mortality and determining whether a patient is likely to have an extended length
of stay. In the latter, 0 indicates a hospital stay of 14 days or less.

To assess these two tasks, we employed an F1 score, area under the receiver operating
characteristic curve (AUROC), and area under the precision-recall curve (AUPRC) for per-
formance evaluation, with AUROC being the primary metric. F1 and AUPRC are utilized
to provide insights into the performance of AUROC on imbalanced datasets [26,31,32].

For the two binary classification prediction tasks used in this study, we employ a
sigmoid layer for prediction, with the following formula:

Y̌ = sigmoid(Linear(Z)) (8)

Following research by Tang [5], the loss function used in this paper is:

L = − 1
B

B

∑
i=1

Yilog
(
Y̌i
)
+ (1 − Yi)log

(
1 − Y̌i

)
(9)

where Y is the true value and Y̌ is the predicted value. We use the cross-entropy between
the true value and the prediction to arrive at the loss.

2.3.2. Evaluation Experiments

Firstly, each MAG needs to select a primary modality, which plays a leading role in the
fusion process. To investigate the impact of different primary modality selection strategies
on the model’s prediction results, we constructed four different T-MAG models. We
conducted predictions on two clinical tasks, respectively, to explore the optimal combination
of primary modalities in different tasks.

Subsequently, to investigate whether adding different modalities positively affects
the model’s performance, we conducted analyses using various subsets derived from
the complete dataset and employed in-hospital mortality prediction as the designated
forecasting task. Specifically, we conducted our research using four data subsets, each
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containing only two of the four original modalities. We selected four subsets to compare
the influence of each modality on the model performance: “only static” using only static
tabular data and static notes, “only time-series” using only time series tabular data and
time series notes, “only tabular” using only static tabular data and time series tabular data,
and “only notes” using only static notes and time series notes. By comparing the results of
these subsets, we aimed to identify the individual contributions of the four modalities to
the predictions.

Finally, we compared the obtained optimal choices with a series of Compare models,
whose performance has been validated in prior studies. The Compare models used will be
introduced subsequently.

2.3.3. Comparative Models

We have selected the following 2 categories of models as Compare models: traditional
machine learning methods, deep learning methods, and multimodal fusion methods.

Deep learning methods: In recent years, deep learning techniques have achieved
significant success in various domains by constructing deep hierarchical features and effec-
tively capturing long-range dependencies in the data [19]. Therefore, we have employed
two neural network architectures—deep neural network (DNN) and long short-term mem-
ory (LSTM). For DNN, since it is difficult to process time series data, we splice all static
representations before the time series representation and ignore the time series information
contained in it. For LSTM, we first splice the table representation and the note representa-
tion, respectively, and then define the static fusion representation as the representation on
the 0th day of admission.

Fusion methods: We also introduced several recently proposed multimodal fusion
models to compare the effectiveness of our fusion approach, categorizing them into the
following types:

• Models using a simple fusion method—fusion-convolutional neural network (Fusion-
CNN) and fusion-LSTM [33];

• Transformer-based fusion models—Multimodal Transformer (MulT) [34],
Crossformer [35], and patch time series transformer (PatchTST) [36];

• Models applied to time series EMR—Multivariate irregularly sampled time series
(MISTS)-fusion [37] and Glaucoma-fusion [38];

• MAG-based fusion models—MAG-LSTM and MAG-DNN.

These multimodal fusion models all divide data into three modalities: static table data,
time series table data, and clinical notes. Clinical notes are not divided into time series and
static categories. For Fusion-CNN and Fusion-LSTM, these two models obtain the repre-
sentations of the three modalities, respectively, and then directly connect them to obtain the
final fusion representation. The former adopts 2-layer CNN and max-pooling to represent
temporal data, while the latter uses bi-directional long short-term memory (BiLSTM) to pro-
cess temporal data, which can effectively capture long-term dependencies in sequence data.
In the MulT model, each modality is encoded individually, and then cross-modal attention
is employed to pairwise fuse the representations of the three modalities. Subsequently, it
utilizes self-attention to obtain a fused representation of the three modalities. This fused
representation is then concatenated to produce the final representation. Crossformer and
PatchTST are new models proposed in the past year based on Transformer. The former
focuses on the model’s capture of cross-modal dependencies of different modalities. It first
embeds the time series data segmentally and then uses two attention mechanisms to capture
cross-time and cross-modal dependencies. Modal dependencies, and finally uses a hier-
archical encoder–decoder to fuse multimodal data. The latter divides the time series into
patches. Each patch contains information on multiple time steps, and the sequence of each
variable is independently mapped to an independent embedding for modeling. Meanwhile,
we also considered two medical multimodal fusion models released in 2023: MISTS-fusion
and Glaucoma-fusion. MISTS-fusion is proposed to handle irregularities in tabular data
and clinical notes. This method employs a gating mechanism to dynamically fuse imputed
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embeddings and a time attention module to obtain interpolated representations for time
series tabular data. Simultaneously, the TextEncoder encodes time series notes, which are
then input into the time attention module to acquire interpolated representations for time
series notes. Finally, a cross-modal attention mechanism is used for multimodal fusion. In
contrast, Glaucoma-fusion predicts whether patients will undergo glaucoma surgery in
the next 12 months using clinical notes and tabular data from the preceding 4–12 months.
For these two types of data, glaucoma-fusion uses CNN and XGBoost for representation,
followed by concatenation fusion. MAG-LSTM and MAG-DNN are based on a study by
Yang et al. [28], where time series annotations were chosen as the main modality. They used
MAG to integrate three modes: static representation, time series list representation, and
time series annotation representation to obtain the final fused representation. The main
difference between them is the neural network architecture used to represent time series
list data and time series note data.

2.3.4. Ablation Experiments

Long-term dependencies refer to the phenomenon in time-series data where the current
state or event may be influenced by events or states that occurred significantly earlier in time.
In medical data, since a patient’s condition is a developing process, capturing long-term
dependencies in the patient’s time-series data allows for better tracking of the progression
of their condition. It also enables predictions and warnings about the patient’s condition
based on past data. In this study, an attention-backtracking module was employed to
capture these long-term dependencies. To investigate its impact on the model’s predictive
performance, we removed the attention-backtracking component from the model and
compared the results obtained with the original model across two clinical tasks.

2.3.5. Experimental Setup

The traditional machine learning methods (i.e., LR and RF) used in this study were
implemented using scikit-learn [31]. The deep learning models were implemented using
PyTorch [39]. All deep learning models were trained using the Adam optimizer, with a
learning rate of 0.0001, a batch size of 64, and a maximum epoch count set to 50. The dataset
was randomly partitioned into training, validation, and test sets in an 8:1:1 ratio. For both
tasks, the primary evaluation metric was AUROC. Additionally, we reported F1 score and
AUPRC to provide insight into the interpretation of AUROC on imbalanced datasets. For
each model, we selected the parameter set that yielded the minimum validation loss. All
models were implemented using PyTorch 1.10 and trained on a workstation equipped with
an Intel Xeon Gold 5218 processor, 512 GB RAM, and a 16 GB NVIDIA Tesla T4 GPU.

3. Results

In this section, we present the results of comparative and ablation study. Each reported
performance metric is the average score of five runs with different data splits.

3.1. Impact of the Main Modality on the Model Performance

Firstly, we compared four main modality selection strategies on two tasks, and the
experimental results are shown in Table 2. It is evident that selecting two types of note
modes as the main modality yields the best results for both tasks (AMI: AUROCs 0.928 and
0.881, Stroke: AUROCs 0.954 and 0.847), which also demonstrates the high importance of
clinical records. As a result, in subsequent experiments, we will consistently use two types
of note modes as the main modality to achieve enhanced predictive performance.
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Table 2. Predictive performance of models with different main modality combinations.

Data Set Selection of Main Modality
Prediction of In-Hospital Mortality Prediction of Long Hospital Stay

AUROC AUPRC F1 AUROC AUPRC F1

AMI

Static notes and temporal notes 0.928 0.363 0.535 0.881 0.632 0.478

Static tabular data and temporal notes 0.923 0.351 0.520 0.879 0.630 0.473

Static notes and temporal tabular data 0.925 0.359 0.528 0.877 0.626 0.466

Static tabular data and temporal
tabular data 0.919 0.346 0.516 0.874 0.621 0.454

Stroke

Static notes and temporal notes 0.954 0.455 0.671 0.847 0.508 0.376

Static tabular data and temporal notes 0.951 0.447 0.665 0.836 0.486 0.359

Static notes and temporal tabular data 0.945 0.438 0.651 0.834 0.479 0.352

Static tabular data and temporal
tabular data 0.933 0.425 0.644 0.818 0.443 0.334

The bold in the table represents the optimal result.

3.2. Impact of Different Subsets on Model Performance

The corresponding results for the subset are shown in Figure 3. From the results, using
the complete data set always yields better results than using partial data subsets, with
AUROC being at least 0.08 and 0.007 higher in two types of data sets than in the other four
types. Among the four subsets, the best performer is “only note”, whose AUROC is 0.848
and 0.938 in the AMI dataset and the Stroke dataset, respectively. The “static only” subset
performed the worst (AUROCs 0.752 and 0.879), probably because it does not contain any
time series data, especially the time series annotations, which contain the most information.
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Figure 3. Prediction results of the complete data set and subsets in the AMI data set (A) and the
Stroke data set (B).

3.3. Results of Comparative Experiments

Subsequently, we compared the best choice with the Compare model. In the two data
sets, the performance of various models on in-hospital mortality prediction and long-term
hospitalization prediction tasks are shown in Tables 3 and 4, respectively. It is obvious that
our T-MAG model achieved the best prediction results in both tasks, in AUROC (AMI:
0.928 and 0.881, stroke: 0.954 and 0.847), AUPRC (AMI: 0.363 and 0.632, stroke: 0.455 and
0.508), and F1-score (AMI: 0.535 and 0.478, stroke: 0.671 and 0.376), exceeding the Compare
model. In addition, the prediction performance of various fusion models in the comparative
experiments is generally better than the other two types of models. This demonstrates
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the effectiveness of employing multimodal fusion techniques to supplement information
from different modalities to obtain a more comprehensive understanding of a patient’s
condition. Among the fusion models, the three models using MAG as the fusion method
outperformed most other models, highlighting the competitiveness of utilizing MAG as
the fusion method.

Table 3. The results of evaluation experiments on the AMI dataset.

Model
In-Hospital Mortality Long Length of Stay

AUROC AUPRC F1 AUROC AUPRC F1

T-MAG T-MAG 0.928 0.363 0.535 0.881 0.632 0.478

Neural Network
DNN 0.748 0.228 0.313 0.726 0.423 0.318

LSTM 0.769 0.243 0.328 0.758 0.528 0.413

Fusion Methods
Fusion-CNN 0.816 0.267 0.403 0.716 0.513 0.405

Fusion-LSTM 0.828 0.287 0.435 0.818 0.544 0.436

Fusion Methods

MulT 0.913 0.323 0.502 0.856 0.593 0.468

Crossformer 0.893 0.319 0.491 0.855 0.597 0.461

PatchTST 0.838 0.296 0.447 0.825 0.537 0.422

MISTS-fusion 0.917 0.341 0.508 0.866 0.609 0.438

Glaucoma-fusion 0.821 0.277 0.415 0.805 0.565 0.461

MAG-DNN 0.844 0.312 0.481 0.838 0.557 0.445

MAG-LSTM 0.916 0.339 0.511 0.874 0.619 0.451

The bold in the table represents the optimal result.

Table 4. The results of evaluation experiments on the Stroke dataset.

Model
In-Hospital Mortality Long Length of Stay

AUROC AUPRC F1 AUROC AUPRC F1

T-MAG T-MAG 0.954 0.455 0.671 0.847 0.508 0.376

Neural Network
DNN 0.849 0.333 0.505 0.736 0.375 0.245

LSTM 0.856 0.349 0.511 0.746 0.378 0.255

Fusion Methods
Fusion-CNN 0.879 0.388 0.573 0.767 0.408 0.286

Fusion-LSTM 0.887 0.401 0.595 0.822 0.430 0.317

Fusion Methods

MulT 0.933 0.435 0.641 0.830 0.441 0.332

Crossformer 0.945 0.450 0.658 0.844 0.498 0.370

PatchTST 0.927 0.423 0.633 0.825 0.435 0.323

MISTS-fusion 0.949 0.451 0.660 0.833 0.445 0.339

Glaucoma-fusion 0.891 0.405 0.611 0.815 0.425 0.310

MAG-DNN 0.914 0.411 0.625 0.799 0.419 0.301

MAG-LSTM 0.938 0.445 0.647 0.836 0.488 0.358

The bold in the table represents the optimal result.

3.4. Results of Ablation Experiments

We investigated the impact of incorporating an attention-backtracking component on
the model’s performance. In the AMI dataset, removing this module resulted in an AUROC
of 0.889 for the in-hospital mortality task and 0.837 for the long-term hospitalization
duration task. Meanwhile, in the Stroke dataset, the AUROCs for the two tasks were
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0.928 and 0.772, respectively. From these results, it can be inferred that eliminating the
attention-backtracking component leads to a decline in predictive performance.

4. Discussion

With the widespread adoption of EMR systems, an increasing number of researchers
are turning to deep learning methods for medical studies, but most of these studies are
limited to single-mode electronic medical records. Typically, research focuses on the
fusion of imaging data, tabular data, and imaging reports [8,40], while research on time
series clinical notes like progress records are relatively scarce. These data encompass
information about the patient’s condition progression, crucial auxiliary test results, and
clinical expert opinions, containing rich temporal information. Furthermore, the time-
series tabular data include multiple measurements of laboratory indicators and vital signs
during the hospitalization, serving as the basis for clinical doctors to assess the patient’s
condition [9,10,41,42]. To fully leverage these valuable data, we devised an innovative
multimodal fusion model capable of integrating data from different modalities. Our
approach not only effectively integrates information from various modes but also adeptly
captures the intricate temporal dependencies in time series data. The results of two medical
prediction tasks emphasize the superiority of our fusion model over other advanced fusion
methods. Time series data provide information about the changing trends of patients over a
period, reflects the development of the disease course, and can reveal the dynamic changes
in the disease. Static data usually include the patient’s basic information, physiological
indicators, and other basic files, as well as the patient’s historical medical information. The
fusion of these two types of data can provide a more comprehensive view of the patient
and help doctors fully understand the patient’s condition and health situation.

In the medical multimodal field, fusion methods based on attention mechanisms are
widely used [43], such as the use of multi-channel attention fusion in RAIM [44], which
integrates continuous patient monitoring data, and the extensive use of transformers in
other domains [45,46]. The attention mechanism allows the model to dynamically adjust
the degree of attention to different modal information. This flexibility enables the model to
better adapt to the characteristics of different tasks or different samples, thereby improving
the generalization performance of the model. Yang et al. took the lead in introducing the
multimodal fusion MAG method [27] into the medical field and proved its effectiveness on
multimodal EMR data. Compared with other fusion methods, fusion using MAG can adapt
to different task requirements and data characteristics by adjusting the selection of main
modalities, and the gating mechanism contained in it can effectively remove redundancy in
the data. However, existing research using MAG for fusion has not paid enough attention
to time series data and only treated them on the same level as static data.

Among the other comparative models, the two with the best predictive performance
are MISTS-fusion and Crossformer. The former addresses irregular intervals in medical time
series data by handling each modality dataset separately through modules like imputation
and time attention, followed by multilayered cross-modal attention fusion. However,
this study only utilizes data within the first 48 h of admission in the original dataset,
neglecting long-term dependencies and thus showcasing more prominent effects on the
in-hospital mortality task. The latter, as in our study, segments time series into fragments
for representation and incorporates two-stage attention to capture long-term dependencies
and interaction between patterns. However, it does not specifically address medical data.
Due to its superior performance in capturing temporal information, especially for longer
time series data, it performs better on tasks predicting extended hospitalization periods and
closely approaches our model’s performance on the Stroke dataset. However, its limitation
lies in the difficulty of maintaining ordered information in transformer-based models [47],
and cross-dimensional attention interactions may introduce noise. Our proposed T-MAG
fuses data from four modalities step by step. Initially, two MAGs were used to fuse two
temporal data types, respectively, resulting in a preliminary fused representation of time
series and static data. The static fused representation is then concatenated with the fused
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representation of each time series subsequence and fed into an LSTM to obtain the final
fused representation. The use of MAG enables the model to adapt to different situations
and achieve the best performance in both types of tasks. In addition, compared with the two
comparison models (MAG-DNN and MAG-LSTM) that also use MAG, the time window
reduces the impact of irregularities and missing data in time series medical data. At the
same time, the added attention-backtracking module also makes our model more suitable
thanks to its ability to capture long-term dependencies, which the original MAG does
not have. Therefore, our model is better suited for predictions using medical time series
data, particularly when there is a need to capture long-term dependencies in the data—
advantages not present in other comparative models. As evident in both task categories,
T-MAG demonstrates an improvement of at least 0.05 and 0.03 in AUROC compared to
the other two models, validating the effectiveness of our enhancements. Among them, the
models using LSTM (T-MAG and MAG-LSTM) are better than the models using DNN.
This is especially true in the “long stay” task. This may be due to the “long-stay” mission’s
emphasis on dynamic monitoring of patient status and treatment adjustments over an
extended period. DNNs have difficulty retaining temporal information in input sequences,
which may make it difficult to capture long-term trends. This verifies that retaining
temporal information in the data has a positive impact on the performance of the model.

Time series data directly capture the dynamic health trends and treatment outcomes of
patients [15,48]. Scholars have proposed that incorporating time series data into prediction
models can enhance their performance [27,41,48]. Currently, RNN and their variants are
commonly employed in handling medical time series data, as they are well-suited for
sequential and time-related tasks [49,50]. Zhao et al. demonstrated that while RNNs and
LSTM networks are adept at handling time series data, they do not possess long-term
memory [51]. In the real world, most of the information unfolds over time. The human
brain adeptly associates events stored in memory, capturing long-term dependencies even
when events are temporally distant from each other [52]. The self-attention mechanism is
designed based on this precursor, and substantial empirical evidence indicates its efficacy in
enhancing learning and computation for long-term dependencies [53,54]. In our model, we
employ an attention-backtracking module to capture long-term dependencies in medical
time series data. Specifically, this module utilizes the self-attention mechanism to calculate
the correlation between current time information and historical information, determining
the significance of each position and generating the corresponding weighted representation.
This module can disregard the actual time intervals between two sequential datasets, selec-
tively choosing crucial portions from historical information, thereby enhancing the model’s
ability to capture contextual information over longer time spans. This augmentation fa-
cilitates improved capture of critical trends and changes in continuous data, ultimately
improving its predictive capabilities. In our model, we employ an attention-backtracking
module to capture long-term dependencies in medical time-series data. This enhancement
contributes to improved capture of key trends and changes in continuous data, ultimately
improving predictive capabilities. In the study, the removal of the attention-backtracking
module resulted in a decrease in model performance in both task categories, especially
in the length of stay task. During hospitalization, patients may undergo various medical
interventions, surgeries, medication treatments, etc. These complex medical processes may
interact with each other, and accurate understanding of changes in the patient’s condition
over a long time-range is essential for better predicting the patient’s future state. The com-
parison of the two datasets also validates this point, as the average length of hospital stay
for patients in the Stroke dataset is higher than that in the AMI dataset, and the removal of
attention-backtracking leads to a more significant performance decline.

However, our study still presents several limitations. Firstly, the sample size we
employed is relatively limited, including EMR from only one hospital. This restricted
sample size could potentially impact the performance of our models, introducing a risk
of overfitting. Secondly, concerning temporal data, we employed relatively simplistic
methods to handle issues related to missing data and capturing long-term dependencies.
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However, these methods may not fully capture the intricate temporal dynamics within
the data. Further refinement of techniques for handling temporal information could lead
to more accurate predictions. Lastly, our research is confined to just two specific clinical
tasks—predicting in-hospital mortality and prolonged length of stay. While these tasks
hold significant clinical importance, they do not provide a comprehensive assessment of
our model’s capabilities. Future work could encompass a broader range of clinical tasks,
such as predicting specific complications during hospitalization or engaging in multiclass
disease diagnosis.

5. Conclusions

In this study, we have introduced a multimodal fusion model based on the MAG
framework. This model cleverly integrates four different medical modalities and effec-
tively captures the intrinsic long-term dependencies present in time series data. With
the continuous advancement of technology and the emergence of more data sources, the
integration of different data sources will play an increasingly important role in medical
analysis. Our research provides a novel perspective on how to combine temporal and static
multimodal data. Our research endeavors to advance the capabilities of deep learning
models in the medical domain, opening new possibilities for stronger and more precise
predictions. Our research can contribute to obtaining more comprehensive patient rep-
resentations by integrating information from multiple modalities. Our model facilitates
the deep reuse of medical big data, aiding healthcare professionals in making safer and
more efficient diagnostic and treatment decisions. This, in turn, propels the advancement
of clinical decision support and personalized medical research. In our future work, we plan
to explore the applicability of the model in scenarios involving representations of other
modalities of medical data, such as integrating clinical imaging or adapting the model for
English-language datasets.
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Appendix A. Tumbling Time Window

Due to the varying and substantial differences in the length of patient hospital stays,
we employed equal-length time windows to transform irregularly spaced visits in the
original sequence into subsequences with uniform intervals. This approach is particularly
advantageous for the utilization of time series neural networks. We conducted a comparison
on the AMI dataset for the two tasks using time window sizes of 1, 2, 3, 5, 10, 15, which
means n is equal to 30, 15, 10, 6, 3, 2, respectively. The results are presented in Table A1. It is
evident that, while the results for the prediction of in-hospital mortality are relatively close
for time windows of 2, 3, and 5, a time window length of 3 significantly outperforms the
others in predicting long hospital stays. Therefore, in this study, we set the time window
length to 3, dividing the 30-day patient data into 10 subsequences.

Table A1. Comparison of different time window sizes.

Size of
Time Window

Number of
Subsequences

Prediction of In-Hospital Mortality Prediction of Long Hospital Stay

AUROC AUPRC F1 AUROC AUPRC F1

1 30 0.907 0.323 0.495 0.825 0.543 0.397

2 15 0.924 0.356 0.519 0.867 0.601 0.448

3 10 0.928 0.363 0.535 0.881 0.632 0.478

5 6 0.923 0.351 0.525 0.844 0.588 0.425

10 3 0.877 0.303 0.485 0.813 0.524 0.376

15 2 0.868 0.298 0.488 0.815 0.519 0.374
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