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Abstract: The objective of this study was to analyze the associations between temporomandibular
disorders (TMDs) and metabolic syndrome (MetS) components, consequences, and related conditions.
This research analyzed data from the Dental, Oral, Medical Epidemiological (DOME) records-based
study which integrated comprehensive socio-demographic, medical, and dental databases from a
nationwide sample of dental attendees aged 18–50 years at military dental clinics for 1 year. Sta-
tistical and machine learning models were performed with TMDs as the dependent variable. The
independent variables included age, sex, smoking, each of the MetS components, and consequences
and related conditions, including hypertension, hyperlipidemia, diabetes, impaired glucose toler-
ance (IGT), obesity, cardiac disease, obstructive sleep apnea (OSA), nonalcoholic fatty liver disease
(NAFLD), transient ischemic attack (TIA), stroke, deep venous thrombosis (DVT), and anemia. The
study included 132,529 subjects, of which 1899 (1.43%) had been diagnosed with TMDs. The following
parameters retained a statistically significant positive association with TMDs in the multivariable
binary logistic regression analysis: female sex [OR = 2.65 (2.41–2.93)], anemia [OR = 1.69 (1.48–1.93)],
and age [OR = 1.07 (1.06–1.08)]. Features importance generated by the XGBoost machine learning
algorithm ranked the significance of the features with TMDs (the target variable) as follows: sex was
ranked first followed by age (second), anemia (third), hypertension (fourth), and smoking (fifth).
Metabolic morbidity and anemia should be included in the systemic evaluation of TMD patients.

Keywords: temporomandibular disorders (TMDs); metabolic syndrome (MetS); anemia; hypertension;
machine learning; algorithm; big data analysis; computational analysis

1. Introduction

Temporomandibular disorders (TMDs) represent a comprehensive classification en-
compassing diverse clinical manifestations that result in anomalous, deficient, or compro-
mised functioning of the temporomandibular joint(s) (TMJ) and the associated masticatory
muscles [1].

TMDs constitute the predominant source of non-dental chronic painful conditions
within the orofacial domain, and stand second in the prevalence of musculoskeletal ailments
that causes pain and impairment, following chronic lower back pain, impacting up to 12%
of the populace [2].

The suffering of patients is manifested in different intensities of pain and discom-
fort during function to the point of difficulty in eating or speaking. Thus, TMDs may
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negatively influence routine tasks, social conduct, psycho-emotional conditions, and life
quality [3]. These consequences lead to increased healthcare use and social costs, with
yearly expenditure appraised at USD four billion [2].

The etiology and progression of TMDs are complex and poorly understood, although
numerous etiologic factors that can initiate or contribute to TMDs have been identified.
Among the primary factors that have been identified to contribute to the development of
TMDs are trauma, psychological distress, increased pain sensitivity, and activities related to
parafunction, including bruxism and clenching [4,5]. Furthermore, recent genetic research
suggests that variations in the genetic profile of people could potentially exert a significant
impact on the perception of pain, thus affecting the susceptibility to develop TMDs [6].

Associations with inflammatory conditions, as well as insufficient nutrient levels
among individuals diagnosed with TMDs, have been documented [7].

Prior research analyzed the correlation between TMDs and separately taken compo-
nent constituents of metabolic syndrome (MetS) [8,9]. MetS, colloquially referred to as
‘Syndrome X’, is a cluster that encompasses a set of interconnected conditions, including
central obesity, dyslipidemia, insulin resistance, and hypertension [10]. These conditions
collectively amplify susceptibility to cardiovascular diseases and the onset of type 2 di-
abetes mellitus [10]. Additionally, there is documented evidence linking the syndrome
with nonalcoholic fatty liver disease (NAFLD) [11] and obstructive sleep apnea (OSA) [12].
MetS stands as a highly prevalent global health concern, affecting a substantial proportion
of the adult population (estimated to be around 20–25% worldwide), meaning that every
fourth person in the adult population suffers from MetS [10]. Over the past two decades,
various definitions of MetS have emerged, characterized by consensus regarding its key
components but discrepancies in the recommended diagnostic criteria [13,14]. It is widely
acknowledged that the presence of any MetS component serves as a pivotal signal for the
comprehensive assessment of other associated risk factors [13].

While previous studies investigated the association between TMDs and individual
components of MetS, to the utmost extent of our cognizance, there are no big data studies
utilizing statistical and machine learning (ML) models present in the English literature
that study the associations between TMDs, MetS cluster constituents, their repercussions,
and associated disorders, including biochemistry test results within the demographic of
individuals ranging from youth to middle adulthood.

In recent times, ML has assumed a pivotal role across diverse domains, with its notable
impact extending into the medical arena [15,16]. This influence stems from ML’s adeptness
at discerning intricate patterns and extracting insights from convoluted datasets. Notably,
graph-based deep learning has been employed for medical diagnostic purposes [17], while
inverse reinforcement learning (IRL) algorithms have demonstrated efficacy in optimizing
performance within intricate systems [18]. The progress witnessed in ML exhibits promise
in a myriad of medical applications [19–21]. The potential ramifications of ML are particu-
larly salient in advancing the comprehension and treatment of intricate medical conditions
such as TMDs.

The predominant consensus asserts that inflammation processes play a role in MetS
pathogenesis [22], and thus the amalgamation of biochemistry test outcomes is profoundly
important. This multifaceted strategy enriches the comprehensiveness and depth of knowl-
edge of our understanding of biological systems, particularly in the evaluation of hyper-
glycemia (glycated hemoglobin, fasting glucose), lipid profiles (cholesterol, triglycerides,
lipoproteins), and markers of inflammation such as C-reactive protein (CRP).

Considering the above-mentioned unmet needs, our primary aim was to investigate
the associations between TMDs and the following parameters: (a) diagnoses related to
MetS, and (b) ancillary diagnostic tests, including biochemistry blood assessments utilized
in the evaluation of MetS constituents. The hypothesis of this study posited a discernible
association between TMDs and certain MetS components. For the exploration of these
connections, this study will employ a novel combination of statistical and machine learning
(ML) models to enhance comparisons between the models and to validate the findings. By
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addressing these aims of the study, our objective is to advance TMD and MetS research and
shape new avenues for future research and clinical applications that hold critical relevance
for policymakers in updating protocols and prevailing guidelines.

2. Methods
2.1. Research Population

This investigation forms a part of the Dental, Oral, Medical Epidemiological (DOME)
big data record-based research project [23–30]. Previous publications have extensively
utilized and elucidated the DOME initiative, with a singular paper devoted to outlining
the procedural framework and research methodologies of the DOME project [23]. The
DOME project is a large-scale, systematized, and comprehensive depository that integrates
demographic, dental, and medical records within a nationwide population of individuals
ranging from youth to middle adulthood from the military who sought routine medical
and dental examinations at the Israel Defense Forces (IDF) general and dental clinics [23].
Cross-referencing this demographic, dental, and medical information affords us a unique
opportunity to discern associations between TMD diagnosis and MetS-related conditions
on an extensive and unparalleled scale.

2.2. Research Ethics Clearance

This research adheres to the STROBE guidelines and was approved by the Institutional
Review Board (IRB) of the Medical Corps (approval number: IDF-1281-2013). The IRB
authorized this study as exempt from the necessity to obtain informed consent due to the
study being retrospective and only involving the review of medical information.

2.3. Enrollment Criteria

Inclusion Criteria: This cross-sectional study considered male and female individuals
aged 18 to 50 years who were affiliated with the Israel Defense Forces (IDF) and sought
dental care at IDF dental clinics during the period from 1 January 2015 to 1 January 2016, and
for whom comprehensive socio-demographic, medical, and dental records were available.

Criteria for exclusion: Participants with incomplete data records within the specified
data sources were not included in the research.

2.4. Information Acquisition

The IDF Medical Information Department furnished the data sourced simultaneously
from three IDF electronic systems, specifically, dental patient records (DPRs), medical pa-
tient records (computerized patient records (CPRs)), and the socio-demographic electronic
systems housing the socio-demographic characteristics of individuals from the military, as
elaborated upon in our previous publication [28]. The process of data mining was executed
in an anonymized manner by the Medical Corps’ Department of Medical Information, as
described previously [23].

2.5. Definitions of Study Variables

Demographic and smoking status variables: Sex: male/female; age in years; current
smoker: yes/no.

Medical diagnoses: The computerized patient record (CPR) repository utilizes the
International Classification of Diseases, 9th Revision, Clinical Modification (ICD-9-CM), as
the foundation for diagnostic purposes.

1. The dependent variable: Temporomandibular joint disorders (TMDs), based on
the 2015 ICD-9-CM Diagnosis Code 524.60, Temporomandibular joint disorders,
unspecified.

2. Systemic comorbidities linked to Metabolic Syndrome (MetS) were incorporated
within the study as independent variables defined according to the ICD-9-CM diag-
nostic criteria. These diagnoses are depicted in Table 1 in the results section.
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Ancillary test findings including biochemistry blood test results: The supplementary
test outcomes also sourced from the CPR encompassed an array of assessments utilized for
the evaluation of metabolic syndrome (MetS) components, including biochemistry blood
laboratory tests. These assessments encompassed, as previously delineated [23,29]. The
ancillary tests are depicted in Table 2 in the results section.

2.6. Analysis Strategy

An innovative integration of statistical and machine learning (ML) models was utilized
for analysis of the data.

2.6.1. Statistical Analysis

Statistical procedures were conducted utilizing SPSS software version 28.0 (IBM,
Chicago, IL, USA). Descriptive statistics entailed representing continuous variables through
means and standard deviations (SDs), while categorical variables were depicted by fre-
quencies and corresponding percentages.

Bivariate analysis: For the bivariate analysis, we scrutinized the association between
temporomandibular joint disorders (TMDs) as the dependent variable and their indepen-
dent variables. Categorical parameters were assessed through Pearson’s chi-square test or
the likelihood ratio test, and continuous variables were analyzed using non-paired t-tests
for non-paired samples. Odds ratios (ORs) were computed, employing linear regression
for continuous variables and binary logistic regression for categorical variables.

Multicollinearity analysis: After the bivariate analyses, multicollinearity assessments
were performed using linear regression to evaluate the interrelationships among the in-
dependent variables. In cases where substantial collinearity was detected between two
variables, only one was incorporated into the model, with the specific variable chosen
to be contextually determined. Variance inflation factors (VIFs), calculated as 1 divided
by the tolerance, were computed. While VIF values below 10 typically denote collinear-
ity, this study applied a VIF threshold of less than 2.5, due to the potential issue of less
robust models.

Multivariable analysis: Subsequent to the bivariate analysis and collinearity evaluation,
a multivariable binary logistic regression analysis was executed with TMD as the dependent
variable. Independent variables identified as statistically significant in the bivariate analysis
that were not marked by high collinearity were incorporated. All associations described
were statistically significant at p = 0.01.

2.6.2. Machine Learning (ML) Models

In the execution of machine learning (ML) models, we harnessed the Python scikit-
learn package [31]. We employed XGBoost, a highly efficient gradient-boosting framework
that proves particularly adept for supervised machine learning tasks in the domains of
regression and classification [32].

The goal of the ML model was to explore the relative feature significance and generate
a prioritized variables list according to their importance in the task of the classification of
TMDs as the target variable. The model underwent a rigorous evaluation with a five-fold
cross-validation approach [33], deploying distinct training and testing dataset ratios such
as train–test partitions of 70–30% and 80–20%. To affirm the robustness of the XGBoost ML
model, we additionally conducted two alternative ML models to assess feature importance:
Gini Importance [34] and Information Gain based on Entropy [35].

Evaluating Adherence to Reporting Standards in Machine Learning Research: To
assess the completeness of this research to the standards of reporting research in the
field of machine learning, we utilized the checklist of TRIPOD (Transparent Reporting
of a Multivariable Prediction Model for Individual Prognosis or Diagnosis; www.tripod-
statement.org, accessed on 5 November 2023) for the validation of the prediction models.

The checklist comprises 20 main elements, accompanied by a cumulative sum of
31 sub-components, that address different elements encompassing the validation of predic-

www.tripod-statement.org
www.tripod-statement.org
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tion models, including title, abstract, introduction, methodology, results, discussion, and
funding disclosures.

Each item was scored as adherent (1) or not adherent (0). Subsequent analysis demon-
strated adherence of the research to all TRIPOD elements, with 3 elements identified as
non-relevant. The findings related to the TRIPOD elements were precisely articulated, with
in-depth documentation of the adherence to the specified TRIPOD elements.

3. Results
3.1. The Associations of Temporomandibular Disorders (TMDs) with Demographics, Smoking
Status, and Systemic Conditions

The prevalence of TMDs in the study population was 1.43% (1899/132,529). Table 1
presents the demographics, smoking status, MetS constituents, their repercussions, and
associated disorders of patients with TMDs compared to those without TMDs. A statisti-
cally significant positive association was demonstrated between TMDs and the following
parameters: S/P (status post) transient ischemic attack (TIA) was associated with over
5-fold odds of having TMDs; obstructive sleep apnea (OSA) and deep venous thrombosis
(DVT) had over 4-fold odds; nonalcoholic fatty liver disease (NAFLD), impaired glucose
tolerance (IGT), and anemia had over a 3-fold odds; and female sex, smoking, hypertension,
hyperlipidemia, type 2 diabetes, obesity, and cardiac disease were associated with over
2-fold odds of having TMDs (Table 1).

Table 1. The associations of temporomandibular disorders (TMDs) with demographics, smoking
status, and systemic conditions. *: non-paired t-test, ˆ: Pearson chi-square, #: linear regression, ##:
binary logistic regression; OR: odds ratio, CI: confidence interval.

Parameter TMD
Mean ± SD

Without TMD
Mean ± SD p Value * OR and 95% CI #

Age 25.72 ± 8.03 21.83 ± 5.97 <0.001 1.07 (1.06–1.07)

Parameter Variable TMD No. (%) Without TMD
No. (%) p-Value ˆ

OR (95%
Confidence
Interval) ##

Sex
Male 1073 (1.1%) 98,393 (98.9%)

<0.001
1

Female 826 (2.5%) 32,237 (97.5%) 2.34 (2.14–2.57)

Smoking
Yes 223 (3.2) 6661 (96.8)

<0.001
2.47 (2.15–2.85)

No 1676 (1.3) 123,969 (98.7) 1

Hypertension
Yes 77 (2.3) 3286 (97.7)

<0.001
2.19 (1.60–2.98)

No 1822 (1.4) 127,344 (98.6) 1

Hyperlipidemia
Yes 285 (3.7) 7441 (96.3)

<0.001
2.92 (2.57–3.32)

No 1614 (1.3) 123,189 (98.7) 1

Type 2 diabetes
Yes 10 (2.9) 335 (97.1)

0.022
2.06 (1.09–3.86)

No 1889 (1.4) 130,295 (98.6%) 1

Impaired glucose tolerance (IGT)
Yes 6 (4.7) 122 (95.3)

0.002
3.39 (1.49–7.70)

No 1893 (1.4) 130,508 (98.6) 1

Obesity
Yes 253 (3.4) 7195 (96.6)

<0.001
2.63 (2.30–3.01)

No 1646 (1.3) 123,435 (98.7) 1

Nonalcoholic fatty liver disease
(NAFLD)

Yes 43 (4.6) 895 (95.4)
<0.001

3.35 (2.46–4.57)

No 1856 (1.4) 129,735 (98.6) 1

Obstructive sleep apnea (OSA)
Yes 18 (5.7) 300 (94.3)

<0.001
4.15 (2.57–6.70)

No 1881 (1.4) 130,330 (98.6) 1
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Table 1. Cont.

Parameter TMD
Mean ± SD

Without TMD
Mean ± SD p Value * OR and 95% CI #

Age 25.72 ± 8.03 21.83 ± 5.97 <0.001 1.07 (1.06–1.07)

Parameter Variable TMD No. (%) Without TMD
No. (%) p-Value ˆ

OR (95%
Confidence
Interval) ##

Cardiac disease
Yes 110 (3.1) 3488 (96.9)

<0.001
2.24 (1.84–2.72)

No 1789 (1.4) 127,142 (98.6) 1

S/P Transient ischemic attack
(TIA)

Yes 7 (7.1) 92 (92.9)
<0.001

5.25 (2.43–11.33)

No 1892 (1.4) 130,538 (98.6) 1

S/P Stroke
Yes 6 (6.5) 86 (93.5)

<0.001
4.81 (2.10–11.02)

No 1893 (1.4) 130,544 (98.6) 1

S/P Deep venous thrombosis
(DVT)

Yes 7 (6.5) 101 (93.5)
<0.001

4.78 (2.22–10.30)

No 1892 (1.4) 130,529 (98.6) 1

Anemia
Yes 320 (4.1) 7440 (95.9)

<0.001
3.35 (2.97–3.79)

No 1579 (1.3) 123,190 (98.7) 1

3.2. The Associations of Temporomandibular Disorders (TMDs) with Ancillary Test Findings
including Biochemistry Blood Test Results Used in the Workup of MetS Components

The associations of TMDs with ancillary test findings, including laboratory biochem-
istry assays employed in the work-up of MetS components, are depicted in Table 2. There
was a statistically significant positive association between TMD and body mass index (BMI),
cholesterol, and high-density lipoprotein (HDL). Nevertheless, the associations were weak
with odds ratios (ORs) closely approximating a value of 1 (for this reason, three decimal
places are displayed in Table 2). Moreover, the rest of the ancillary tests presented in Table 2
had no statistically significant associations with TMDs.

Table 2. The associations of temporomandibular disorders (TMDs) with ancillary test findings
including biochemistry blood test results used in the workup of MetS components. *: non-paired
t-test, #: linear regression; OR: odds ratio, CI: confidence interval. Statistically significant results are
in bold.

Parameter
TMD Without TMD

p Value * OR and 95% CI #
N Mean ± SD N Mean ± SD

Weight (kilograms) 1104 73.02 ± 28.43 65,513 73.30 ± 32.44 0.778 1.000 (0.998–1.002)

Body mass index (BMI) 1100 24.76 ± 4.74 65,294 24.26 ± 4.29 0.001 1.026 (1.012–1.039)

C-reactive protein (CRP) (mg/L) 826 3.96 ± 6.85 29,529 3.76 ± 10.26 0.571 1.002 (0.996–1.008)

Glycated hemoglobin (HbA1c) (%) 69 5.36 ± 0.94 1874 5.40 ± 0.97 0.761 0.960 (0.738–1.249)

Fasting glucose (mg/dL) 70 86.75 ± 9.92 2457 87.13 ± 11.99 0.754 0.997 (0.977–1.018)

Cholesterol (mg/dL) 867 178.89 ± 33.47 27,313 175.72 ± 35.69 0.006 1.002 (1.001–1.004)

High-density lipoprotein (HDL) (mg/dL) 867 50.06 ± 12.89 27,306 48.22 ± 11.73 <0.001 1.013 (1.007–1.018)

Low-density lipoprotein (LDL) (mg/dL) 685 109.31 ± 27.83 19,528 108.31 ± 30.11 0.354 1.001 (0.999–1.004)

LDL cholesterol calculated (mg/dL) 565 110.06 ± 28.07 16,893 108.32 ± 30.48 0.147 1.002 (0.944–1.010)

Triglycerides (mg/dL) 867 104.87 ± 67.46 27,316 104.45 ± 63.92 0.851 1.000 (0.999–1.001)

Very-low-density lipoprotein (VLDL)
(mg/dL) 866 20.52 ± 11.08 27,265 20.61 ± 11.20 0.817 0.999 (0.993–1.005)

Non-HDL cholesterol (mg/dL) 561 130.99 ± 32.22 16,261 129.45 ± 35.10 0.270 1.001 (0.999–1.004)
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3.3. Multivariable Analysis and Collinearity Statistics Evaluating Temporomandibular Disorders
(TMDs) as a Dependent Variable with Significantly Associated Parameters Identified in the
Bivariate Analysis

After conducting bivariate analyses, a linear regression analysis was carried out to
determine the collinearity among the independent variables that exhibited statistical signif-
icance. The collinearity statistics results are presented in Table 3 and rule out collinearity,
since all VIF values are below 2.5.

Following that, we carried out a multivariable binary logistic regression analysis
with TMD diagnosis as the dependent variable, which is also presented in Table 3. The
multivariable analysis included statistically significant independent variables following
the bivariate analysis, and did not exhibit collinearity. All independent variables were
collectively incorporated in a single step within the multivariable analysis. Female sex was
associated with over 2.5-fold odds of having TMD, and anemias was associated with over
1.5-fold odds and the ORs for age were close to 1 (Table 3).

Table 3. Multivariable analysis and collinearity statistics with temporomandibular disorders (TMDs)
as a dependent variable with statistically significant parameters in the bivariate analysis. SE: standard
error; VIF: variance inflation factor; statistically significant values are in bold.

Parameter
Multivariable Binary Logistic Regression Analysis Collinearity Statistics Using

Linear Regression Analysis

B SE p Value OR (95% CI) Tolerance VIF

(Intercept) 5.31 0.08 0.005 (0.004–0.006)

Age 0.07 0.003 <0.001 1.07 (1.06–1.08) 0.485 2.060

Sex: women vs. men 0.97 0.05 <0.001 2.65 (2.41–2.93) 0.939 1.065

Smoking 0.07 0.08 0.383 1.07 (0.91–1.26) 0.775 1.291

Hypertension 0.21 0.17 0.233 1.23 (0.87–1.73) 0.908 1.102

Hyperlipidemia 0.68 0.08 0.448 1.07 (0.89–1.27) 0.558 1.791

Type 2 diabetes 0.23 0.24 0.344 1.26 (0.78–2.04) 0.928 1.078

Impaired glucose tolerance (IGT) 0.05 0.46 0.910 1.05 (0.42–2.63) 0.968 1.033

Obesity 0.06 0.08 0.429 1.07 (0.90–1.26) 0.681 1.468

Cardiac disease 0.11 0.10 0.305 1.11 (0.90–1.38) 0.938 1.066

Obstructive sleep apnea (OSA) 0.49 0.25 0.051 1.63 (0.99–2.66) 0.979 1.022

Nonalcoholic fatty liver disease
(NAFLD) 0.31 0.17 0.069 1.37 (0.97–1.93) 0.903 1.107

S/P transient ischemic attack (TIA) 0.36 0.42 0.385 1.43 (0.63–3.27) 0.960 1.041

S/P stroke 0.21 0.49 0.674 1.23 (0.46–3.26) 0.962 1.039

S/P deep venous thrombosis (DVT) 0.61 0.40 0.131 1.83 (0.83–4.04) 0.996 1.004

Anemia 0.52 0.06 <0.001 1.69 (1.48–1.93) 0.917 1.090

Following the multivariable analysis, we performed a second multivariate logistic
regression analysis stratified according to age, which is presented in Table 4. We split
the total sample into two groups: 18–30 years (119,579 patients, 90.2%) and 31–50 years
(12,949, 9.8%). In the younger age group (18–30 years) the significant parameters were
sex, smoking, hyperlipidemia, obesity, cardiac disease, OSA, and anemia. In the older age
group (31–50 years), the significant parameters were sex, NAFLD, and anemia. Sex and
anemia were the only parameters that retained a statistically significant association in both
age groups.
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Table 4. Multivariable analysis stratified according to age (18–30 and 31–50 years) with temporo-
mandibular disorders (TMDs) as a dependent variable with statistically significant parameters in the
bivariate analysis. SE: standard error; statistically significant values are in bold.

Age Groups Parameter
Multivariable Binary Logistic Regression Analysis

B SE p Value OR (95% CI)

Age 18–30

(Intercept) 3.97 0.04 <0.001 0.02 (0.01–0.02)

Sex: women vs. men 0.88 0.05 <0.001 2.41 (2.16–2.68)

Smoking 0.52 0.14 <0.001 1.69 (1.27–2.25)

Hypertension 0.64 0.28 0.024 1.91 (1.08–3.35)

Hyperlipidemia 0.49 0.17 0.005 1.63 (1.16–2.29)

Type 2 diabetes 0.31 0.73 0.670 1.36 (0.32–5.74)

Impaired glucose tolerance (IGT) 0.86 1.06 0.42 2.36 (0.29–19.18)

Obesity 0.54 0.14 <0.001 1.72 (1.31–2.26)

Cardiac disease 0.42 1.68 0.01 1.52 (1.09–2.12)

Obstructive sleep apnea (OSA) 1.93 0.44 <0.001 6.89 (2.88–16.47)

Nonalcoholic fatty liver disease
(NAFLD) 1.13 0.47 0.772 1.14 (0.45–2.91)

S/P transient ischemic attack (TIA) 0.84 1.04 0.422 2.32 (0.29–18.17)

S/P stroke 1.12 1.02 0.272 3.09 (0.41–23.15)

S/P deep venous thrombosis (DVT) 1.08 0.61 0.076 2.94 (0.88–9.75)

Anemia 0.75 0.08 <0.001 2.13 (1.81–2.50)

Age 31–50

(Intercept) 2.89 0.11 <0.001 0.05 (0.04–0.07)

Sex: women vs. men 0.87 0.11 <0.001 2.39 (1.91–3.00)

Smoking 0.04 0.10 0.679 1.04 (0.85–1.27)

Hypertension 0.34 0.020 0.142 1.35 (0.90–2.03)

Hyperlipidemia 0.20 0.10 0.051 1.22 (0.99–1.49)

Type 2 diabetes 0.07 0.25 0.778 1.07 (0.64–1.78)

Impaired glucose tolerance (IGT) 0.09 0.47 0.843 1.09 (0.43–2.77)

Obesity 0.04 1.05 0.688 1.04 (0.84–1.28)

Cardiac disease 0.04 0.19 0.688 1.04 (0.84–1.28)

Obstructive sleep apnea (OSA) 0.32 0.30 0.283 1.38 (0.76–2.51)

Nonalcoholic fatty liver disease
(NAFLD) 0.50 0.18 0.006 1.65 (1.15–2.37)

S/P transient ischemic attack (TIA) 0.50 0.46 0.278 1.65 (0.67–4.08)

S/P stroke 0.47 0.51 0.355 1.60 (0.59–4.34)

S/P deep venous thrombosis (DVT) 0.57 0.53 0.278 1.77 (0.63–5.03)

Anemia 0.40 0.11 <0.001 1.49 (1.19–1.86)

3.4. Feature Importance Based on XGBoost Machine Learning (ML) Algorithm with
Temporomandibular Disorders (TMDs) as a Target Variable

Both the Gini Importance and Information Gain based on Entropy methods yielded
results for model fitness measurements, including metrics like the area under the curve
(AUC) and accuracy, which exhibited a high degree of similarity to the outcomes obtained
with the XGBoost model. Therefore, we present the results of the XGboost ML algorithm
in Figure 1. The AUC was 0.748, recall score = 0.703, precision = 0.027, and accuracy was
0.660. The thresholds indicating excellent discrimination in the AUC results lie within the
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range of 0.7 to 0.8 [36]. Furthermore, the XGBoost model demonstrates a nearly two-fold
increase in precision (2.7%) compared to the TMD prevalence in the study population
(1.43%), showcasing its proficiency in precise disease detection while effectively reducing
false positive results. The feature importance scores derived from the XGBoost algorithm,
as illustrated in Figure 1, reveal the model’s prioritization of feature significance with
TMDs (the target variable) as follows: sex holds the top position, followed by age (second),
anemia (third), hypertension (fourth), and smoking (fifth).

1 
 

 
Figure 1. Feature importance scores produced by XGBoost algorithm for TMD diagnosis as a
target variable.

4. Discussion

To the utmost extent of our cognizance, this marks the inaugural research within the
English literature that employs novel methods of statistical and ML analytics in a big data
context to investigate the association between TMDs and MetS among 132,529 individuals
ranging from youth to middle adulthood, using a holistic approach that cross-referenced de-
mographic and medical data including laboratory biochemistry tests at an unmatched scale.

The fusion of clinical data with biochemistry test results empowers investigators to
unveil intricate associations between molecular events and systemic responses.

Artificial intelligence (AI) algorithms have been employed in the diagnosis of TMDs.
Nonetheless, investigations have employed disparate criteria for patient selection, diverse
categorizations of disease subtypes, distinct input data, and varied outcome measures, and
consequently, the efficacy of AI models exhibits variability across these studies [37]. For
this reason, this study employed a hybrid analytical framework combing both statistical
and ML approaches.

Regarding demographic parameters, the outcomes of the investigation align with the
literature. Our study population included subjects aged 18–50 years, and similarly, Yap et al.
found that TMD signs and symptoms are more predominant among adults between 20
and 40 years of age [38]. Coinciding with our findings of a positive association between
TMDs and age in both statistical and ML models, a large prospective clinical trial study
representing 2737 TMD subjects also showed an increased prevalence in accordance with
age. The annual increment varies, ranging from 2.5% for individuals aged 18 to 24 to 4.5%
for those within the age bracket of 35 to 44 [39].



Bioengineering 2024, 11, 134 10 of 16

In the present study, we addressed the confounding effect of age by performing a
multivariable analysis with age as a continuous parameter, and also stratified our data
according to age (18–30 vs. 31–50 years). The younger age group comprised most of the
sample (90.2%), and therefore our conclusions should be based on careful interpretation of
all analyses performed. Sex and anemia were significant in both age groups, as well as in
the multivariable analysis that used age as a continuous variable, and in the ML algorithm,
highlighting these factors as the most significant.

In accordance with our observations of a positive association between TMDs and
female sex in both statistical and ML models, there is consensus in the existing medical
literature that TMDs predominantly affect women [40–42]. The results of a US National
Health Interview Survey showed that women reported pain in the jaw joint and/or facial
pain 2.1 times more often than men [43]. TMD pain was additionally prevalent among
women compared to men in studies from Sweden [44] and Finland [45].

In this study, while a significant positive association was found between TMDs and
smoking habits in the bivariate analysis, this association was lost following the multivari-
able analysis, and smoking was ranked only in fifth place by the ML model. The results
in the literature are contradictory. Some studies demonstrated that smoking cigarettes
was related to both significantly greater TMD pain intensity [46–48] and TMJ sounds [46],
and to poorer response to treatment than nonsmokers [48]. Contradictory to these results,
Wänman et al. found that the manifestation or progression of signs and symptoms of TMDs
is not associated with smoking [49]. Yekkalam et al. also found no correlation between
smoking and craniomandibular disorders in an adult population [50].

This study aimed to perform an analysis of the association between TMDs and MetS-
associated disorders utilizing statistical and ML analytics. The study demonstrated that
TMDs are positively associated with systemic conditions related to MetS, and in particular
with anemia and hypertension. Anemia maintained a statistically significant association
with TMDs after multivariable analysis and emerged as the most highly ranked systemic
condition in the ML model (ranked third after sex and age). Corresponding to our results,
other studies also found an association between TMDs and anemia. For example, Ohrbach
and colleagues identified a noteworthy association between TMDs and different hemato-
logic disorders including anemia, disorders of bleeding, and leukemia, using data from the
OPPERA case–control study [8].

Mehra et al. found serum nutrient deficiencies, including anemia, in patients with
complex TMDs who underwent surgical joint reconstruction [51]. Orhan et al. found
that individuals experiencing persistent anemia exhibited reduced signal intensity in
the mandibular condyle bone marrow and posterior band compared to their healthy
counterparts, suggesting that anemia might induce modifications in bone marrow without
any concurrent internal derangement [52].

A separate investigation exploring tissue oxygen saturation and alterations in oxy-
genated hemoglobin, deoxygenated hemoglobin, and total hemoglobin within the masseter
muscle revealed that subjects with a predisposition to TMDs exhibit irregularities in the
deoxygenation of the masseter [53]. Conversely, Staniszewski et al., in a controlled cross-
sectional study of 60 TMD patients and 60 healthy controls, failed to establish a correlation
between severe systemic illness, malnutrition, and systemic inflammation with TMDs [7].

The association between TMDs and anemia may signify variations in hemoglobin
levels concerning age, sex, and smoking habits. For this reason, we used statistical and ML
multivariable models that adjusted for these parameters and demonstrated an association
between TMDs and anemia, independent of age, sex, and smoking. Another explanation
for a positive association between TMDs and anemia was suggested by Mehra et al., who
attributed anemia to the deficiency state due to inadequate nutritional intake and utilization
dysfunction in TMD patients [51]. An additional compelling rationale for the observed
association between TMDs and anemia pertains to the presence of anemia of inflammation,
also recognized as anemia of chronic disease. This form of anemia is common in patients with
illness causing protracted immune activation, such as infections, autoimmune disorders,
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and malignancies [54]. This category has expanded over the years to encompass the effects
of aging, obesity, type 2 diabetes, pulmonary arterial hypertension, chronic liver disease,
and advanced atherosclerosis, with ramifications of stroke and coronary artery disease [54].
Indeed, in the current study, TMD patients exhibited a higher prevalence of systemic
conditions related to MetS compared to those without TMDs.

The highest-ranked MetS-related condition was hypertension, which was ranked
fourth by the ML model, although it did not retain a statistical significance with TMDs in
the multivariable statistical analysis. Thus, the present research emphasizes the importance
of using ML models in addition to classical statistical models, as they can add value
to feature importance identification. While there were previous studies that found no
correlation between TMDs and hypertension [55,56], there were other studies similar to our
findings, such as Sanders et al., who demonstrated an association between the incidence of
first onset TMD and increased mean baseline arterial pressure, as well as OSA [57]. Maixner
et al. found that painful TMDs exhibit heightened sensitivity to painful stimuli, and may
result from dysfunction in the central pain modulatory mechanisms which, in turn, can be
influenced by baseline arterial blood pressure [58].

Following hypertension, the next ranked MetS-related condition by the ML algorithm
was NAFLD, which was ranked sixth in the feature importance for the task of TMD
classification. In recent years, NAFLD has been recognized to be the hepatic manifestation
of MetS, and is also termed “metabolic dysfunction-associated fatty liver disease” [11].
While other MetS-related conditions were studied in the context of TMDs, based on a
performed literature review, no studies were found regarding the association between
TMDs and NAFLD, highlighting the importance of the current study’s holistic approach in
analyzing MetS related conditions in the context of TMDs.

Moreover, the holistic approach employed in this investigation enriched the compre-
hensiveness and depth of our knowledge on molecular biology in the assessment of hyper-
lipidemia and serum lipid profile parameters (cholesterol, HDL, LDL, non-HDL, triglyc-
erides). Hyperlipidemia was only ranked seventh by the ML algorithm, and while serum
cholesterol and HDL were positively associated with TMD, these parameters exhibited ORs
close to 1, indicating a weak association. In accordance with our observations, a long-term
cohort study found no correlation between TMDs and hyperlipidemia/dyslipidemia [56,59],
and another study found no significant association between levels of total cholesterol and
TMDs [55].

Furthermore, the multifarious approach included the evaluation of IGT, diabetes,
and hyperglycemia (serum glycated hemoglobin, fasting glucose). The ML algorithm
ranked IGT and diabetes only in the 9th and 13th places, respectively, and serum glycated
hemoglobin and fasting glucose had no significant association with TMDs. Parallel to our
investigations, previous studies did not demonstrate a correlation between diabetes and
painful TMDs [9,59,60], and while we found no differences in fasting glucose levels, Byun
et al. even reported that TMD patients have lower mean levels of fasting blood glucose [55].

Another important biochemical marker incorporated in the analysis was serum CRP.
CRP is acknowledged as a significant indicator of persistent inflammatory processes and
as one of the major proteins of the acute phase reaction [61]. In the present study, CRP
levels were not significantly different between those with and without TMDs, like reports
in previous studies [7,62].

The study also analyzed the associations between weight, BMI data, and obesity.
A sequence of cross-sectional surveys concluded that BMI does not mirror equivalent
adjustments of weight relative to height across different genders or across age cohorts [63].

For this reason, we decided to examine both weight and BMI separately. Obesity
did not maintain a statistically significant association with TMDs following multivariable
analysis and was ranked 12th in feature importance for TMD classification by the ML
algorithm. Our findings demonstrate that weight had no statistically significant association
with TMDs, and BMI—although positively associated with TMDs—exhibited ORs close to
1, indicating a weak association. Coinciding with our findings, Jordani et al. demonstrated
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that painful TMDs exhibited a notable correlation with total body fat percentage, but in the
multivariable analysis, obesity did not maintain its significance [64]. Two recent systematic
reviews and meta-analyses did not show a clear association between obesity and TMDs
and concluded that obesity is not a risk factor for TMDs [65,66].

Consequences of MetS such as cardiac disease, TIA, stroke, and DVT were also taken
into consideration in our holistic approach using statistical and ML analyses. These parame-
ters did not retain a statistically significant positive association in the multivariable analysis
and were ranked relatively low by the ML algorithm in terms of feature importance during
the task of TMD classification. While we were looking at TMD patients, other studies
focused on the prevalence of TMD dysfunction among stroke patients and found it was
higher compared with the healthy group [60]. However, corresponding to our study, in a
nationwide population-based cohort study, Lee et al. also found no association between
TMDs and stroke [56]. Another study, researching potential risk factors for chronic TMDs
found no correlation of TMDs to different cardiovascular conditions, including mitral valve
prolapse, high blood pressure, angina, heart attack, heart failure, and stroke [8].

The principal strengths inherent in the current investigation include a substantial
sample size and meticulous adherence to a rigorous protocol that incorporated demo-
graphic and medical databases. This enabled us to cross-reference TMD diagnosis with
demographic and medical data on an unprecedented scale. Definitions were uniform for all
patients. To reduce recall bias, the study used demographic data, medical diagnoses, and
medical indexes that were extracted from records devoid of dependence on patient self-
reports, except for smoking (which was derived from the records but relied on the reports
of the patients). Because of the large dataset, a concern is finding significant but clinically
meaningless associations. Therefore, the study employed a rigorous multi-step analytical
approach by setting the cut-off for statistical significance at p = 0.01, performing collinearity
statistics with a VIF cut-off of 2.5 to address the potential pitfalls of variable intercorrelation,
and including in the final multivariable model only parameters that exhibited statistical
significance in the bivariate analysis, while also demonstrating low collinearity. This metic-
ulous approach accounts for confounding effects, reducing the inflation of type I error rates
and enhancing the validity of the results. Moreover, the study utilized a novel approach
that combined statistical and ML models to enhance the validity of the findings.

The main limitation of the current research is the cross-sectional study design, which
prevents the establishment of causality. Although we used a nationwide military popula-
tion, further investigations—encompassing extended longitudinal population-based epi-
demiological surveys conducted in diverse settings and among varied populations—would
contribute to the augmentation of generalizability and account for these limitations. Future
studies should be multi-centered and should include advanced statistical and artificial
intelligence approaches. Federated learning can be employed, which will enable model
training across servers holding local data samples without the need to exchange them, thus
mitigating concerns related to data security and privacy. Furthermore, alternative forms
of data, including textual electronic medical data, vocal information, and auditory data,
should be employed in future TMD research.

5. Conclusions

This study utilized novel methods of statistical and ML analytics to identify the
association between TMDs and MetS among 132,529 individuals ranging from youth to
middle adulthood, employing a holistic approach that analyzed demographic, medical,
and laboratory data on an unmatched scale. We established that a profile of a “patient
that is vulnerable to have TMD” includes the following: female sex, older age, and the
presence of anemia and hypertension. In the systemic assessment of patients with TMDs, it
is imperative to incorporate examinations for metabolic morbidity and anemia. Evaluating
risk factors associated with these conditions is essential for the targeted identification of
high-risk populations susceptible to TMDs, MetS, and anemia. Health authorities should
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be cognizant of these co-morbidities in individuals with TMDs, and facilitate appropriate
referrals to both dentists and physicians for comprehensive evaluation.
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