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Tea Sokač Cvetnić 1, Korina Krog 1, Davor Valinger 1, Jasenka Gajdoš Kljusurić 1,* , Maja Benković 1 ,
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Abstract: The reusability of by-products in the food industry is consistent with sustainable and
greener production; therefore, the aim of this paper was to evaluate the applicability of multiple
linear regression (MLR), piecewise linear regression (PLR) and artificial neural network models
(ANN) to the prediction of grape-skin compost’s physicochemical properties (moisture, dry matter,
organic matter, ash content, carbon content, nitrogen content, C/N ratio, total colour change of
compost samples, pH, conductivity, total dissolved solids and total colour change of compost extract
samples) during in-vessel composting based on the initial composting conditions (air-flow rate,
moisture content and day of sampling). Based on the coefficient of determination for prediction,
the adjusted coefficient of determination for calibration, the root-mean-square error of prediction
(RMSEP), the standard error of prediction (SEP), the ratio of prediction to deviation (RPD) and the
ratio of the error range (RER), it can be concluded that all developed MLR and PLR models are
acceptable for process screening. Furthermore, the ANN model developed for predicting moisture
and dry-matter content can be used for quality control (RER >11). The obtained results show the
great potential of multivariate modelling for analysis of the physicochemical properties of compost
during composting, confirming the high applicability of modelling in greener production processes.

Keywords: grape skin; in-vessel composting; multiple linear regression; piecewise linear regression;
artificial neural network modelling

1. Introduction

The modern way of life has led to the need to solve the problem of the large quantities
of food waste produced worldwide. Looking at the amount of waste itself, the biggest
problem is biodegradable waste, which consists of the leftovers from the fruits and veg-
etables that we consume in our daily lives [1,2]. Its improper disposal can pose a risk to
the environment and human health, as decomposition of this type of waste in landfills
leads to the production of methane, which consequently contributes to the creation of the
greenhouse effect [3]. Despite this fact, biodegradable waste has significant potential to
contribute to the circular bioeconomy because it can be used in the production of fertilizers,
non-fossil fuels and soil improvers [4,5]. One of the processes developed with this goal
in mind is composting [6]. Composting is considered an environmentally friendly and
profitable method for processing organic waste. During the composting process, polymeric
waste materials are degraded by the growth of various micro-organisms such as fungi
and bacteria. This processing method is quite complex in many ways, as it involves a
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variety of processes ranging from microbiological to thermodynamic, which are mutually
dependent [7].

Grape pomace is the most important by-product of wine production. It represents
20–25% of the total mass of processed grapes and varies according to grape variety, degree
of ripeness and type of press used in processing [8]. As described by Martinez Salgado
et al. [9], after pressing, grape pomace has a moisture content of around 20–30% (w/w),
a C:N ratio between 40 and 45:1, a pH between 3 and 6, low electrical conductivity, a
large amount of organic matter and organic forms of micro- and macro-nutrients that are
mineralised over time and can therefore be considered a good substrate for composting.
Grape pomace can be composted aerobically to create a soil conditioner that increases
the soil’s ability to retain water and replenish its organic carbon and nutrient content [10].
The effectiveness of composting is influenced by environmental variables such as aeration,
temperature, humidity and pH, as well as substrate parameters, which include the C/N
ratio (carbon/nitrogen ratio) and nutrient content [11].

There are several ways to compost food waste, including in-vessel procedures, aerated
static piles and windrows [12]. A number of issues, including land availability, operational
complexity, capital and running costs and the possibility of annoyances, should be taken
into account while choosing a composting process [13]. Windrow systems are the least
expensive, but they are also noted for taking a long time to complete—typically more than
60 days. For maturing and curing, windrow systems have a high land need. In summary,
in-vessel composting is a significant technique, especially in contexts where rapid and
controlled decomposition, odour control and space efficiency are essential considerations. It
plays a crucial role in managing organic waste in urban and industrial settings, contributing
to sustainable waste-management practices [1].

In order to achieve the best possible efficiency when setting up the process, it is
necessary to consider all the above listed variables and their interactions. As the specific
relationships are often non-linear, a variety of effects needs to be thoroughly investigated
both theoretically and practically. As a result, both the creation of a logical framework for
process design and the understanding of complicated dynamic interactions can benefit
from the use of mathematical modelling tools [14]. Mathematical models of the composting
process are helpful to obtain information on how different process factors and conditions
such as substrate composition, oxygen concentration, pollutant concentrations, composting
time, temperature, etc. affect compost quality during the process [15–19]. In the literature,
there are available examples of efficient application of multivariate techniques like cluster
analysis and principle component analysis (PCA) for distinguishing compost samples of
different origins [20], application of PCA for analysis of compost quality assessment [21],
application of partial least squares regression (PLSR) for evaluating compost maturity [22],
application of multiple linear regression for estimation of maturity of compost from food
waste and agro-residues [23] and application of machine-learning methods (including
random forest, extreme gradient boosting, Light Gradient Boosting Machine and Multilayer
Perceptron networks) for prediction of germination index and carbon-to-nitrogen ratio [24].

Taking into account that understanding the grape-skin composting process variables’
interactions can significantly contribute to the final compost quality, in this work, the
effects of the initial composting conditions (initial moisture content, air-flow rate and
day of sampling) on physicochemical properties of grape-skin compost (moisture, dry
matter, organic matter, ash content, carbon content, nitrogen content, C/N ratio, total
colour change of compost samples, pH, conductivity, total dissolved solids, total colour
change of compost extract samples) were analysed. The relationships between the listed
input and output process variables were modelled using multiple linear regression (MLR),
piecewise linear regression (PLR) and artificial neural network modelling (ANN). The
predictive efficiencies of the mentioned models were estimated and compared with the
motivation to use developed models for compost properties prediction based on different
initial process conditions.
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2. Materials and Methods
2.1. Materials
2.1.1. Biowaste for Composting

Biowaste used for composting was grape skins from the white grape variety Vitis
vinifera cv. Graševina, harvested in 2021 (Kutjevo, Croatia). Grape pomace was stored in a
freezer at −18 ◦C before conducting experiments. Prior to starting the composting process,
seeds were separated from the skin by sieving and used in another experiment.

2.1.2. Chemicals

Sodium hydrogen carbonate was supplied by Kemika (Zagreb, Croatia). Urea was
purchased from Gram-Mol (Zagreb, Croatia).

2.2. Methods
2.2.1. Grape-Skin Composting Process

The composting of m = 1.9 kg of grape skins was carried out in laboratory batch
reactors with a volume of V = 5 L. The dimensions of the reactor were: diameter d = 16 cm
and height L = 25 cm. The reactors were insulated with a 5 cm thick insulating layer.
Initial moisture content range (IMC) and air flow (AF) range were selected according to
the available literature data [25,26] to ensure optimal composting conditions. Compost-
ing experiments were performed according to central composite design (Statistica 14.0
Tibco Software Inc., Palo Alto, CA, USA) of experiment as follows: (1) IMC = 50% and
AF = 0.50 L/min; (2) IMC = 50% and AF = 1.25 L/min; (3) IMC = 65% and AF = 0.50 L/min;
(4) IMC = 65% and AF = 1.40 L/min; (5) IMC = 65% and AF = 0.35 L/min; (6) IMC = 50%
and AF = 2.00 L/min; (7) IMC = 57.5% and AF = 1.70 L/min; (8) IMC = 57.5% and
AF = 0.43 L/min; and (9) IMC = 57.5% and AF = 1.06 L/min

To ensure aerobic conditions in the reactor, continuous aeration was carried out for
the entire duration of the process (30 days). Temperature was monitored with digital
thermometers (ST-9263B, Sagar Scientific & Instruments, Maharashtra, India) placed in
the centre of the reactor. The ambient temperature was approximately 19 ◦C during all
experiments. During the composting process, samples were taken at 48 h intervals, resulting
in 16 samples from a single reactor, and, in total, 144 samples.

2.2.2. Physicochemical Analyses of the Compost Samples

Physicochemical analyses of the compost samples included dry-matter content (DM)
and moisture content (MC) measurement, pH value, total dissolved solids (TDS) and
conductivity (S) measurement, organic matter (OM) and ash content measurement (AC),
carbon content (CC), nitrogen content (NC) and total colour change (∆E) measurements.

Dry-Matter Content and Moisture Content of the Compost Samples

The dry-matter and moisture content of the compost samples was determined gravi-
metrically by convectional drying at T = 105 ◦C, for t = 24 h [27].

Extraction Procedure, pH Value, Conductivity and Total Dissolved Solids of
Compost Samples

A compost sample was mixed with distilled water in a ratio of 1:10 (w/v) and the
extraction procedure was carried out on a magnetic stirrer at 150 rpm for 1 h. The resulting
mixture was centrifuged (10,000 rpm) for 10 min and then filtered. In the filtrate, pH [28,29]
was determined using a pH meter (914, Metrohm, Herisau, Switzerland) and conductiv-
ity and total dissolved solids were determined using a conductometer (SevenCompact,
MettlerToledo, Greifensee, Switzerland).

Organic Matter Content and Ash Content of Compost Samples

The compost samples dried at T = 105 ◦C for t = 24 h were burned at T = 500 ◦C for
t = 5 h in a muffle furnace (B410, Nabertherm, Lilienthal, Germany). The percentage loss of
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volatiles was expressed as a fraction of total organic matter [30], while the mass remaining
after burning was expressed as the ash fraction [28].

Carbon and Nitrogen Content of the Compost Samples

Total carbon and nitrogen were determined using an elemental analyser CNS 2000
(Leco, St Joseph, MI, USA) and a spectrophotometer (LaboMed UV-VIS, Los Angeles, CA,
USA) [31].

Total Colour Change of the Compost Samples and Compost Extract Samples

The colour of all compost samples during the composting process and the prepared
water extracts from compost was determined using a PCE-CSM3 colorimeter (PCE Instru-
ments, Meschede, Germany). The total colour change of the compost and the corresponding
compost extracts (∆E) was determined according to the Equation (1):

∆E =

√
(L∗ − L∗

0)
2 +

(
a∗ − a∗0

)2
+ (b∗ − b∗

0)
2 (1)

where L0
*, a0

*, and b0
* are the values of the Hunter coordinates of the samples/extracts of

the initial substrate samples, L*, a* and b* are the values of the Hunter coordinates of the
compost/compost extracts during the composting process.

2.2.3. Statistical Analyses and Mathematical Modelling
Descriptive Statistics

All measurements were repeated three times, and the results are reported as mean ± stan-
dard deviation. Descriptive statistical analyses, including minima, maxima, averages and
standard deviations of the analysed variables were performed using Statistica 14.0 (Tibco
Software Inc., Palo Alto, CA, USA). The normality of data distribution was tested by the
Shapiro–Wilk test and the uniformity of variance with Levene’s test. Spearman’s correlation
matrix was used to analyse the relationships between the process variables and all analysed
properties of the compost samples because data distribution analysis showed that data
were not normally distributed.

Multiple Linear Regression Modelling, Pricewise Linear Regression Modelling and
Artificial Neural Network Modelling

In further calculations, it was assumed that the measured physicochemical properties
of the compost samples (i = 1, . . ., 12: moisture content (Y1), dry-matter content (Y2),
organic matter content (Y3), ash content (Y4), carbon content (Y5), nitrogen content (Y6),
C/N ratio (Y7), total colour change of compost samples (Y8), pH (Y9), conductivity (Y10),
total dissolved solids (Y11), total and colour change of compost extract samples (Y12))
gathered through nine independent experiments can be described as a function of initial
moisture content (X1), air flow (X2) and day of sampling (X3) according to Equation (2):

Yi = f(X1, X2, X3) (2)

Multiple linear regression (MLR) (Equation (3)), piecewise linear regression (PLR)
(Equation (4)) and artificial neural network (ANN) models were used to evaluate the
relationship between input and output variables.

Yi = b0 + b1·X1 + b2·X2 + b3·X3 (3)

Yi = (b01 + b11·X1 + b21·X2 + b31·X3)(for Yi ≤ bn) + (b02 + b12·X1 + b22·X2 + b32·X3)(for Yi > bn) (4)

The MLR model parameters (Equation (3)) and PLR model parameters (Equation (4))
were calculated using the Levenberg-Marquardt algorithm implemented in Statistica 14.0
(Tibco Software Inc., Palo Alto, CA, USA). Using the least squares method, the programme
searches for optimal solutions in the parameter space of the function. The calculations were
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repeated 50 times with a convergence level of 10−6 and a confidence interval of 95% [32].
The data set (432 data points for each output variable) for MLR and PLR modelling was
randomly split 70:30 into a calibration and a prediction data set. The applicability of the
developed calibration models was estimated using the coefficient of determination for
calibration (Rcal

2), the adjusted coefficient of determination for calibration (Rcal
2

adj), the
root-mean-square error for calibration (RMSE) and the F-value of the model. Predictive
performance of the models was estimated using the coefficient of determination for pre-
diction (Rpred

2), the adjusted coefficient of determination for calibration (Rpred
2

adj), the
root-mean-square error of prediction (RMSEP), the standard error of prediction (SEP), the
ratio of prediction to deviation (RPD) and the ratio of the error range (RER) [33].

In addition, multilayer perceptron (MLP) ANNs were used to predict the physico-
chemical properties of the compost samples. ANN models were developed separately
for each analysed output-process variable. The ANN models contained an input layer,
a hidden layer and an output layer. The input layer had three neurons representing the
conditions of the composting process (moisture content, air flow and day of sampling),
the output layer had one neuron (moisture content, dry-matter content, organic-matter
content, ash content, carbon content, nitrogen content, C/N ratio, total colour change of
compost samples, pH value, conductivity, total amount of dissolved solids or total colour
change of compost extract samples) and the number of neurons in the hidden layer varied
between four and 13 and was selected by the algorithm. For the activation functions of the
hidden layer and the output layer, the identity, logistic, hyperbolic tangent and exponential
activation functions were randomly selected. For ANN modelling, the data set was split
70:30 into a calibration and a prediction data set. In addition, the calibration dataset was
split into 70% for network training, 15% for network testing and 15% for model validation.
The backpropagation algorithm was used for model training. The applicability of the
developed calibration models was estimated using the coefficient of determination for
calibration (Rcal

2), the adjusted coefficient of determination for calibration (Rcal
2

adj), and
the root-mean-square error for calibration (RMSE). Prediction performance of the models
was estimated based on the coefficient of determination for prediction (Rpred

2), the adjusted
coefficient of determination for calibration (Rpred

2
adj), the root-mean-square error for pre-

diction (RMSEP), the standard error of prediction (SEP), the ratio of prediction to deviation
(RPD) and the ratio of the error range (RER) [33].

3. Results and Discussion
3.1. Physicochemical Properties of Compost Samples

Composting promotes the recycling of organic waste, yielding a final product with
substantial bioenergy potential and considerable nutritional benefits for the soil. The shift
towards more effective compost production and management necessitates a comprehensive
grasp of the entire process, the materials utilized, and the physical attributes of those
materials [34]. Therefore, in this work, the effects of different initial moisture contents,
air-flow rates and days of sampling on the physicochemical properties of the compost
samples (moisture content, dry-matter content, organic-matter content, ash content, carbon
content, nitrogen content, C/N ratio, total colour change of the compost samples, pH,
conductivity, total dissolved solids and total colour change of the compost-extract samples)
during the grape-skin composting process were analysed. The minimum, maximum and
standard deviations of the analysed physicochemical properties are listed in Table 1.

As shown in Table 1, the moisture content in the experiments ranged between 53.612
and 65.540%, which corresponds to the optimal range for the composting process [35].
The highest average value for moisture content was obtained in experiment 9, which had
the lowest initial value for moisture content at the beginning of the composting process
and the highest value for air-flow rate. Also, the highest values for total dissolved solids
(TDS) and conductivity were achieved in experiment 9. Similar results were obtained by
Peng et al. [36]. Higher aeration rate accelerates degradation reactions that result in salts
and, consequently, the total dissolved solids and conductivity values are higher. While
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the release of mineral salts like phosphate and ammonia salts through the breakdown of
organic materials can cause an increase in conductivity values, the decline in conductivity
values during the composting process is directly related to increased concentrations of
nutrients like nitrates and nitrites [37]. Moreover, experiment 2 was conducted at the lowest
initial moisture content and higher air-flow rate, which resulted in a greater colour change
of the compost compared to the other trials, confirming substrate degradation [38]. In
addition, the highest average pH value was achieved in the experiment 3. The pH value
is related to the microbial degradation during the composting process. In the first phase,
it decreases due microbial degradation of organic matter and formation of organic acids.
Later, the pH increases due to acid consumption by micro-organisms [28,35]. Experiment 7
had the lowest values for dry-matter and organic-matter content and, consequently, lower
carbon content and C/N ratio, but this experiment was characterised by the highest value
for ash content. According to the literature [28], organic-matter content and ash content
have a reciprocal relationship, with a higher organic-matter content leading to a lower
ash content.

Spearman’s correlation matrix was used to determine the relationships between the
conditions of the composting process and physicochemical properties of the compost
during the process (Table 2). Significant correlations are marked in bold. Results showed
that initial moisture content was positively correlated with compost moisture (r = 0.6831),
ash content (r = 0.2220) and compost pH (r = 0.1827). The results also showed that the initial
moisture content was negatively correlated with the dry-matter content of the compost
(r = −0.6831) and with the organic-matter content (r = −0.2204). The results obtained are in
agreement with the results of Makan et al. [39] who showed that the initial moisture content
had a significant effect on aerobic composting and that higher moisture contents are better
for composting organic waste in vascular bioreactors. Similarly, Yeh et al. [40] showed
that an initial moisture content of 55–70% is optimal for effective composting of food
waste. The correlation matrix also showed that air-flow rate was negatively correlated with
organic-matter content (r = −0.1297), with carbon content (r = −0.2236), with C/N ratio
(r = −0.1727) and with total compost colour change (r = −0.2782) and positively correlated
with ash content (r = 0.1306), nitrogen content (r = 0.1533), pH (r = 0.1057), TDS (r = 0.2835),
conductivity (r = 0.2537) and overall colour change of the compost extracts (r = 0.2127).
The results presented are consistent with the literature which states that aeration rate is
one of the most important variables in the composting process, and that variations in
aeration rate affect temperature, moisture content and oxygen-supply rate, among other
variables [41]. The compost material will dry out and cool down if the aeration rate is
higher than the optimal rate; on the other hand, an aeration rate that is too low will result in
an oxygen deficit that prevents the microbes from receiving enough oxygen to support their
activity [42]. The correlations between sampling day and the variables of the composting
process were also analysed using the correlation matrix. It can be seen that sampling
day was negatively correlated with the dry-matter content (r = −0.3170), organic matter
content (r = −0.5370), carbon content (r = −0.2548) and the C/N ratio (r = −0.3527), while
it was positively correlated with moisture content (r = 0.3170), ash content (r = 0.5362),
nitrogen content (r = 0.3032), pH value (r = 0.5751), TDS value (r = 0.5503), conductivity
(r = 0.5539) and the total colour change of the compost extracts (r = 0.4024). In general, it
can be concluded that a higher initial moisture content, a higher air-flow rate and a longer
duration of the composting process lead to greater decomposition of organic matter.
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Table 1. Minimum, maximum and standard deviations of analysed physicochemical properties (MC—moisture content, DM—dry-matter content, OM—organic-
matter content, AC—ash content, CC—carbon content, NC—nitrogen content, C/N—carbon/nitrogen ratio, ∆Ec—total colour change of compost samples,
TDS—total dissolved solids, S—conductivity, ∆Ee—total colour change of compost extract samples).

MC (%) DM (%) OM (%) AC (%) CC (%) NC (%) C/N ∆Ec pH TDS (mg/L) S (µS/cm) ∆Ee

Exp1

Min 50.144 41.575 66.548 16.525 47.500 1.170 21.549 2.074 4.520 491.000 1002.000 0.374

Max 58.425 49.856 83.475 33.452 52.400 2.330 40.940 18.308 8.080 1551.000 3120.000 4.994

St.dev. 2.143 2.143 4.670 4.670 1.304 0.345 5.637 4.645 1.064 389.335 723.974 0.875

Exp2

Min 48.855 39.187 66.787 14.181 47.300 1.160 21.120 1.019 4.490 286.000 568.000 0.242

Max 60.813 51.145 85.819 33.213 52.800 2.500 41.724 19.899 7.790 1700.000 3400.000 2.922

St.dev. 2.332 2.332 4.753 4.753 1.458 0.354 5.673 4.590 1.039 477.961 933.359 0.734

Exp3

Min 55.440 29.201 57.183 14.642 46.400 1.070 19.876 0.855 5.130 387.000 799.000 0.179

Max 70.799 44.560 85.358 42.817 52.600 2.460 45.981 18.518 9.250 1442.000 2940.000 4.505

St.dev. 3.893 3.893 8.430 8.430 1.718 0.369 6.046 4.715 1.167 375.912 757.741 1.262

Exp4

Min 56.423 30.499 63.186 14.315 47.000 1.070 20.664 1.466 4.770 337.000 674.000 0.192

Max 69.501 43.577 85.685 36.814 51.800 2.410 45.981 14.002 8.220 1752.000 3520.000 2.378

St.dev. 2.591 2.591 5.694 5.480 1.090 0.361 6.253 3.396 1.058 464.734 914.862 0.710

Exp5

Min 56.423 30.192 58.806 14.315 46.700 1.070 20.377 1.466 4.660 313.000 627.000 0.192

Max 69.808 41.203 82.372 41.194 51.700 2.390 45.981 15.018 8.270 1413.000 2880.000 2.588

St.dev. 2.476 2.476 5.510 5.389 1.306 0.350 5.763 3.553 1.124 417.009 820.501 0.706

Exp6

Min 49.755 34.027 62.076 24.541 43.900 1.080 14.873 2.444 5.700 1044.000 1991.000 0.554

Max 65.973 50.245 75.459 37.924 48.900 3.160 44.167 9.303 8.600 2180.000 4470.000 5.294

St.dev. 4.135 4.135 3.671 3.671 1.044 0.519 7.574 1.445 1.029 380.752 822.307 1.390

Exp7

Min 56.989 26.926 57.970 23.526 44.200 1.030 14.698 1.527 5.360 835.000 1666.000 0.167

Max 73.074 43.011 76.474 42.030 49.100 3.240 45.534 10.462 9.260 1867.000 3930.000 4.373

St.dev. 3.655 34.027 5.251 5.251 1.103 0.584 8.108 1.967 1.382 318.789 896.393 1.405

Exp8

Min 52.566 3.655 60.912 20.479 45.900 1.080 19.350 1.920 5.620 926.000 1833.000 0.244

Max 70.058 29.942 79.521 39.088 48.900 2.470 43.364 11.418 8.520 1598.000 3180.000 4.022

St.dev. 3.022 36.823 3.903 3.903 0.773 0.385 6.534 1.796 0.752 208.822 424.283 1.217

Exp9

Min 58.678 3.022 61.238 24.262 45.600 1.100 15.505 1.319 5.230 802.000 1567.000 0.379

Max 70.740 29.260 75.738 38.762 49.300 3.070 43.364 9.582 8.680 2111.000 4100.000 4.165

St.dev. 2.564 34.460 3.641 3.641 0.816 0.517 7.195 1.552 1.166 374.269 720.654 1.055
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Table 2. Spearman’s correlation matrix for the determination of the relationships between condi-
tions of the composting process and physicochemical properties of the compost during the process
(IMC—initial moisture content, AFR—air flow rate, SD—sampling day, MC—moisture content,
DM—dry-matter content, OM—organic-matter content, AC—ash content, CC—carbon content,
NC—nitrogen content, C/N—carbon-to-nitrogen ratio, ∆Ec—total colour change of compost sam-
ples, TDS—total dissolved solids, S—conductivity, ∆Ee—total colour change of compost extract
samples). Significant correlations are marked bold.

IMC AFR SD MC DM OM AC CC NC C/N ∆Ec pH TDS S ∆Ee

IMC 1.000

AFR −0.234 1.000

SD 0.000 0.000 1.000

MC 0.683 −0.076 0.317 1.00

DM −0.683 0.076 −0.317 −1.00 1.00

OM −0.220 −0.130 −0.537 −0.66 0.66 1.000

AC 0.222 0.131 0.536 0.66 −0.66 −1.000 1.000

CC −0.006 −0.224 −0.255 −0.28 0.28 0.451 −0.450 1.000

NC −0.029 0.153 0.303 0.22 −0.22 −0.270 0.270 0.045 1.000

C/N 0.023 −0.173 −0.353 −0.25 0.25 0.331 −0.331 0.071 −0.990 1.000

∆Ec 0.150 −0.278 0.432 0.07 −0.07 −0.153 0.151 −0.019 −0.167 0.146 1.000

pH 0.183 0.106 0.585 0.49 −0.49 −0.595 0.594 −0.462 0.326 −0.400 0.203 1.000

TDS −0.167 0.284 0.550 0.14 −0.14 −0.446 0.445 −0.359 0.217 −0.275 0.146 0.512 1.000

S −0.151 0.253 0.554 0.15 −0.15 −0.438 0.437 −0.342 0.194 −0.252 0.179 0.503 0.985 1.000

∆Ee −0.059 0.213 0.402 0.23 −0.23 −0.407 0.405 −0.407 0.024 −0.079 0.058 0.337 0.409 0.415 1.000

3.2. Multiple Linear Regression, Piecewise Linear Regression and Artificial Neural Network
Models for Prediction of Physicochemical Properties of Compost during the Composting Process

The effects of initial moisture content, air flow and day of sampling on physicochemical
properties of compost during the composting process were analysed. Multiple linear
regression, partial linear regression and artificial neural network models were developed
and their performance for predicting the physicochemical properties of grape-skin compost
was evaluated. The applicability of the calibration models to describe the physicochemical
properties of compost was estimated using R2, R2

adj and RMSE. The applicability of the
model prediction was estimated based on Rpred

2, Rpred
2

adj and RMSEP, SEP, RPD and RER.

3.2.1. Multiple Linear Regression Models

Parameters of the MLR models and the PLR models were estimated using the Levenberg–
Marquardt algorithm implemented in Statistica 14.0 with a confidence interval of 95% and
the values are given in Supplementary Table S1. For the MLR models, the best agreement
was obtained between the experimental data and the data predicted by the model for mois-
ture content (Figure 1a) and dry-matter content (Figure 1b) (Rcal

2 = 0.779, Rcal
2

adj = 0.777,
RMSE = 2.772%, Rpred

2 = 0.738, Rpred
2

adj = 0.738, RMSEP = 2.781%, SEP = 0.245, RPD = 1.948,
RER = 7.274), followed by pH (Figure 1i) (Rcal

2 = 0.447, Rcal
2

adj = 0.441, RMSE = 0.883,
Rpred

2 = 0.391, Rpred
2

adj = 0.376, RMSEP = 0.915, SEP = 0.081, RPD = 1.278, RER = 5.167)
and the total dissolved solids content in the compost (Figure 1j) (Rcal

2 = 0.422, Rcal
2

adj = 416,
RMSE = 318.47 mg/L, Rpred

2 = 0.396, Rpred
2

adj = 0.382, RMSEP = 342.322 mg/L,
SEP = 30.139 mg/L, RPD = 1.275, RER = 5.308). The highest scatter between model-
predicted data and experimental data was found for nitrogen content (Figure 1f) (Rcal

2 = 0.158,
Rcal

2
adj = 0.149, RMSE = 0.424%, Rpred

2 = 0.123, Rpred
2

adj = 0.102, RMSEP = 0.583%,
SEP = 0.051%, RPD = 0.806, RER = 3.789). The MLR calibration model’s quality was also
estimated using residual analysis. MLR model residual-analysis results are presented in
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Supplementary Figure S1 for the model with the highest Rcal
2 (moisture content model)

and for the model with the lowest Rcal
2 (total dissolved solids). This approach is based

on examining the residuals’ patterns [43]. It became apparent that the residuals for MLR
models were normally distributed (Supplementary Figure S1) because the normality condi-
tion was fulfilled because the residual plots were distributed approximately in a straight
line. The normal distribution of the residuals was also confirmed by the bell-shaped his-
tograms that show the measurement distribution [43]. The plots of the predicted values vs.
residuals the show that there is no pattern in the residuals, suggesting that the models ade-
quately describe the experimental data. Furthermore, it was discovered that the residuals
ranged around the central value without any clear outliers, indicating that the degree of
randomisation was suitable and that the order of testing had no effect on the results [44].

Statistical analysis of the MLR models showed that the model parameters b1 (co-
efficient with the initial moisture content), b2 (coefficient with the air flow rate) and b3
(coefficient with the sampling day) had a significant influence (p < 0.05) on all 12 analysed
model outputs (Table S2). It is important to mention that Palechor-Trochez et al. [45] re-
ported strong correlations between the overall change in organic carbon and the change
in colour coordinates of the compost during the composting process. Furthermore, the
colour changes during the composting process could be due to the presence of dissolved
and particulate organic matter [46].

A large F-value (greater that F-critical = 2.0838 for analysed data set), with a small
p-value (p < 0.001) for developed MLP models implies that there is a general relationship
between the response and the predictors [47]. The relationship between observed and model
predicted data was also estimated based on the R2 value. According to Henseler et al. [48],
Hair et al. [49] and Hussain et al. [50] an R2 value of 0.75 is considered substantial, an R2

value of 0.50 is considered moderate and an R2 value of 0.26 is considered as weak. The
suitability of the developed MLR models for predicting the physicochemical properties of
grape skins during composting was also estimated using the ratio of prediction to deviation
(RPD) and the ratio of the error range (RER). Models with RPD < 1.4 are considered non-
reliable, those with RPD in range from 1.4 to 2 are considered fair, while models with
RPD > 2 are described as excellent models [51]. Furthermore, models with RER > 4 are
acceptable for data screening, models with RER > 10 can be used for quality control, and
models with RER > 15 can be used for quantification [52]. Therefore, based on Rpred

2,
only the MLP models developed for the prediction of moisture content and dry-matter
content can be considered moderately suitable and, based on the RPD values, only these
two models can be considered reliable. On the other hand, based on RER values, all
MLP models can be accepted for screening except the model predicting nitrogen content.
Therefore, the proposed models need to be improved. Similar results were presented by
Chikae et al. [23] where multiple linear regression modelling was applied for the prediction
of germination index based on pH value, ammonium concentration, acid phosphate activity
and esterase activity and R2 of 0.791 was obtained. On the other hand, Fouguira et al. [53]
showed very efficient application (R2 > 0.990) of nonlinear multiple regression modelling
for prediction of pH, carbon-to-nitrogen ratio and organic-matter content based on initial
waste composition.
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chemical properties of compost during the composting process. (a) moisture content, (b) dry-matter
content, (c) organic-matter content, (d) ash content, (e) carbon content, (f) nitrogen content, (g) car-
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line represents MLP model.

3.2.2. Piecewise Linear Regression Models

The basic idea behind PLR is that data should be modelled with the regression function
piecewise when following different linear trends in different regions of the data [54].
The results obtained in this paper show that the developed PLR models describe the
experimental results with higher accuracy than the proposed MLP models (Supplementary
Table S2). For all PLR models, developed Rpred

2 value was greater than 0.63.
The best agreement between the experimental data and the data predicted by the

model was again obtained for the moisture content (Figure 2a) and the dry-matter content
(Figure 2b) (Rcal

2 = 0.837, Rcal
2

adj = 0.835, RMSE = 2.501%, Rpred
2 = 0.834, Rpred

2
adj = 0.831,
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RMSEP = 2.144%, SEP = 0.189%, RPD = 2.526, RER = 9.433), followed by the total colour
change of the compost (Figure 2h) (Rcal

2 = 0.781, Rcal
2

adj = 0.779, RMSE = 1.764, Rpred
2 = 0.777,

Rpred
2

adj = 0.772, RMSEP = 1.925, SEP = 0.169, RPD = 2.159, RER = 8.802) and pH (Figure 2i)
(Rcal

2 = 0.784, Rcal
2

adj = 0.782, RMSE = 0.548, Rpred
2 = 0.766, Rpred

2
adj = 0.745, RMSEP = 0.692,

SEP = 0.043, RPD = 2.116, RER = 8.611). The highest scatter between model and exper-
imental data was found for the ash content (Figure 3d) (Rcal

2 = 0.674, Rcal
2

adj = 0.670,
RMSE = 3.322%, Rpred

2 = 0.635, Rpred
2

adj = 0.624, RMSEP = 3.434%, SEP = 0.302%, RPD = 1.708,
RER = 7.111). The improvement in the applicability of the PLR models is particularly
evident in the PLR model, which was developed to describe the nitrogen content in the
compost. The MLP model developed to describe the nitrogen content was described by
Rpred

2 = 0.128, RMSEP = 6.738%, RPD = 1.065 and RER = 4.575 while the PLR model devel-
oped to describe the nitrogen content was described by Rpred

2 = 0.647, RMSEP = 0.261%,
RPD = 1.947 and RER = 7.316. It should be noted that the PLR model guarantees an Rpred

2

value that is about five times higher, an RMSEP value that is about 25 times lower and
RPD and RER values that are about two times higher than those for the MPL models.
The residual analysis was also performed for the PLR calibration models for moisture
content and ash content (Figure S1). PLR models’ goodness of fit was confirmed through
a normal probability plot of the residuals, the predicted values versus residuals versus
plot, histogram of the residuals and residuals versus the order of the data plot (Figure S1).
The statistical analysis of the PLR models showed the same trend as for the MLR models
(Table S1); in particular, the parameters b1 (coefficient connected to the initial moisture
content), b2 (coefficient connected to the air flow rate) and b3 (coefficient connected to
the sampling day), which had a significant influence (p < 0.05) on all 12 analysed model
outputs. Based on Rpred

2 (Table S2) only the PLR models developed for the prediction of
moisture content and dry-matter content can be considered substantial, while the other
proposed PLR models can be considered moderate (Rpred

2 > 0.5). Furthermore, based on the
RPD values the PLR models developed for the prediction of moisture content, dry-matter
content, total colour change of the compost samples and prediction of pH can be considered
excellent (RPD > 2), while the other models can be considered fair (1.4 < RPD < 2). As for
the MLR models, based on RER values, all PLR models can be acceptable for screening
(4 < RER < 10). Based on the obtained results, it can be concluded that PLR models can be
used for the description and prediction of physiochemical properties of compost during the
composting process. Similarly, Costello et al. [55] developed an efficient pricewise model
(R2 > 0.75) for the prediction of pH and electrical conductivity based on shoot dry weight.
The mentioned authors compared MLR and PLR modelling performance and showed that
PLR models are more efficient.

3.2.3. Artificial Neural Network Models

Multilayer perceptron (MLP) neural networks were developed to further improve
the prediction of physiochemical properties of grape-skin compost during the composting
process. ANNs were compared to PLR modelling as nonlinear models, and it was expected
that the ANNs could better and more accurately describe the experimental data [56]. ANN
models were developed individually for each of the selected physicochemical properties
of the compost. As shown in Table 3 and Figure 3, the developed ANN models show
better performance compared to PLR models and, especially, MLR models. The developed
ANN models provided good agreement between the experimental values and the values
predicted by the model at learning, testing and validation levels, as the coefficients of
determination were above 0.70 in all three phases and the errors of the model were low
(RMSE < 0.014).
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ical properties of compost during the composting process. (a) Moisture content, (b) dry-matter
content, (c) organic-matter content, (d) ash content, (e) carbon content, (f) nitrogen content, (g) car-
bon/nitrogen ratio, (h) compost total colour change, (i) pH, (j) total dissolved solids, (k) conductivity,
(l) compost extracts total colour change. (#) calibration data set and (#) prediction data sets.
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Figure 3. Comparisons between experimental data and ANN models predicted data of physico-
chemical properties of compost during the composting process. (a) Moisture content, (b) dry-matter
content, (c) organic-matter content, (d) ash content, (e) carbon content, (f) nitrogen content, (g) car-
bon/nitrogen ratio, (h) compost total colour change, (i) pH, (j) total dissolved solids, (k) conductivity,
(l) compost extracts total colour change. (#) training, (∆) test, (♢) validation and (#) prediction data
sets for ANN models.
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Table 3. The artificial neural network models for prediction of physicochemical properties of grape-skin compost (MC—moisture content, DM—dry-matter content,
OM—organic-matter content, AC—ash content, CC—carbon content, NC—nitrogen content, C/N—carbon to nitrogen ratio, ∆Ec—total colour change of compost
samples, TDS—total dissolved solids, S—conductivity, ∆Ee—total colour change of compost extract samples).

Calibration Prediction

Output Network Train. Perf.
Train. Error

Test Perf. Test
Error

Valid. Perf.
Valid. Eror

Hidden
Activation

Output
Activation Rpred

2 Rpred
2

adj RMSEP SEP RPD RER

MC MLP 3-6-1 0.9262
1.1201

0.9248
1.1335

0.9137
1.5458 Tanh Logistic 0.9050 0.9028 1.7078 0.1504 3.1726 11.8455

DM MLP 3-10-1 0.9248
1.1222

0.9117
1.1258

0.9107
1.4933 Tanh Logistic 0.9038 0.9015 1.7173 0.1512 3.1550 11.7799

OM MLP 3-9-1 0.7978
2.2311

0.7677
2.4293

0.7594
2.8152 Tanh Tanh 0.7531 0.7472 3.1022 0.2731 2.0047 8.9766

AC MLP 3-10-1 0.8359
1.6794

0.8344
1.8354

0.8057
2.0836 Tanh Tanh 0.7233 0.7167 3.3030 0.2908 1.8587 8.4310

CC MLP 3-8-1 0.8623
0.5664

0.8613
0.6265

0.8522
0.7596 Logistic Identity 0.6658 0.6571 0.9770 0.0860 1.6380 8.3933

NC MLP 3-4-1 0.7556
0.0605

0.7554
0.0625

0.7236
0.0639 Logistic Exponential 0.6516 0.6433 0.2793 0.0246 1.6819 7.9125

C/N MLP 3-10-1 0.7367
0.2016

0.6826
0.2683

0.6672
0.3913 Tanh Exponential 0.6542 0.6483 3.6098 0.3178 1.9895 8.5399

∆Ec MLP 3-5-1 0.9219
1.3085

0.9177
1.3384

0.9056
1.3718 Logistic Exponential 0.7344 0.7281 2.0842 0.1835 1.9943 8.1286

pH MLP 3-10-1 0.9137
0.1148

0.8961
0.1569

0.8674
0.1640 Tanh Identity 0.8322 0.8282 0.4896 0.0431 2.3890 9.6603

TDS MLP 3-8-1 0.9231
83.3771

0.8961
134.5269

0.8334
163.2544 Tanh Tanh 0.7151 0.7084 236.9514 20.8624 1.8418 7.6682

S MLP 3-10-1 0.8670
87.4412

0.8965
151.1360

0.8076
182.1221 Tanh Logistic 0.7529 0.7447 522.9934 46.0470 1.9763 8.5246

∆Ee MLP 3-7-1 0.8055
0.3691

0.7936
0.6189

0.7853
0.6371 Logistic Logistic 0.6952 0.6856 0.8746 0.0770 1.9531 7.8557
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Table 3 shows the ANNs that were selected as optimal for predicting specific com-
posting properties based on R2 and RMSE for the training, test and validation datasets,
as well as for considering the number of neurons in the hidden layer. A lower number of
neurons in the hidden layer was considered advantageous as it implies a simpler network
structure [57]. Results showed that the best agreement between the experimental data and
the data predicted by the ANN model was obtained for moisture content (Rpred

2 = 0.9050,
Rpred

2
adj = 0.9028, RMSEP = 1.7078%, SEP = 0.1504%, RPD = 3.1786, RER = 11.8455), fol-

lowed by dry-matter content (Rpred
2 = 0.9038, Rpred

2
adj = 0.9015, RMSEP = 1.7173%,

SEP = 0.1512%, RPD = 3.1550, RER = 11.7799) and pH value of the compost (Rpred
2 = 0.8322,

Rpred
2

adj = 0.8282, RMSEP = 0.4896, SEP = 0.0431, RPD = 2.3890, RER = 9.6603). The
highest dissipation between model and experimental data was obtained for the C/N
ratio (Rpred

2 = 0.6542, Rpred
2

adj = 0.66483, RMSEP = 3.6098, SEP = 0.3178, RPD = 1.9895,
RER = 8.5399). Based on Rpred

2, only the ANN models developed for the prediction of
moisture content, dry-matter content, organic-matter content, pH and conductivity can
be considered substantial (Rpred

2 > 0.75), while the other ANN models can be considered
moderate (Rpred

2 > 0.65). The goodness of fit of the ANN calibration models for moisture
content and C/N content (Figure S1) was confirmed through a normal probability plot of
the residuals, the predicted values versus residuals versus plot, histogram of the residuals
and residuals versus the order of the data plot (Figure S1). Moreover, the ANN model de-
veloped for the prediction of moisture content, dry-matter content, organic-matter content
and the pH of grape-skin compost samples can be considered excellent (RPD > 2) based on
the RPD values, while the other models can be considered fair (RPD > 1.6). The applicability
improvement of the ANN models is also clear from the analysis of the RER values. Based on
the RER values, the ANN models developed for the prediction of moisture and dry-matter
content can be used for quality control (RER > 11), while all other models are acceptable
for screening (RER > 7.8). Based on the results obtained, it can be concluded that the ANN
models can be used for the description and prediction of the physiochemical properties
of compost during the composting process with higher precision than the MLP or PLR
models. Usage of the developed ANN models can contribute to reduction of number of the
necessary experiments and provide an efficient prediction of the properties of the compost
depending on the initial conditions of the composting process. The results obtained are in
agreement with the results presented by Hosseinzadeh et al. [58] in which the ANN models
provided a better prediction for the recovery of total nitrogen and total phosphorus from
waste by vermicomposting than the MLR models. Furthermore, the superior prediction
performance of ANN modelling compared to multiple linear regression was also shown
by: (i) Dumenci et al. [59] for evaluation of olive mill waste compost based on composting
mixture composition, (ii) Singh et al. [60] for modeming of compost production under
different climate conditions, (iii) by Shi et al. [61], for prediction of humic acid content
in the final compost based on the carbon-to-nitrogen content, initial moisture content,
type of inoculant and composting day and (iv) Abdi et al. [56] for prediction of electrical
conductivity, pH, carbon-to-nitrogen ratio and germination index, based on inlet-air rates,
initial carbon-to-nitrogen ratios of 18 and the addition of coco peat biochar.

Comparing the results obtained using all three modelling approaches, it can be con-
cluded that grape-skin compost’s physicochemical properties can be predicted based on
the initial composting conditions. For both the MLR and PLR models, results showed that
all estimated regression coefficients are significant, indicating the importance of selected
input variables on the composting efficiency. Furthermore, it can also be noticed that the
ANN modelling approach was superior in prediction performance, indicating the highly
nonlinear nature of the interactions between input and output compositing variables.

To evaluate the importance of the input variables for the results of the ANN model,
global sensitivity analysis was performed. As shown in Figure 4, moisture content was
found to be the most important variable for the composting process of grape skins. Ac-
cording to Gurusamy et al. [62], maintaining an efficient composting process requires
optimisation of moisture content; while high moisture content limits the mass transfer of
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air, low moisture content inhibits microbial activity, leading to the development of unstable
and immature compost. The global sensitivity coefficient for initial moisture content was
above 50% for all output variables except total dissolved solids and conductivity values. For
carbon content and nitrogen content, the global sensitivity coefficient for initial moisture
content was above 90%. This is in line with the results presented by Ghanney et al. [63]
where the importance of moisture content for the change in carbon content during the com-
posting process was also confirmed. These authors found that the organic-matter content
of composting straw and cow manure decreased significantly at a moisture content of 65%,
while the loss was lower at a moisture content of 45%. The global sensitivity analysis of the
ANN models for the total amount of dissolved solids and the conductivity values of the
compost showed that all three process variables have approximately the same effect on the
analysed output variables. This can be explained by the fact that the change in electrical
conductivity during the composting process correlates with the decomposition of organic
matter [64], which is influenced by the compost moisture and oxygen-supply rate [65].
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Figure 4. Global sensitivity analysis of important variables of the composting process (MC—moisture
content, DM—dry-matter content, OM—organic-matter content, AC—ash content, CC—carbon
content, NC—nitrogen content, C/N—carbon/nitrogen ratio, ∆Ec—total colour change of com-
post samples, TDS—total dissolved solids, S—conductivity, ∆Ee—total colour change of compost
extract samples).

4. Conclusions

The obtained results indicate the importance of all these analysed process variables
on the compost’s physical and chemical properties. Furthermore, based on RER values,
all the MLP models can be accepted for screening except the model predicting nitrogen
content, while the PLR and ANN models can be used for the description and prediction of
the physiochemical properties of compost during the composting process. Application of
the modelling approach in composting process analysis can contribute to a reduction in the
number of necessary experiments and provide an efficient prediction of the properties of
the compost depending on the initial conditions of the composting process.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bioengineering11030285/s1, Table S1. Coefficients and statistics
of multiple linear regression models for prediction of physicochemical properties of compost during
the composting process based on initial moisture content, air-flow rate and sampling day. Significant
coefficients and standard errors (SE) are marked bold. Figure S1. Analysis of the residuals for the:
(a) MLR model describing moisture content, (b) MLR model describing total dissolved solids values,

https://www.mdpi.com/article/10.3390/bioengineering11030285/s1
https://www.mdpi.com/article/10.3390/bioengineering11030285/s1
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(c) PLR model describing moisture content, (d) PLR model describing ash content, (e) ANN model
describing moisture content and (f) ANN model describing C/N ratio. (1) normal probability plot,
(2) predicted value plots vs. residual plot, (3) histogram of residuals, (4) case vs residual plot. Table S2.
Coefficients and statistics of piecewise linear regression models for prediction of physicochemical
properties of compost during the composting process based on initial moisture content, air flow and
sampling day. Significant coefficients and standard errors (SE) are marked bold.
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