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Abstract: This paper describes the analysis of electrodermal activity (EDA) in the context of students’
scholastic activity. Taking a multidisciplinary, citizen science and maker-centric approach, low-
cost, bespoken wearables, such as a mini weather station and biometric wristband, were built. To
investigate both physical health as well as stress, the instruments were first validated against research
grade devices. Following this, a research experiment was created and conducted in the context of
students’ scholastic activity. Data from this experiment were used to train machine learning models,
which were then applied to interpret the relationships between the environment, health, and stress.
It is hoped that analyses of EDA data will further strengthen the emerging model describing the
intersections between local microclimate and physiological and neurological stress. The results
suggest that temperature and air quality play an important role in students’ physiological well-being,
thus demonstrating the feasibility of understanding the extent of the effects of various microclimatic
factors. This highlights the importance of thermal comfort and air ventilation in real-life applications
to improve students’ well-being. We envision our work making a significant impact by showcasing the
effectiveness and feasibility of inexpensive, self-designed wearable devices for tracking microclimate
and electrodermal activity (EDA). The affordability of these wearables holds promising implications
for scalability and encourages crowd-sourced citizen science in the relatively unexplored domain of
microclimate’s influence on well-being. Embracing citizen science can then democratize learning and
expedite rapid research advancements.

Keywords: electrodermal activity; machine learning; maker culture; microclimate; neurological stress;
physiology; thermal comfort; wearables

1. Introduction

Climate change stands as a paramount challenge of the 21st century. As affirmed
by the fifth report of the Intergovernmental Panel on Climate Change (IPCC), the observ-
able and escalating human impact on the climate system is evident, with repercussions
spanning across continents and oceans [1]. Its consequences are widespread, degrading
the quality of life for every creature on Earth: glaciers are receding, river and lake ice is
melting prematurely, species habitats are shifting, and vegetation is blooming earlier than
before [2].

A microclimate denotes a localized area within a larger surrounding area with distinct
climatic conditions [3]. Consequently, any given climatic zone encompasses numerous
microclimates, each varying in characteristics from the overall region. Given the general
habitability of our planet, humans have populated its landmasses. However, considering
the discrepancy between the human scale and the diverse habitats we inhabit, alterations
in the climates of these habitats could disproportionately impact our daily activities.
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As of now, the detrimental effects of anthropogenic environmental pollution have
worsened the physical environment for education, teaching, and learning. For instance,
heat waves have been shown to seriously impair students’ health and productivity [4].
Palme and Salvati (2021) highlighted that there is relatively inadequate research focusing
on the connections between microclimates and human health and emotions [5]. Therefore,
it is crucial to delve into how microclimates influence health and productivity to tackle this
overlooked issue.

In June 2022, the IPCC suggested that rapidly increasing climate change presents a
growing risk to mental health and psychosocial well-being, from emotional distress to
anxiety, depression, grief, and suicidal behavior. Thus, the investigation of electrodermal
activity (EDA)—referring to the continuous variation in the electrical characteristics of the
skin, which varies with the moisture level—as a noninvasive method to detect stress and
emotional arousal is an area of interest. This is especially so because productivity and stress
management is an area of interest. EDA is linked to the sympathetic nervous system and
consists of two components: tonic and phasic, which are represented by skin conductance
level (SCL) and skin conductance response (SCR) [6]. For the frequency domain, features
relative to EDASymp, TVSymp (spectral powers in specific frequency bands according to
Posada-Quintero et al. (2016a; 2016b) [7,8] and their normalized versions were focused
on as they were found to be highly sensitive to orthostatic, cognitive, and physical stress
(Posada-Quintero et al., 2020) [9].

It is self-evident that climate change has various effects on individual well-being. As
human beings, we are attuned to our immediate environment, and our reactions to shifts
in microclimates can influence both emotions and health. Specifically, climate change could
potentially alter microclimates to a degree where such changes could adversely affect the
physical and mental well-being of those residing in these environments. For instance, a
study by Liu et al. in 2019 concluded that “the increasing research interest in thermal
comfort and health has heightened the need to figure out how the human body responds,
both psychologically and physiologically, to different microclimates” [10]. Hence, delving
into EDA data may reveal previously implicit connections regarding how microclimate
correlates with our perception of well-being on a detailed scale.

Given the context of heat stress, we apply the use of EDA in the context of stu-
dents’ scholastic activity. Taking on a multidisciplinary, citizen science and maker-centric
approach, low-cost, bespoke wearables such as a mini weather station and biometric wrist-
band were built. To investigate both physical health as well as stress, the instruments
were first validated against research-grade devices. Following this, a research experiment
was created and conducted in the context of students’ scholastic activity. Data from this
experiment were used to train machine learning models, which can then interpret the
relationships between the environment, health, and stress. It is anticipated that analyses of
EDA data will enhance the developing model that describes the intersections between local
microclimate and physiological and neurological stress.

One of the potential contributions of our research is to showcase the effectiveness and
feasibility of inexpensive, self-designed wearable devices for monitoring microclimate and
EDA. The affordability of these wearables holds promising implications for scaling up and,
consequently, for promoting crowd-sourced citizen science in the relatively underexplored
domain of microclimate and well-being relationships. To reinforce the benefits of this study,
the practice of citizen science can democratize the process of learning and accelerate the
progress of research [11].

2. Literature Review
2.1. Understanding Microclimate and Its Effects

The concept of microclimate, as delineated in the literature [12], pertains to the ar-
ray of climatic conditions observed in localized areas close to the earth’s surface. This
encompasses environmental factors such as temperature, light, wind speed, and moisture.
Microclimate has played a pivotal role throughout human history, offering crucial indica-
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tors for habitat selection and various activities [13]. Regardless of the global biomes we
inhabit, our bodies specifically react to microclimate conditions rather than the broader
descriptors of the overall climatic region. For instance, farmers have traditionally relied
on localized fluctuations in temperature and precipitation to plan their agricultural activi-
ties. Microclimate exerts a direct influence on ecological processes and manifests subtle
shifts in ecosystem functioning and landscape configuration across different geographical
scales [14].

Microclimate exerts an influence on electrodermal activity, which in turn correlates
with our physiological and mental well-being. An illustration of this association concerning
human health is evident in the impact of urban microclimate on our thermal comfort [5].
However, the connections between microclimate and biological processes are intricate and
frequently nonlinear. For instance, plant distribution can be understood as a result of
various factors, including light, temperature, moisture, and vapor deficit [13]. Hence, even
a slight alteration in microclimate could lead to adverse effects on human emotions and
health beyond just thermal comfort.

2.2. Urgency of Studying the Effects of Microclimates in the Context of Rapid Climate Change

The phenomenon of rapid urbanization, particularly notable in developing nations,
has spurred significant migration flows toward urban centers [15]. As per Statista, global
urbanization reached approximately 56% in 2020 [16]. With the pace of urbanization
accelerating, alterations to urban environments and climates are inevitable [17]. This
widespread urbanization complicates predictions regarding anthropogenic impacts on
Earth’s climate.

At local levels, activities linked to changes in land use, land cover, and urban expan-
sion result in various impacts, including alterations in atmospheric composition, water
and energy balances, and ecosystem dynamics [18]. Given the interconnected nature
of ecosystems, even minor changes in one component can trigger nonlinear effects else-
where. For instance, a study by Xiong et al. in 2015 examined the effects of different
air temperature shifts on human health and thermal comfort, revealing sensitivities such
as perspiration, eye strain, dizziness, accelerated respiration, and increased heart rate as
reported symptoms [19].

Amidst global climate change and the exacerbation of urban heat island effects, ur-
ban living conditions have deteriorated, significantly affecting human thermal comfort
and health [10]. These effects extend beyond psychological impacts, influencing thermal
sensation, mood, and concentration, to physiological repercussions such as sunburn, heat
stroke, and heat cramps. Liu et al. (ibid.) have also cautioned that “global climate change
and intensifying heat islands have reduced human thermal comfort and health in urban
outdoor environments”.

The mentioned effects extend to the context of teaching/learning and classroom
environment. For example, heat waves have been shown to seriously impair students’
health and productivity [4]. One way to explain this is that the external environmental
setting can be an ambient stressor on students’ health [20]. Since climate change results
in the continuous change in the external environment, e.g., the microclimate inside a
classroom, a different degree of stress might be experienced by students, even teachers.
With a deeper understanding of the extent to which microclimatic change can affect health,
stress, and performance, measures can be taken to maximize productivity.

2.3. Utility of Electrodermal Activity (EDA) Data in Research

As defined by Critchley and Nagai [21], electrodermal activity (EDA) denotes a mea-
surement of neurally mediated effects on sweat gland permeability, manifested as alter-
ations in skin resistance to a minor electrical current or variations in electrical potential
across different skin regions. EDA comprises both tonic and phasic components, repre-
sented, respectively, by skin conductance level (SCL) and skin conductance response (SCR).
It is closely linked to human stress and emotional responses and can be measured noninva-
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sively [6]. Hence, it is a viable option for reliable and accurate assessment of human stress
and emotions in a more comfortable setting outside laboratories.

Ward et al. in 2004 [22] have demonstrated that electrodermal activity and heart
rate variability are under the influence of the responses of the autonomic nervous system
to psychological and emotional activity. They have suggested that any change in EDA
during so-called sustained attention to response tests (SARTs) would also be reflected in a
change in heart rate variation. As such, their work suggests the possibility of underlying
correlations between electrodermal activity and other biometric factors.

EDA data have proven effective in many studies that involve emotional and stress
assessment. What is more noteworthy is that there have been attempts to study EDA with
a multidisciplinary approach. For example, the effects of thermal variance on a person’s
electrodermal activity following the circadian rhythm were investigated by Kobas et al. [23].
Another exemplification would be the work of Fernandes et al. in linking physical and
social environments with mental health using EDA data to assess emotions [24]. As such,
the wide adoption of EDA data in investigating various relationships between humans and
the environment means that it is a popular and suitable data type to collect.

As argued in the preceding paragraphs, changes in climate can affect individuals both
physiologically and psychologically. Our review of the literature also suggests correlations
between the changing conditions of the climate and changes in recorded EDA. As such, we
posit that an understanding of electrodermal activity contributes to a better understanding
of mental well-being with respect to changes in microclimate.

3. Methodology
3.1. Collecting Electrodermal Activity (EDA) Data

For the do-it-yourself (DIY) physiological wristband used in this study, EDA sensors
are built based on the design described in Zangróniz et al. (2017) [25] with an input
voltage of 3.3 V and a 10 Hz sampling rate. LM324 operational amplifier with low noise
of 35 nV/rtHz was used alongside Dry Ag/AgCl Finger Electrodes. Figure 1 shows the
schematic for the wristband. TP4056 battery charger circuit and 1200 mAh 3.7 V lithium
battery provided approximately 10 h battery life for the unit.
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Vout was measured with an external analog-to-digital converter ADS1115 with a 16-bit
resolution with an internal programmable gain amplifier set at ±2.048 V maximum voltage
and stored on computers or mobile devices through the HC-05 Bluetooth module. These
components are secured inside a plastic container of size 6.5 cm by 5 cm by 2.5 cm. Figure 2
shows an assembled prototype.
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Following Zangróniz et al. (2017) [25], skin resistance can be calculated from output
voltage Vout by Rskin (in Ω) = (1 − 2 × Vout/Vdd) × Rref, with Vdd = 3.3 V, Rref = 826,000 Ω,
and Vout calculated from serial output of Arduino.

Then, skin conductance Gskin can be calculated by Gskin (in µS) = (1/Rskin) × 106.
The following are some relevant details of the DIY EDA electrodes:

- ECG electrodes: Ag/AgCl coated with KCl-gel;
- Diameter: 0.80 cm;
- Area: 0.50 cm2;
- Current: 1.50 µA;
- Current to skin: 2.99 µA/cm2, below the 10 µA/cm2 recommendation;
- Voltage to skin: around 0.30 V for well-hydrated skin, below the 0.5 V recom-

mendation.

3.2. Collecting Environmental Data

To gather microclimate data, a compact portable device was constructed to assess
the ambient environmental conditions, including noise level, light intensity via infrared
radiation, dust concentration, carbon dioxide concentration, temperature, relative hu-
midity, air pressure, and wind speed. The sampling rate of the unit is roughly 1 Hz. The
schematics for the device are depicted in Figure 3a, and the assembled device is shown in
Figure 3b.
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3.3. Data Collection—Self-Reported Measures

Data collection through self-reported measures was carried out through an assessment
of general stress and an assessment of mental stress. For the former, participants were
invited to attempt a series of mathematical tasks of varying difficulty under conditions
of varying stress (through manipulation of the microclimate as tasks were attempted). A
baseline score was also determined before any tasks were assigned and under prevailing
ambient microclimatic conditions. Participants were requested to evaluate the task difficulty
on a scale ranging from 1 to 10. Similarly, they were prompted to rate their stress level
using a scale from 1 to 7. The range of the scale was designed to sync with subsequent
types of questionnaires for mental and workload assessment. For the purposes of the study
reported in this paper, a self-reported score of task difficulty greater than 6 and a level of
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stress greater than 4 was interpreted as ‘high stress’; conversely, a score of task difficulty
and a level of stress less than 3 was interpreted as ‘low stress’.

As for the assessment of mental stress, we chose to focus on what is generally termed
acute stress, that is, short-term, event-triggered exposures to threatening or challenging
stimuli that elicit a psychological and/or physiological stress response, such as delivering a
public speech. To assess this, we administered the instrument known as the Self-Assessment
Manikin (SAM) to participants. SAM is a “non-verbal pictorial assessment technique that
directly measures the pleasure, arousal, and dominance associated with a person’s affective
reaction to a wide variety of stimuli” [26]. SAM was chosen for its effectiveness in directly
assessing the pleasure, arousal, and dominance associated with response to the event, which
reduces the resources needed to measure other types of variables for higher resolution.
Furthermore, SAM can be used universally as language barriers can be overcome when
emotions are represented by pictures.

3.3.1. General State Assessment

Participants rated the difficulty of the task they had just carried out on a scale of 1 to
10 and the stress level on a scale of 1 to 7.

For this experiment, high-stress windows are chosen as windows with subjective
task difficulty rated ≥ 7 (1 to 10) and subjective stress level rated ≥ 5 (1 to 7); low-stress
windows are windows with subject task difficulty and subjective stress level rated ≤ 2 and
baseline windows. These ranges were determined so that stress levels are significantly
different between high-stress and low-stress windows.

3.3.2. Mental State Assessment

For stress in this study, we focused on acute stress—short-term, event-based exposures
to threatening or challenging stimuli that evoke a psychological and/or physiological stress
response, such as giving a public speech. Before the participants started to perform a
mathematical task, they were asked to fill out a pre-task survey. In the same manner, a
post-task survey would be filled in after the duration of the task was allocated. For the
purposes of this study, there are 4 types of questionnaires combined to assess the mental
state of participants.

Firstly, Self-Assessment-Manikin (SAM) was used. As mentioned before, SAM is a
non-verbal pictorial assessment technique that directly measures the pleasure, arousal, and
dominance associated with a person’s affective reaction to a wide variety of stimuli. SAM
was included in both the pre-task survey and the post-task survey.

Secondly, a short version of the State-Trait Anxiety Inventory (STAI) was used. STAI
is a self-report scale that assesses separate dimensions of “state” and “trait” anxiety. The
essential qualities evaluated by the STAI are feelings of apprehension, tension, nervousness,
and worry. Scores on the STAI S-Anxiety scale increase in response to physical danger
and psychological stress and decrease as a result of relaxation training [27]. Table A1 in
Appendix A shows STAI questions used in the post-task survey.

Thirdly, the acute stress appraisal questionnaire was used. The acute stress appraisal
emphasizes the multifaceted nature of demand and resource appraisals to be used in labo-
ratory stress paradigms. Demands were defined to be made up of perceived uncertainty,
required effort, and how demanding the task seems, among other factors, whereas resources
comprise perceived knowledge and abilities, controllability, social support, and expecta-
tions [28]. There are two parts to this questionnaire: a pre-task appraisal (Table A2a) and a
post-task appraisal (Table A2b). Refer to Appendix A for these tables of questionnaires.

Finally, to assess mental workload, a NASA Task Load Index (TLX) questionnaire was
also included in the post-task survey. NASA-TLX is a multidimensional scale designed to
obtain workload estimates from one or more operators while they are performing a task or
immediately afterward. The use of NASA-TLX has gone beyond the aviation field, showing
how popular and reliable it is as a means to measure workload [29].
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3.4. Validation of EDA Data of DIY EDA Sensors against Empatica E4 EDA Sensors

In order to validate the legitimacy of the DIY EDA signals, an experiment was mod-
eled after Zangróniz et al. (2017) [25] and Atkins et al. (2019) [30]. It was conducted
within a supervised environment in which the fan, the light, and the door could all be
independently controlled.

Empatica E4 (4 Hz sampling rate with silver (Ag) plated with metallic core electrodes),
a research-grade equipment for measuring EDA data, was used to compare against the
performance of DIY devices. Various stimuli were investigated during a session wherein
the DIY device was worn on the left wrist while the Empatica E4 was worn on the right
wrist. First, a sudden visual stimulus with high arousal and low valence in the OASIS
database was introduced at a random time to startle the human subject. This was repeated
four times consecutively. For the experiment’s second part, ten pictures that were labeled
with high arousal and low valence in the OASIS database were shown consecutively for six
seconds each. Blank images with a fixed duration of one second were inserted before each
picture. Afterward, the subject was given a geographical task to neutralize his emotional
state. Subsequently, ten pictures that were labeled with low arousal and high valence
in the OASIS database were shown. Blank images were also inserted. Then, a different
geographical task was assigned to return the emotional state to neutral.

The EDA data underwent initial resampling to a 4 Hz sampling rate. Subsequently,
each set of resampled data was filtered using a 32nd-order Butterworth low-pass filter with
a cutoff frequency of 1.5 Hz to eliminate artifacts. Following this, the data were normalized
and smoothed using a moving average.

Figure 4a,b show two sample plots of EDA data traces from the wristband (worn on
left wrist) compared to Empatica E4 (worn on right wrist). Visually, the phasic and tonic
components extracted from both DIY EDA and E4 EDA signals using convex optimization
methods for EDA (cvxEDA) demonstrate strong congruence, as indicated by high Spearman
coefficients (ρ) in Figure 5a,b.
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3.5. Investigating How the Environment Affects Physiological, Mental Health, and Productivity

The two-hour period was divided into eight 15 min intervals/windows. Each interval
featured varied, randomized combinations of microclimatic factors, as illustrated in Figure 6.
Participants wore a DIY wristband on the wrist of their non-dominant arm throughout the
experiment while engaging in challenging mathematical tasks aimed at sustaining elevated
stress levels (refer to Figure 6 for a photo of a participant during the experiment). Few
windows had easier tasks to serve as baseline and low-stress periods. The participants
should be junior college students with similar levels of mathematical competency. There
are also baseline periods/breaks before, during, and after the experiment.

The collected data underwent processing in Python, with outlier detection conducted
using the z-score method to eliminate outlier data. Initially, the collected EDA data were
normalized and filtered using a low-pass filter (1.5 Hz, Butterworth, 32nd order) to elim-
inate unwanted artifacts [31]. Subsequently, the EDA data were decomposed into tonic
and phasic components utilizing the convex optimization (cvxEDA) method developed
by Greco et al. in 2016 [32]. The skin conductance level (SCL) index was derived as the
mean of 2 min windows of the tonic component, while the number of skin conductance
responses per minute (NSSCR) represented the quantity of rapid transient events within
the phasic component [33].

According to the literature, NSSCR refers to skin conductance responses occurring
without a specific eliciting stimulus [34], and NSSCR levels increase alongside ratings of
emotional arousal [35]. As per Wichary et al. (2016), heightened arousal and negative
valence characterize emotional stress [36]. Thus, this metric serves as a potentially reliable
indicator of stress.

To conduct frequency-domain analysis, the EDA data were downsampled to 2 Hz.
Subsequently, the signals underwent high-pass filtering (0.01 Hz, Butterworth, 8th order) to
eliminate any underlying trend. Using variable frequency complex demodulation, TVSymp
is calculated as the mean of time-varying spectral amplitudes in the 0.08–0.24 Hz band, and
modified TVSymp (MTVSymp) is obtained as the difference between current TVSymp and
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the mean value of TVSymp of the previous 5-s window [8]. Negative values of MTVSymp
were set to 0.
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In the frequency domain, a Blackman window (length of 128 points) was applied to
each segment (0.5-s overlap with each other), and the fast Fourier transform was calculated
for each windowed segment. EDASymp(n), as a tool for sympathetic tone assessment,
was computed as the normalized power within the frequency band of interest (0.045 to
0.25 Hz) [33].

The differential feature, dphEDA, is computed as the derivative of the phasic compo-
nent of EDA.

The features, such as 2 Hz signals, are then synced with environmental data. Spearman
correlation, appropriate for non-normally distributed data, is used to assess monotonic
associations between environmental factors and EDA features.

Random forest regression (RF) models, support vector machines (SVM), and linear
regression (LR) models were trained. Each type of model was trained via 2 methods each:
Leave one subject out and 70% train—30% test. The mean cross-validation R2 score was
compared to see which models performed the best. Hence, as seen in Table 1, random
forest regression models perform the best. Thus, it was chosen as the tool of analysis.

Random forest regression models are then trained on environmental data and EDA
features, with the former as input and the latter as output, with a train–test split ratio
of 7:3 to discover the nonlinear relationships between environmental factors and EDA
features. The outcomes of the random forest regression models were analyzed using
Shapley values and Shapley summary plots to uncover intricate connections between input
and output variables.
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Table 1. R2 score for each type of machine learning model on various EDA features.

Mean Cross-Validation R2 MTVSymp TVSymp dPhEDA Nswindow (NSSCR) EDASymp Tonic_Mean (SCL)

Leave One Subject
Out—RF 0.260 0.296 −0.077 0.366 0.373 0.392

70% Train—30%
Test—RF 0.360 0.411 0.146 0.604 0.736 0.688

Leave One Subject
Out—SVM −0.054 −0.186 −1.039 −0.557 −0.470 −0.460

70% Train—30%
Test—SVM 0.000 0.038 −0.240 0.574 0.205 0.680

Leave One Subject
Out—LR −0.142 −0.203 −0.020 −0.865 −0.280 −2.800

70% Train—30%
Test—LR 0.033 0.083 0.000 0.562 0.054 0.687

4. Results

In total, more than 30,000 environmental data points and 300,000 EDA data points
were collected from five participants (four males and one female).

4.1. Preliminary Statistical Analysis

To help with explainability and data evaluation, Shapley values were used. Shapley
values were used to measure the contributions of input features to the output of a machine
learning model at the instance level. Thus, Shapley values were used to interpret ML
models to explain the impact of environmental factors on the output [37].

The features were then synced with environmental data. For each feature, we first
performed the Kolmogorov–Smirnov normality test (we calculated the Fisher’s ratio as
none of the features displayed normal distribution). Spearman correlation, appropriate for
non-normally distributed data, was subsequently used to assess monotonic associations
between environmental factors and EDA features.

Random forest regression models, linear regression models, and SVM on the environ-
mental data and EDA features were trained. We compared these various models using
leave-one-subject-out cross-validation. From this comparison, random forest emerged as
the most accurate.

With a view to explainability—the exploration of which environmental factors signifi-
cantly affect EDA features and in what way—random forest regression models were then
trained on environmental data and EDA features with the former as input and the latter as
output. The train–test split ratio was 7:3 to find the non-linear connections between the
environmental factors and EDA features.

Figure 7 shows the box and whisker plot for different EDA feature’s statistics. Refer-
ring to the aforementioned methodology, number 1 on the x-axis represents high-stress
events/difficult tasks, and number 2 on the x-axis represents low-stress events/easy
tasks and baseline. Table 2 compares the EDA features during low-stress events and
high-stress events.

Table 3 presents the correlations between the self-reported (subjective) data. We
observed a strong positive correlation between post-task stress and post-task arousal.
We also observed moderate negative correlations between post-task stress and post-task
valence, as well as between post-task arousal and post-task valence. Generally, high stress
correlates with low valence and high arousal. Finally, as might be reasonably expected,
there is a moderate positive correlation between stress and task difficulty.
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Table 2. Comparing EDA features during low-stress events and high-stress events.

Feature MTVSymp TVSymp dPhEDA NSSCR EDASymp SCL

Mean of
Fisher’s Ratio 0.2488 0.4988 0.07091 0.7122 0.3265 0.4702

Max of
Fisher’s Ratio 0.4305 0.8206 0.1236 1.490 0.7166 0.5988

Mean ± STD
during high stress 0.02547 ± 0.04754 0.3216 ± 0.3141 −0.001583 ± 0.01091 17.65 ± 11.15 0.5662 ± 0.1082 4.103 ± 2.637

Mean ± STD
during low stress 0.01251 ± 0.02116 0.1535 ± 0.1219 −0.0007863± 0.002670 8.394 ± 6.674 0.5155 ± 0.1110 2.808 ± 0.7934

Table 3. Correlations between subjective data (non-normal distribution) using Spearman’s rank correlation.

Post Difficulty Post-Stress Post Dominance Post Arousal Post Valence

Post Difficulty 1.000 0.498 −0.233 0.379 −0.366

Post-Stress 0.498 1.000 −0.173 0.784 −0.431

Post Dominance −0.233 −0.173 1.000 −0.219 0.653

Post Arousal 0.379 0.787 −0.219 1.000 −0.352

Post Valence −0.366 −0.431 0.653 −0.352 1.000

Correlations between subjective data using Spearman (non-normal distribution):

- Post-task Stress and Arousal have strong positive correlation.
- Post-task Stress and Valence have moderate negative correlation.
- Post-task Arousal and Valence have moderate negative correlation.
- High Stress correlates with low Valence and high arousal.
- Post-task Stress and task difficulty have moderate positive correlation.
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Table 4 presents the correlations between the environmental data and the EDA data
during high-stress events.

Table 4. Correlations between environmental data and EDA data during high-stress events using
Spearman’s rank correlation.

MTVSymp TVSymp DphEDA NSSCR EDASymp SCL

Sound −0.05934 −0.32213 0.06365 −0.40921 0.05706 −0.61090

Visible −0.00873 0.01804 −0.01563 0.14515 0.04325 0.03541

IR 0.01359 0.04459 −0.02861 0.21509 0.05548 0.08022

UV −0.00863 0.01278 −0.01280 0.13655 0.04347 0.02383

Temperature −0.03886 −0.14755 0.01628 −0.26133 −0.10101 −0.50281

Humid −0.05476 −0.23905 0.04124 −0.35894 −0.22702 −0.40194

Pressure −0.03686 −0.23548 0.05704 −0.28958 −0.05870 −0.32578

CO2 −0.10350 −0.46585 0.08311 −0.54133 0.03551 −0.78979

PM1 −0.06542 −0.33744 0.08212 −0.47146 −0.12212 −0.60179

PM2.5 −0.05987 −0.33496 0.08100 −0.47356 −0.13784 −0.60737

PM10 −0.04861 −0.33464 0.08080 −0.45493 −0.10840 −0.66254

Wind 0.02467 0.16250 −0.03055 0.19242 0.04873 −0.05900

Table 5 presents the correlations between the subjective data and the environmental
data during high-stress events.

Table 5. Correlations between subjective data and environmental data during high-stress events
using Spearman’s rank correlation.

Post
Difficulty Post-Stress Post

Dominance Post Arousal Post
Valence

Sound 0.19620 0.46847 −0.20359 0.49618 −0.10109

Visible −0.11445 −0.11022 0.09724 −0.15649 0.05910

IR −0.13151 −0.17583 0.06240 −0.23523 0.09142

UV −0.10024 −0.10639 0.09605 −0.15116 0.05522

Temperature 0.26247 −0.06902 0.02411 0.05704 −0.16257

Humid 0.38599 −0.20321 0.09103 −0.01901 −0.25521

Pressure 0.21656 0.15605 −0.02990 0.39601 −0.09800

CO2 0.75455 0.25542 −0.00510 0.23169 0.04396

PM1 0.39583 0.21699 −0.11200 0.36770 −0.18324

PM2.5 0.37961 0.21107 −0.10687 0.35539 −0.19239

PM10 0.29759 0.25642 −0.10123 0.34264 −0.17725

Wind −0.54198 0.13262 −0.20161 −0.05592 −0.10570

4.2. Predicting Subjective Data Using Random Forest Regressor with Environmental Variables as
Inputs for High-Stress Windows

The results of the random forest regression models were interpreted using Shapley
values and Shapley summary plots to find more complex relationships between input and
output. Figures 8–18 present the results of this analysis.

4.2.1. Result of Random Forest Regressor on Post Arousal

From Figure 8a,b, the Shapley summary plot suggests that the post arousal is most
significantly affected by the variable ‘Pressure’, followed by the variables ‘Temperature’
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and ‘Humidity’. For the variable ‘Pressure’, higher pressure tends to increase emotional
arousal. For the variable ‘Temperature’, higher temperature tends to decrease emo-
tional arousal. Finally, for the variable ‘Humidity’, higher humidity tends to decrease
emotional arousal.
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4.2.2. Result of Random Forest Regressor on Post-Stress

From Figure 9a,b, the Shapley summary plot suggests that the post-stress is most
significantly affected by the variable ‘Pressure’, followed by the variables ‘Humidity’ and
‘Temperature’. For the variable ‘Pressure’, higher pressure tends to increase stress. For
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the variable ‘Humidity’, lower values of humidity tend to increase stress. Finally, for the
variable ‘Temperature’, higher temperature tends to decrease stress.
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Figure 9. (a,b) R2 Score of 0.417 and Shapley summary plot using environmental data as input to
predict post-stress.

4.2.3. Result of Random Forest Regressor on Post Valence

From Figure 10a,b, the Shapley summary plot suggests that the post valence is most
significantly affected by the variable ‘Pressure’, followed by the variables ‘Temperature’
and ‘CO2 concentration’. For the variable ‘Pressure’, higher pressure tends to decrease
emotional valence. For the variable ‘Temperature’, a higher temperature can either increase
or decrease emotional valence. Finally, for the variable ‘CO2 concentration’, higher carbon
dioxide concentration tends to increase emotional valence.
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4.3. Predicting EDA Features Using Random Forest Regressor with Environmental Variables as
Inputs for High-Stress Windows
4.3.1. Result of Random Forest Regressor on Tonic Component (SCL)

From Figure 11a,b, the Shapley summary plot suggests that the tonic component of
EDA is most significantly affected by the variable ‘Carbon dioxide concentration’, followed
by the variable ‘Temperature’. For the variable ‘Carbon dioxide concentration’, higher
carbon dioxide concentration tends to decrease tonic value, which in turn correlates with
the higher stress levels of participants. For the variable ‘temperature’, higher temperature
also decreases tonic value, which in turn also correlates with higher stress levels.
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4.3.2. Result of Random Forest Regressor on Time-Varying Index of Sympathetic
Activity (TVSymp)

From Figure 12a,b, the Shapley summary plot suggests that TVSymp is most signifi-
cantly affected by the variable ‘CO2 concentration’, followed by the variables ‘Temperature’
and ‘Humidity’. For the variable ‘CO2 Concentration’, a higher value of CO2 concentration
tends to decrease the TVSymp value, which results in lower stress levels and emotional va-
lence. For the variable ‘Temperature’, a higher temperature can either increase or decrease
the value of TVSymp. Therefore, it is inconclusive to which extent a change in temperature
may affect stress. Finally, for the variable ‘Humidity’, lower humidity can either increase or
decrease the value of TVSymp.

4.3.3. Result of Random Forest Regressor on Non-Specific Skin Conductance
Responses (NSSCR)

From Figure 13a,b, the Shapley summary plot suggests that the NSSCR is most signifi-
cantly affected by the variable ‘Carbon dioxide concentration’, followed by the variables
‘Infrared radiation’ and ‘temperature’. For the variable ‘Carbon dioxide concentration’,
higher carbon dioxide concentration tends to decrease NSSCR value, which in turn cor-
relates with lower stress levels and emotional arousal of participants. For the variable
‘Infrared radiation’, it can be seen that a higher level of infrared radiation (intensity) leads
to a higher NSSCR value and vice versa. Thus, higher infrared radiation can lead to higher
levels of stress and emotional arousal.
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4.3.4. Result of Random Forest Regressor on Time-Invariant Spectral Index of EDA
(EDASymp [µS2])

From Figure 14a,b, the Shapley summary plot suggests that the EDASymp is most sig-
nificantly affected by the variable ‘Temperature’, followed by the variables ‘Carbon dioxide
concentration’ and ‘Humidity’. For the variable ‘Temperature’, higher temperature/lower
temperature can either increase or decrease the EDASymp value. For the variable ‘Carbon
dioxide concentration’, it can be seen that higher carbon dioxide concentration tends to
increase the EDASymp value.

4.4. Machine Learning Models Using EDA Data Features as Input and Environmental Variables as
Output (Reverse Model)
4.4.1. Result of Random Forest Regressor on Temperature

From Figure 15a,b, the Shapley summary plot suggests that lower temperature is
related to high values of tonic_mean. For the variable ‘NSSCR’ (NSwindow), higher
temperature is suggested to be related to low values of NSSCR. For the variable ‘TVSymp’,
a lower temperature is suggested to be related to low values of TVSymp. For the variable
‘EDASymp’, a lower temperature is suggested to be related to high values of EDASymp.

4.4.2. Result of Random Forest Regressor on Carbon Dioxide Concentration

From Figure 16a,b, the Shapley summary plot suggests that lower carbon dioxide con-
centration is related to high values of tonic_mean. For the variable ‘NSSCR’ (NSwindow),
higher carbon dioxide concentration is suggested to be related to high values of NSSCR.
For the variable ‘TVSymp’, lower carbon dioxide concentration is suggested to be related to
high values of TVSymp. For the variable ‘EDASymp’, higher carbon dioxide concentration
is suggested to be related to high values of EDASymp.

4.4.3. Result of Random Forest Regressor on Humidity

From Figure 17a,b, the Shapley summary plot suggests that a lower value of humidity
is related to high values of tonic_mean. For the variable ‘NSSCR’ (NSwindow), higher
humidity is suggested to be related to low values of NSSCR. For the variable ‘TVSymp’,
lower humidity is suggested to be related to low values of TVSymp. For the variable
‘EDASymp’, lower humidity is suggested to be related to high values of EDASymp.

4.4.4. Result of Random Forest Regressor on Infrared Radiation (IR)

From Figure 18, the Shapley summary plot suggests that a lower value of IR is related
to low values of tonic_mean. For the variable ‘NSSCR’ (NSwindow), it is inconclusive
whether a higher or lower value of IR is related to high or low values of NSSCR. For the
variable ‘TVSymp’, higher humidity is suggested to be related to low values of TVSymp.
For the variable ‘EDASymp’, higher humidity is suggested to be related to high values
of EDASymp.

Across preliminary findings by using the Spearman correlation coefficient test and
findings from machine learning of random forest regression, temperature has the greatest
impact on cognitive stress, for being extremely influential in drastically changing electro-
dermal activity, an indicator of cognitive stress. Furthermore, it was found that air quality
also has a great impact on participants’ cognitive stress.

It is acknowledged that the approach in this report has some limitations. There might
be a degree of uncertainty in data measurements made by self-built devices and a limited
number of participants. However, it was overcome by a two-prong approach to confirm
the reliability of the suggested findings. A two-way analysis was used, that is, reversing
the roles of EDA feature data and environmental data for machine learning models, in
combination with preliminary findings from the Spearman correlation coefficient.
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5. Discussion

Across preliminary findings by using the Spearman correlation coefficient test and
findings from machine learning of random forest regression, temperature has the greatest
impact on cognitive stress, for being extremely influential in drastically changing electro-
dermal activity, an indicator of cognitive stress. Overall, temperature tends to increase
cognitive stress but makes emotional arousal and emotional valence more negative (less
positive). Furthermore, it was found that air quality also has a great impact on participants’
cognitive stress.

This has demonstrated a universal approach of using the Shapley summary plot to
interpret both the direction and magnitude of the effects of microclimate on EDA features.
To elaborate, the study has shown that based on the magnitude of Shapley values, the
significance and extent to which microclimate affects cognitive stress and emotional states
can be inferred. With a known effect of increasing or decreasing the value corresponding
to the EDA feature, literature can be reviewed to understand how cognitive stress and
emotional state change accordingly.

The methodology of the project was designed to the best of its ability to ensure the
change in cognitive stress is due to the change in microclimate and difficult math tasks.
This was due to the randomization of different climatic conditions and the alternation of
easy mathematical tasks among very challenging mathematical tasks. Furthermore, this
experiment was designed to be as short as possible to minimize mental fatigue, as well as
to ensure EDA is not affected significantly by participants’ circadian rhythm.

It is acknowledged that the approach in this report has some limitations. There might
be a degree of uncertainty in data measurements made by self-built devices and a limited
number of participants. However, it was overcome by a two-prong approach to confirm
the reliability of the suggested findings. A two-way analysis was used, that is, reversing
the roles of EDA feature data and environmental data for machine learning models, in
combination with preliminary findings from the Spearman correlation coefficient. Another
key consideration for the future is to consider the significance of circadian rhythm, as it can
also affect EDA data.

6. Concluding Remarks

This study has demonstrated the feasibility of DIY, citizen science electronic wearables
in research on physiological well-being. Not only are the DIY, low-cost wearables’ data
collected comparable to that of high-end lab-grade equipment, but they also performed ex-
ceptionally well in providing a high enough resolution of data. This was shown consistently
through the results of analysis using machine learning models and literature review.

The nature of DIY electronic wearables also has implications for its scale of usage and
application. At a significantly lower cost, this device can be produced at a larger scale,
modified, and used almost instantly for various purposes of research. This can better drive
the trend of citizen science, where the quality of results is not as emphasized as the process
of carrying out research. With this, it is hoped that our wearable will be able to provide a
means of conducting research, democratizing the equity of research to everyone and, hence,
accelerating the overall progress in the field.

The research has also demonstrated the success of utilizing a multi-model and multi-
disciplinary approach to understanding the link between microclimate and human health,
stress, and emotions. Thus, an extension of the research can be to introduce photoplethys-
mography (PPG) data into the multi-model approach. By nature, PPG data are nonintrusive
to measure and also has been shown to effectively detect and manage stress levels. Coinci-
dentally, PPG can also be measured most effectively at the wrist of participants, making it a
consideration for future expansion of the biometric wristband.

To improve the mentioned limitations, in the future, the participants’ pool can be
increased to ensure genders are equally represented. More participants also ensure more
statistical power and account for a wider range of physiological variability. More trends
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can then be generalized. In terms of methodology, mathematical tasks can be replaced with
other activities, such as learning, to investigate other factors, such as retention rate.

With further application of such electronic wearables, it is hoped that in the near
future, better solutions can be developed to maximize comfort and productivity, not just in
the quasi-formal academic context. This can be in the form of redesigning infrastructure
and biomes. This study hopes to set an example for future research to expand and explore
using a more robust, comprehensive approach (e.g., including more environmental factors
and/or a multi-modal approach using PPG and EEG).
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Appendix A

Short version of the STAI questionnaire:

Table A1. Short version of STAI. 1—not at all; 2—a little; 3—somewhat; 4—very much so.

1 2 3 4

1. I feel calm

2. I feel secure

3. I feel tense

4. I feel strained

5. I feel at ease

6. I feel upset

7. I feel satisfied

8. I feel frightened

9. I feel uncomfortable

10. I feel self-confident

11. I feel nervous

12. I feel jittery

13. I feel indecisive

14. I feel relaxed

15. I feel content

16. I feel worried

17. I feel confused

18. I feel steady

19. I feel pleasant

Pre-task and post-task stress appraisal questionnaires:
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Table A2. (a) Pre-task acute stress appraisal. (b) Post-task acute stress appraisal.

(a)

Question
Scale—Strongly Disagree (1) to Strongly Agree (7)

1 2 3 4 5 6 7

1. The upcoming task is very demanding

2. I am very uncertain about how I will perform during the upcoming task.

3. The upcoming task will take a lot of effort to complete.

4. The upcoming task is very stressful.

5. I have the ability to perform the upcoming task successfully.

6. It is very important to me that I perform well in this task.

7. I am the kind of person who does well in these types of situation

8. A poor performance on this task would be very distressing for me.

9. I feel as if I am in complete control of my performance

(b)

Question
Scale—Strongly Disagree (1) to Strongly Agree (7)

1 2 3 4 5 6 7

1. The task was very demanding.

2. I am uncertain about how I performed

3. I exerted a lot of effort during the task.

4. The task was very stressful.

5. I felt that I had the ability to perform well in the task.

6. It was very important to me that I performed well on this task.

7. I believe I performed well on the task.

8. I felt that the task challenged me in a positive way.

9. I felt in complete control during the task.

References
1. Pachauri, R.K.; Meyer, L.A. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II, III to the Fifth Assessment

Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014.
2. NASA. The Effects of Climate Change. Available online: https://climate.nasa.gov/effects/ (accessed on 25 December 2021).
3. Furer, F. Microclimates: What Are They and Why Do We Have Them? Spectrumnews1. 2021. Available online: https:

//spectrumnews1.com/ca/la-west/weather/2020/12/30/microclimates--what-they-are-and-why-we-have-them- (accessed on
25 December 2021).

4. Lala, B.; Hagishima, A. Impact of Escalating Heat Waves on Students’ Well-Being and Overall Health: A Survey of Primary
School Teachers. Climate 2023, 11, 126. [CrossRef]

5. Palme, M.; Salvati, A. Urban Microclimate Modelling for Comfort and Energy Studies, 1st ed.; Springer: Cham, Switzerland, 2021.
6. Rahma, O.N.; Putra, A.P.; Rahmatillah, A.; Putri, Y.S.K.A.; Fajriaty, N.D.; Ain, K.; Chai, R. Electrodermal Activity for Measuring

Cognitive and Emotional Stress Level. J. Med. Signals Sens. 2022, 12, 155–162. [CrossRef]
7. Posada-Quintero, H.F.; Florian, J.P.; Orjuela-Cañón, Á.D.; Chon, K.H. Highly sensitive index of sympathetic activity based on

time-frequency spectral analysis of electrodermal activity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2016, 311, R582–R591.
[CrossRef]

8. Posada-Quintero, H.F.; Florian, J.P.; Orjuela-Cañón, A.D.; Aljama-Corrales, T.; Charleston-Villalobos, S.; Chon, K.H. Power
Spectral Density Analysis of Electrodermal Activity for Sympathetic Function Assessment. Ann. Biomed. Eng. 2016, 44, 3124–3135.
[CrossRef] [PubMed]

9. Posada-Quintero, H.F.; Chon, K.H. Innovations in Electrodermal Activity Data Collection and Signal Processing: A Systematic
Review. Sensors 2020, 20, 479. [CrossRef]

10. Liu, B.; Lian, Z.; Robert Brown, D. Effect of Landscape Microclimates on Thermal Comfort and Physiological Wellbeing.
Sustainability 2019, 11, 5387. [CrossRef]

11. de Sherbinin, A.; Bowser, A.; Chuang, T.-R.; Cooper, C.; Danielsen, F.; Edmunds, R.; Elias, P.; Faustman, E.; Hultquist, C.;
Mondardini, R.; et al. The critical importance of Citizen Science Data. Front. Clim. 2021, 3, 650760. [CrossRef]

12. Geiger, R.; Aron, R.H.; Todhunter, P. The Climate Near the Ground, 5th ed.; Vieweg+Teubner Verlag: Berlin, Germany, 1995.

https://climate.nasa.gov/effects/
https://spectrumnews1.com/ca/la-west/weather/2020/12/30/microclimates--what-they-are-and-why-we-have-them-
https://spectrumnews1.com/ca/la-west/weather/2020/12/30/microclimates--what-they-are-and-why-we-have-them-
https://doi.org/10.3390/cli11060126
https://doi.org/10.4103/jmss.JMSS_78_20
https://doi.org/10.1152/ajpregu.00180.2016
https://doi.org/10.1007/s10439-016-1606-6
https://www.ncbi.nlm.nih.gov/pubmed/27059225
https://doi.org/10.3390/s20020479
https://doi.org/10.3390/su11195387
https://doi.org/10.3389/fclim.2021.650760


Bioengineering 2024, 11, 291 24 of 24

13. Chen, J.; Saunders, S.C.; Crow, T.R.; Naiman, R.J.; Brosofske, K.D.; Mroz, G.D.; Brookshire, B.L.; Franklin, J.F. Microclimate in
Foret Ecosystem and Landscape Ecology: Variations in local climate can be used to monitor and compare the effects of different
management regimes. In BioScience, 4th ed.; Oxford University Press: Oxford, UK, 1999; Volume 49, pp. 288–297.

14. Perry, D.A.; Oren, R.; Hart, S.C. Forest Ecosystems, 2nd ed.; The Johns Hopkins University Press: Baltimore, MD, USA, 2008.
15. van Eck, M.; Berkhof, H.; Nicolson, N.; Sulon, J. The effects of perceived stress, traits, mood states, and stressful daily events on

salivary cortisol. Psychosom. Med. 1996, 58, 447–458. [CrossRef] [PubMed]
16. Statista. Share of Urban Population Worldwide in 2021, by Continent. 2021. Available online: https://www.statista.com/

statistics/270860/urbanization-by-continent/ (accessed on 25 December 2021).
17. Sanusi, R.; Bidin, S. Re-naturing Cities: Impact of Microclimate, Human Thermal Comfort and Recreational Participation. In

Climate Change, Hazards and Adaptation Options, 1st ed.; Filho, W.L., Nagy, J.G., Borha, M., Muñoz, P.D.C., Magnuszewski, A., Eds.;
Springer: Cham, Switzerland, 2020; Volume 1, pp. 545–562.

18. de Souza, D.O.; dos Santos Alvalá, R.C.; do Nascimento Guedes, M. Urbanization effects on the microclimate of Manaus: A
modeling study. Atmos. Res. 2016, 167, 237–248. [CrossRef]

19. Xiong, J.; Lian, Z.; Zhou, X.; You, J.; Lin, Y. Effects of temperature steps on human health and thermal comfort. Build. Environ.
2015, 94 Pt 1, 144–154. [CrossRef]

20. Najafi, N.; Movahed, K.; Barzegar, Z.; Samani, S. Environmental Factors Affecting Students’ Stress in the Educational Environment:
A Case Study of Shiraz Schools. Int. J. Sch. Health 2018, 5, 1–7. [CrossRef]

21. Critchley, H.; Nagai, Y. Electrodermal Activity (EDA). In Encyclopedia of Behavioral Medicine; Gellman, M.D., Turner, J.R., Eds.;
Springer: New York, NY, USA, 2013. [CrossRef]

22. Ward, S.; Brickley, M.; Sharry, J.; McDarby, G.; Heneghan, C. Assessment of Heart Rate and Electrodermal Activity during Sustained
Attention to Response Tests; Computers in Cardiology: Chicago, IL, USA, 2004; pp. 473–476. [CrossRef]

23. Kobas, B.; Koth, S.; Nkurikiyeyezu, N.; Giannakakis, G.; Auer, T. Effect of Exposure Time on Thermal Behaviour: A Psychological
Approach. Signals 2021, 2, 863–885. [CrossRef]

24. Fernandes, A.; Van Lenthe, F.J.; Vallée, J.; Sueur, C.; Chaix, B. Linking physical and social environments with mental health in old
age: A multisensor approach for continuous real-life ecological and emotional assessment. J. Epidemiol. Community Health 2021,
75, 477–483. [CrossRef]

25. Zangróniz, R.; Martínez-Rodrigo, A.; Pastor, J.M.; López, M.T.; Fernández-Caballero, A. Electrodermal Activity Sensor for
Classification of Calm/Distress Condition. Sensors 2017, 17, 2324. [CrossRef] [PubMed]

26. Margaret, M.B.; Lang, P.J. Measuring emotion: The self-assessment manikin and the semantic differential. J. Behav. Ther.
Exp. Psychiatry 1994, 25, 49–59. [CrossRef]

27. Spielberger, C.D. State-Trait Anxiety Inventory. In The Corsini Encyclopedia of Psychology; Weiner, I.B., Craighead, W.E., Eds.;
John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2010. [CrossRef]

28. Mendes, W.B.; Gray, H.M.; Mendoza-Denton, R.; Major, B.; Epel, E.S. Why egalitarianism might be good for your health:
Physiological thriving during stressful intergroup encounters. Psychol. Sci. 2007, 18, 991–998. [CrossRef]

29. Hart, S.G. Nasa-Task Load Index (NASA-TLX); 20 Years Later. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2006, 50, 904–908.
[CrossRef]

30. Atkins, B.; Breanna, E.; Hoffmann, H.; Patel, K.; Schmit, C. Physiological Startle Response to Frightening Stimuli in Light and
Dark Environment. J. Adv. Stud. Sci. (JASS) 2019. Available online: http://digital.library.wisc.edu/1793/81996 (accessed on 28
January 2024).

31. Umer, W.; Yu, Y.; Fordjour Antwi Afari, M.; Anwer, S.; Jamal, A. Towards automated physical fatigue monitoring and prediction
among construction workers using physiological signals: An on-site study. Saf. Sci. 2023, 166, 106242. [CrossRef]

32. Greco, A.; Valenza, G.; Lanata, A.; Scilingo, E.P.; Citi, L. cvxEDA: A Convex Optimization Approach to Electrodermal Activity
Processing. IEEE Trans. Biomed. Eng. 2016, 63, 797–804. [CrossRef] [PubMed]

33. Posada-Quintero, H.F.; Bolkhovsky, J.B.; Qin, M.; Chon, K.H. Human Performance Deterioration Due to Prolonged Wakefulness
Can Be Accurately Detected Using Time-Varying Spectral Analysis of Electrodermal Activity. Hum. Factors 2018, 60, 1035–1047.
[CrossRef] [PubMed]

34. Dawson, M.E.; Schell, A.M.; Filion, D.L. The electrodermal system. In Handbook of Psychophysiology, 4th ed.; Cacioppo, J.T.,
Tassinary, L.G., Berntson, G.G., Eds.; Cambridge University Press: New York, NY, USA, 2017; pp. 217–243.

35. Sato, W.; Kochiyama, T.; Yoshikawa, S. Physiological correlates of subjective emotional valence and arousal dynamics while
viewing films. Biol. Psychol. 2020, 157, 107974. [CrossRef] [PubMed]

36. Wichary, S.; Mata, R.; Rieskamp, J. Probabilistic Inferences Under Emotional Stress: How Arousal Affects Decision Processes.
J. Behav. Decis. Mak. 2016, 29, 525–538. [CrossRef]

37. Rozemberczki, B.; Watson, L.; Bayer, P.; Yang, H.; Kiss, O.; Nilsson, S.; Sarkar, R. The Shapley Value in Machine Learning. arXiv
2022, arXiv:2202.05594.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1097/00006842-199609000-00007
https://www.ncbi.nlm.nih.gov/pubmed/8902896
https://www.statista.com/statistics/270860/urbanization-by-continent/
https://www.statista.com/statistics/270860/urbanization-by-continent/
https://doi.org/10.1016/j.atmosres.2015.08.016
https://doi.org/10.1016/j.buildenv.2015.07.032
https://doi.org/10.5812/intjsh.67153
https://doi.org/10.1007/978-1-4419-1005-9_13
https://doi.org/10.1109/CIC.2004.1442977
https://doi.org/10.3390/signals2040050
https://doi.org/10.1136/jech-2020-214274
https://doi.org/10.3390/s17102324
https://www.ncbi.nlm.nih.gov/pubmed/29023403
https://doi.org/10.1016/0005-7916(94)90063-9
https://doi.org/10.1002/9780470479216.corpsy0943
https://doi.org/10.1111/j.1467-9280.2007.02014.x
https://doi.org/10.1177/154193120605000909
http://digital.library.wisc.edu/1793/81996
https://doi.org/10.1016/j.ssci.2023.106242
https://doi.org/10.1109/TBME.2015.2474131
https://www.ncbi.nlm.nih.gov/pubmed/26336110
https://doi.org/10.1177/0018720818781196
https://www.ncbi.nlm.nih.gov/pubmed/29906207
https://doi.org/10.1016/j.biopsycho.2020.107974
https://www.ncbi.nlm.nih.gov/pubmed/33086090
https://doi.org/10.1002/bdm.1896

	Introduction 
	Literature Review 
	Understanding Microclimate and Its Effects 
	Urgency of Studying the Effects of Microclimates in the Context of Rapid Climate Change 
	Utility of Electrodermal Activity (EDA) Data in Research 

	Methodology 
	Collecting Electrodermal Activity (EDA) Data 
	Collecting Environmental Data 
	Data Collection—Self-Reported Measures 
	General State Assessment 
	Mental State Assessment 

	Validation of EDA Data of DIY EDA Sensors against Empatica E4 EDA Sensors 
	Investigating How the Environment Affects Physiological, Mental Health, and Productivity 

	Results 
	Preliminary Statistical Analysis 
	Predicting Subjective Data Using Random Forest Regressor with Environmental Variables as Inputs for High-Stress Windows 
	Result of Random Forest Regressor on Post Arousal 
	Result of Random Forest Regressor on Post-Stress 
	Result of Random Forest Regressor on Post Valence 

	Predicting EDA Features Using Random Forest Regressor with Environmental Variables as Inputs for High-Stress Windows 
	Result of Random Forest Regressor on Tonic Component (SCL) 
	Result of Random Forest Regressor on Time-Varying Index of Sympathetic Activity (TVSymp) 
	Result of Random Forest Regressor on Non-Specific Skin Conductance Responses (NSSCR) 
	Result of Random Forest Regressor on Time-Invariant Spectral Index of EDA (EDASymp [S2]) 

	Machine Learning Models Using EDA Data Features as Input and Environmental Variables as Output (Reverse Model) 
	Result of Random Forest Regressor on Temperature 
	Result of Random Forest Regressor on Carbon Dioxide Concentration 
	Result of Random Forest Regressor on Humidity 
	Result of Random Forest Regressor on Infrared Radiation (IR) 


	Discussion 
	Concluding Remarks 
	Appendix A
	References

