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Abstract: The 12-lead electrocardiogram (ECG) is crucial in assessing patient decisions. However,
portable ECG devices capable of acquiring a complete 12-lead ECG are scarce. For the first time,
a deep learning-based method is proposed to reconstruct the 12-lead ECG from Frank leads (VX,
VY, and VZ) or EASI leads (VES, VAS, and VAI). The innovative ECG reconstruction network called
M2Eformer is composed of a 2D-ECGblock and a ProbDecoder module. The 2D-ECGblock module
adaptively segments EASI leads into multi-periods based on frequency energy, transforming the 1D
time series into a 2D tensor representing within-cycle and between-cycle variations. The ProbDecoder
module aims to extract Probsparse self-attention and achieve one-step output for the target leads.
Experimental results from comparing recorded and reconstructed 12-lead ECG using Frank leads
indicate that M2Eformer outperforms traditional ECG reconstruction methods on a public database.
In this study, a self-constructed database (10 healthy individuals + 15 patients) was utilized for
the clinical diagnostic validation of ECG reconstructed from EASI leads. Subsequently, both the
ECG reconstructed using EASI and the recorded 12-lead ECG were subjected to a double-blind
diagnostic experiment conducted by three cardiologists. The overall diagnostic consensus among
three cardiology experts, reaching a rate of 96%, indicates the significant utility of EASI-reconstructed
12-lead ECG in facilitating the diagnosis of cardiac conditions.

Keywords: deep neural network; EASI lead system; electrocardiogram; 12-lead ECG reconstruction

1. Introduction

Heart disease is the leading cause of mortality worldwide [1]. Electrocardiogram
(ECG) monitoring serves as an effective means for the early detection of cardiovascular
disease [2]. In clinical practice, the 12-lead ECG plays a pivotal role in assessing and
guiding patient management decisions [3]. In order to record prolonged cardiac activity,
ambulatory ECG was introduced in 1961 [4]. However, due to its influence on daily life,
which stems from the number and placement of recording points and its relatively short
recording duration (most 20 to 48 h [5]), there is an urgent need for new measurement
methods to capture long-term cardiac activity.

The wearable ECG, while meeting long-term monitoring and comfort demands [6],
falls short of meeting clinical requirements as the standard 12-lead ECG. Existing wearable
ECG devices predominantly capture single leads (two electrodes [7] or optical sensors [8]) or
three-lead ECG (four electrodes [2] or five electrodes [9]). Compared with standard 12-lead
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ECG, wearable ECG offers limited intuitive cardiac information (as shown in Figure 1) and
is currently primarily used to diagnose arrhythmias [10–12]. To our knowledge, no specific
diagnostic standards have yet been established for wearable ECG in clinical practice. The
reconstruction of a standard 12-lead ECG from wearable ECG data can enhance the clinical
utility of wearable ECG. As a result, the reconstruction of 12-lead ECG from a reduced
number of leads has become a research hotspot.
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The theoretical foundation for the reconstruction of ECG was established by Frank [13–15]
and Dower et al. [9,16–18]. Frank et al. introduced the Frank-XYZ orthogonal spatial
vector ECG (VX, VY, and VZ) [13], but it is not suitable for dynamic cardiac monitoring.
Based on Frank et al.’s theory, Dower et al. proposed the EASI lead system (VES, VAS,
and VAI), which is suitable for dynamic acquisition, and theoretically demonstrated the
feasibility of reconstructing the 12-lead ECG using EASI leads [16]. As shown in Figure 1,
the EASI system consists primarily of four electrodes (E-A-S-I) that can capture three
bipolar leads (VES, VAS, and VAI), each containing information from both the transverse
and coronal planes. Notably, not all three-lead systems can reconstruct a 12-lead ECG. For
example, limb leads only contain information from the coronal plane and do not provide
the necessary information to derive chest leads, theoretically lacking the feasibility to
derive precordial leads [17,19,20]. Dower et al. introduced the “Dower universal transform”
method, which achieves a linear transformation of EASI data to derive 12-lead ECG using a
biased matrix [16]. Field et al. then enhanced the “Dower universal transform” coefficients
originally proposed by Dower et al. [18], and Nelwan et al. observed significant differences
between 12-lead ECGs reconstructed using improved EASI coefficients and the recorded
ones [21]. Similarly, Schreck et al. employed a straightforward nonlinear approach to
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construct a universal matrix to reconstruct missing leads [22,23]. The foundational leads
used to reconstruct the remaining 12 ECG leads initially included I, aVF, and V2 [22],
with subsequent work incorporating I, II, and V2 [23]. This method represents an ideal
“one-size-fits-all” solution but may not adapt well to interferences from factors such as
equipment, biological variations, and environmental conditions [24].

The least squares regression (LSR) method was used by Trobec et al. to estimate the
transformation to generate a 12-lead ECG from three differential leads (DLs) [25]. This
method yielded the best results in generating 12 leads from the three DLs proposed by the
authors, with an average correlation coefficient of 0.954. However, this method exhibited a
lower correlation coefficient of 0.71 in lead aVL, and the root mean square error reached
115.3 µV in lead V5. Their study aligns with the approach of Dower et al., resulting in
limited generalization capabilities. Mulyadi et al. proposed reconstructing the 12-lead ECG
using a segment-based approach (divided into P, QRS, and T segments) through LSR [26].
Unfortunately, abnormal ECG can exhibit phenomena such as P wave disappearance,
QRS-wave distortion, and low-amplitude T wave, which can cause reconstruction failure.
Despite attempts to use neural networks to synthesize ECG [27], including the application of
focused time-delay neural networks used for speech recognition to ECG reconstruction [28],
as reported in their results, the generalizability of ECG reconstruction has improved but
still requires further enhancement.

The EASI-lead ECG represents a simplified expression of cardiac status, while the
12-lead ECG provides a richer and more clinically informative representation. This result
is analogous to the task of machine translation, where understanding the semantics of
one language and translating it into another is required. The Transformer model and its
variants are currently among the state-of-the-art models in the field of machine translation.
Furthermore, they have also shown good performance in time-series forecasting [29–32].
With the assistance of attention mechanisms, they can uncover hidden pairwise temporal
dependencies between time points. Zhou et al. introduced the application of the Trans-
former model to the prediction of long sequence time series, using its attention mechanism
to capture long-term dependencies within the sequence [29]. However, it is challenging
for attention mechanisms to directly identify reliable dependencies from scattered time
points [31].

In this study, we analyze ECG signals from a multicycle perspective. Sinus ECG
exhibits quasiperiodic behavior. However, the conduction of abnormal cardiac electrical
activity is influenced by the current cardiac cycle and the increased excitability of ectopic
rhythm points or the reentrant excitement from the last cycle, presenting a multicycle
pattern. Consequently, the detected abnormal ECG signal results from the superimposition
of sinus rhythms and ectopic rhythms, exhibiting multicycle characteristics. However,
raw ECG sequences have a one-dimensional structure that captures changes only between
adjacent time points, making it challenging to explicitly extract both types of variation
simultaneously. We employ Fourier Transformation to dissect 1D time series into several
segments based on the ECG frequency composition, stacking them into a 2D structure.
At this juncture, the rhythms within each segment predominantly represent within-cycle
variations, whereas the variances in the ECG at identical positions across segments are
shaped by between-cycle variations. This enables us to represent within-cycle and between-
cycle variations concurrently in a 2D space, resulting in temporal 2D variations.

Motivated by the abovementioned considerations, we propose a multichannel-based
2D-variation ECG reconstruction network (M2Eformer). This network comprises two
primary modules as follows: the 2D-ECGblock and the ProbDecoder. With the support of
the 2D-ECGblock, M2Eformer can identify the multicyclic nature of ECG sequences and
fuse information into the attention-based ProbDecoder to achieve target leads. We evaluated
the algorithm’s performance in publicly available databases [33] using quantitative metrics
such as the Pearson coefficient r (Pr) and mean absolute error (MAE), as well as macro-
level evaluations provided by cardiologist annotations. Furthermore, regarding practical
application value, we collected synchronous EASI and 12-lead ECG from cardiac patients
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who required 12-lead ECG monitoring. We analyzed the consistency in the diagnoses made
by cardiac experts for the reconstructed and recorded 12-lead ECG.

As illustrated in Figure 1, this document establishes a mapping relationship between
EASI and the 12-lead ECG using the deep learning model M2Eformer.

• For the first time, a deep learning-based ECG reconstruction network is presented,
which deeply extracts latent cardiac information from EASI leads and reconstructs a
standard 12-lead ECG consistent with the diagnostic practices of cardiac experts. This
provides a feasible approach to the application of wearable ECG for clinical diagnosis.

• We propose a 2D-ECGblock module for the reconstruction network that transforms
time-domain signals into multiperiod 2D tensors based on spectral energy. This
module simultaneously extracts dependent information from both within-cycle and
between-cycle components in the ECG. Additionally, we designed the ProbDecoder
module, which employs a sparse attention mechanism to achieve ECG reconstruction
in a residual-like manner.

• We conducted a clinical diagnostic validation study of 25 cases using a 12-lead ECG
reconstructed from EASI leads. Next, focusing on four cardiac conditions, namely,
atrial fibrillation, atrial flutter, coronary artery disease, and myocardial infarction,
which require 12-lead ECG monitoring, three experts were invited to participate in a
double-blind diagnostic experiment comparing the reconstructed 12-lead ECG with
standard recorded ones. The overall consistency coefficient reached 96%.

The remaining parts of the paper are structured as follows: Section 2 outlines the
framework of this paper, encompassing the composition of the dataset, the network archi-
tecture, and the evaluation methodologies employed. Section 3 presents the results. Then,
Section 4 provides the discussion. Finally, Section 5 summarizes the conclusion.

2. Materials and Methods

The general framework of this study, as depicted in Figure 2, comprises three modules
as follows: data preparation, model construction, and results analysis. The aim is to
reconstruct a standard 12-lead ECG using EASI leads (VES, VAS, and VAI). The following
two databases were used in this research: a publicly available database (Frank-XYZ +
12-lead ECG) [33] and a self-constructed database (EASI leads + 12-lead ECG), each serving
different experimental purposes including the algorithm comparison experiment (Task 1)
and the EASI practicality analysis experiment (Task 2).

To construct the M2Eformer model, we initially calculated the correlation coefficient
distribution between input signals (VX, VY, and VZ, or VES, VAS, and VAI) and target signals
on the training set. The lead with the highest correlation was selected as the input for the
corresponding ProbDecoder model. Subsequently, we used M2Eformer to reconstruct the
12-lead ECG. Finally, a results analysis was conducted. The details of each component are
further elaborated below.

2.1. Databases

In this study, we used the publicly available PhysioBank Physikalisch-Technische
Bundensanstalt Diagnostic (PTB-DN) ECG database [33] to compare the performance of the
Task 1 algorithm. The main reasons for this choice are as follows: 1. the PTB-DN database
includes synchronous Frank-XYZ leads and standard 12-lead ECG, with Frank-XYZ leads
forming the theoretical basis for EASI; 2. the PTB-DN database is the largest publicly
available database known to contain both synchronous Frank-XYZ leads and standard
12-lead ECG, comprising 549 records from 290 subjects; and 3. many previous studies on
ECG reconstruction have also utilized this database [16,22,23,27,28], which facilitates our
algorithm comparison experiments.
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Figure 2. The research framework of this paper. Data1 (Frank-XYZ and 12-lead ECG) was employed
to optimize the M2Eformer model and to conduct a comparative performance analysis with prior
algorithms. Subsequently, M2Eformer was validated on Data2 to ascertain the reliability of the
12-lead ECG reconstructed from EASI leads for clinical diagnosis.

PTB-DN data were sampled at a rate of 1000 Hz with a 16-bit resolution, and the
least significant bit represented 0.5 µV. Before use, all ECG records were preprocessed
in 8 s windows, involving a 50 Hz notch filter and 20th-order polynomial filtering to
eliminate powerline noise and baseline drift. In order to eliminate the influence of high-
frequency noise, local regression smoothing filtering was applied with a smoothing window
of 10 sample points. Furthermore, despite preprocessing, some records still contained
significant artifacts (ECG drowned by noise or existing severe wandering baseline) or
missing information (missing leads or diagnostic information) and were excluded from
this study. The data composition used for the algorithm evaluation is detailed in Table 1.

Table 1. Details of the PTB-DN database. The ratio of training to validation to test sets: 3:1:1.

Training Validation Test Total

Healthy controls 35 11 11 57
Myocardial infarction 127 43 43 213
Bundle branch block 7 2 2 11

Myocardial hypertrophy 6 2 2 10
Valvular heart disease 2 1 1 4

Cardiomyopathy 4 1 1 6
Total 183 61 61 305

Among these, each category of ECG records was roughly divided into training, valida-
tion, and test sets in a ratio of approximately 3:1:1 [29,34]. It should be noted that the data
for the training and test sets were strictly derived from different individuals.
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In order to validate the reliability of the 12-lead ECG reconstructed by EASI for
monitoring purposes, Task 2 involved the collection of synchronized EASI leads (VES, VAS,
and VAI) and standard 12-lead ECG. As depicted in Figure 1, thirteen electrodes were
attached to the patient’s body, where ten electrodes were used to capture the 12-lead ECG,
and four electrodes, with one overlapping electrode A and V6, were utilized for capturing
EASI leads (VES = VE − VS, VAS = VA − VS, and VAI = VA − VI). Heart disease patients were
arranged for ECG collection at the First Affiliated Hospital of Nanjing Medical University.
As shown in Table 2, the types of heart diseases among the patients included atrial flutter
(1 case), atrial tachycardia (2 cases), myocardial infarction (3 cases), and coronary heart
disease (9 cases). There were also ten healthy participants from Nanjing Medical University.
Data were collected using medical equipment (NaLong RAGE-18P) with a sampling rate of
1000 Hz. Healthy individuals were monitored for 10 min, while patients were monitored
for 5 min. It is important to emphasize that the selected types of heart disease required joint
assessment using a 12-lead ECG. Ethics approval was obtained from the Nanjing Medical
University Ethics Committee.

Table 2. Details of the EASI database. The ratio of the training to test sets is 4:1.

Age ± Std Training Test Total

Healthy controls 26.2 ± 7.2 8 2 10

Atrial flutter 73

12 3 15
Atrial tachycardia 76.5 ± 7.5

Myocardial infarction 66.2 ± 7.9
Coronary heart disease 59.3 ± 17.6

Total 50.5 ± 22.2 20 5 25

2.2. Multichannel 2D-Variation ECG Reconstruction Network (M2Eformer)

Figure 3 illustrates the network architecture of the proposed 12-lead ECG reconstruc-
tion model. M2Eformer consists of two modules, namely, the 2D-ECGblock and the Prob-
Decoder module. In the 2D-ECGblock module, the ECG data are adaptively transformed
into a 2D representation based on frequency domain energy, thus enabling simultaneous
extraction of within-cycle and between-cycle variations. In the ProbDecoder module, initial
sparse-attention calculations are performed on the input signal (Max Correlation Lead)
to extract relevant information from the ECG. Subsequently, in the Encoder–Decoder At-
tention layer, the extracted data are fused, providing the foundational knowledge for the
reconstruction of target leads.

As shown in Figure 3, the input to M2Eformer consists of a three-lead ECG represented
by VX, VY, and VZ. For a cardiac sequence of length L, the original 1D structure is denoted as
X1D ∈ RL × 3. The collected ECG vectors represent the projection of the vectorcardiography
at that moment onto the coordinate axes of the electrodes and the cardiac dipole. Therefore,
to extract cardiac information at time t, we designed the multichannel fusion layer, and the
computational method is as follows:

Xdmodel
1D = Conv1d3×3

(
XEin

1D

)
(1)

By mapping the original three-channel ECG into a high-dimensional vector Xdmodel
1D

and simulating the distribution of vectorcardiograms at time t, we enhanced the model’s
generalization capability.
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Figure 3. Schematic illustration of the 12-lead ECG reconstruction. Max correlation lead refers to the
lead exhibiting the highest correlation with the target lead among the three input leads, as statistically
determined based on the training set.

In order to capture between-cycle variations in the ECG sequences, it is essential to first
identify their periods. Inspired by the work of Hu et al. [34], we designed the adaptive 2D
unfolding module, referred to as the 2D-ECGblock. This method utilizes the Fast Fourier
Transform to identify the highest m frequency bands with the highest energy in the ECG
sequence, as shown below:

A f∗ = Amp
(

FFT
(

Xdmodel
1D

))
, f∗ ∈ {1, · · · , L/2} (2)

{ f1, · · · , fm} = Top
(

Avg
(

A f∗

))
(3)

pi =
T
fi

, i ∈ {1, · · · , m} (4)

In the above context, FFT(·) represents the Fast Fourier Transform, and Amp(·) is
used for the calculation of the amplitude. A f∗ denotes the amplitudes calculated for each
frequency band, and their mean across the dmodel dimensions is obtained through the Avg(·)
function. Given the sparsity in the frequency domain, we sought to avoid the noise impact
of irrelevant high frequencies; thus, we selected only the top m amplitudes, obtaining the
most significant frequency bands {f 1, . . ., fm} along with their corresponding amplitudes{

A f1 , · · · , A fm

}
. These selected frequency bands correspond to the durations of k period

lengths {p1, . . ., pm}. Due to the conjugate symmetry in the frequency domain, we only use
frequencies within the {1, . . ., L/2} range. Based on the selected period lengths {p1, . . ., pm}
and frequencies {f 1, . . ., fm}, we can reconstruct the 1D time sequence X1D ∈ RT×dmodel into
a 2D tensor using the following formula:

Xi
2D = Reshape2D, pi , fi

(
Padding

(
Xdmodel

1D

))
, i ∈ {1, · · · , m} (5)

In the above formula, Padding(·) extends the time sequence by padding zeros along
the time dimension to evenly divide Xdmodel

1D into fi segments along the time dimension.
Next, pi and fi represent the number of rows and columns in the resulting 2D tensor
after transformation, where each row represents between-cycle variation and each column
represents within-cycle variation. Xi

2D ∈ Rpi× fi×dmodel is the i-th 2D tensor obtained based
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on frequency fi. After transformation, an efficient Inception block was applied [35] to
process the 2D tensor, denoted as Inception(·). In our implementation of Inception(·), we
include 2D convolution kernels of three scales including 1, 3, and 5. The calculation formula
is as follows:

X̂i
2D = Inception

(
Xi

2D

)
, i ∈ {1, · · · , m} (6)

The Inception(·) module here is shared among m layers of Xi
2D tensors to improve

parameter efficiency.

Finally, we need to transform the
{

X̂1
2D, · · · , X̂m

2D

}
back into 1D representations for

the next layer and perform information fusion. Inspired by Wu et al. [31], the amplitude
of each frequency band reflects its relative importance. Here, we base the fusion on the
transformed m 1D tensors after amplitude-based fusion. The formula is as follows:

X̂i
1D = Reshape1D, pi , fi

(
X̂i

2D

)
, i ∈ {1, · · · , m} (7)

XEout
1D =

m

∑
i=1

Â fi
× X̂i

2D, Â f∗ = Softmax
(

A f1 , · · · , A fm

)
(8)

Due to the within-cycle and between-cycle dependency information encapsulated
in the m highly structured 2D tensors, the 2D-ECGblock can extract multiscale temporal
2D variations through the Inception module. Compared with the original Transformer,
which obtains interelement dependencies through attention mechanisms, the 2D-ECGblock
enables more efficient representation learning.

The ProbDecoder has two input components. The first part of the input consists of
one of the Frank-XYZ leads (VX, VY, and VZ). In the training dataset, we computed the Pr
between the Frank-XYZ leads and the target lead, as shown in Figure 4. When training the
corresponding model, the lead from VX, VY, or VZ with the highest correlation coefficient
to the target lead is selected as the input for the ProbDecoder. According to the statistical
results in Figure 4, the final correspondence for the ProbDecoder input is as follows: I-X,
II-Y, III-Y, aVR-X, aVL-X, aVF-Y, V1-Z, V2-Z, V3-Z, V4-Z, V5-X, and V6-X. From the graph,
it can be observed that the leads with the highest correlation are negatively correlated
with the standard 12 leads, specifically aVR, V1, V2, V3, and V4. This is because aVR-X,
V1-Z, V2-Z, V3-Z, and V4-Z represent vectors located on the opposite side of the heart with
opposite polarities.
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First, we encode the input XDin
1D for the ProbDecoder:

Q, K, V = Linear
(

Conv1d
(

XDin
1D

))
(9)

where Q, K, and V, respectively, represent the query, key, and value matrices in the Trans-
former, with K being the same size as Q (LK = LQ = L). Since the input ECG for the
ProbDecoder itself is sparse, with a small portion of physiologically significant cardiac
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signals and a larger portion of baseline signals, we were inspired by Zhou et al. [29] to
propose a Probsparse self-attention calculation for the encoded cardiac data. Q only needs
to perform dot products with ln(LK) key matrices randomly, and the remaining LK–ln(LK)
pairs are filled with zeros. The calculation process is as follows:

x1
1
...

x1
L

0 · · · 0
...

. . .
...

0 · · · 0

xL
1
...

xL
L

 = Padding
(
Q × Kln LK

)
(10)

Q =


q1

1 · · · qdmodel
1

...
. . .

...
q1

LQ
· · · qdmodel

LQ

, K =


k1

1 · · · kdmodel
1

...
. . .

...
k1

ln LK
· · · kdmodel

ln LK

 (11)

In the computed L × L matrix, only ln(L) columns have numerical values. Therefore,
in the ProbDecoder, self-attention only needs to calculate O(L × ln(L)) dot products. Max-
mean measurements are performed on the computed L × L matrices:

Mh = max
{

x1
h, · · · , xL

h

}
− 1

L

L

∑
j=1

xj
h, h ∈ {1, · · · , L} (12)

Next, based on the sorting of {M1, · · · , ML}, we select the top-u
{

x1
u, · · · , xdmodel

u

}
vectors of Q to form Q, where u = C × ln L.

Here, C is a hyperparameter, and it was chosen as C = 5 based on results from [29].
The self-attention matrix computed for the sparse matrix Q, K, and V, is also sparse, with
the remaining rows of the V matrix filled with the mean of that row. This approach helps
to emphasize the importance of the positions, where the ECG waveforms are located while
reducing the model’s focus on baseline waveforms. The final Probsparse self-attention
matrix still has a size of L × L, which is calculated as follows:

Attention =

{
Softmax

(
QKT

√
dmodel

)
V, Mean(V)

}
(13)

As mentioned above, periodic variations are extracted from the VX, VY, and VZ
three-lead ECG signals through the 2D-ECGblock. Based on this information, we perform
attention mechanism calculations in the Encoder–Decoder layer and correct central ECG
waveforms in the value matrix, achieving reconstruction of the target lead electrocardio-
gram in a residual-like manner. Therefore, based on this attention calculation, a new value
matrix V is computed as follows:

V̂ = Norm
(

Attention + XDin
1D

)
(14)

Q̂, K̂ = Linear
(

Conv1d
(

XEout
1D

))
(15)

The second part of ProbDecoder’s input is the output XEout
1D from the 2D-ECGblock.

After a linear transformation, new query Q and key K matrices are obtained. The ECG
waveform correction is performed in the Encoder–Decoder Attention layer, and after
passing through a feedforward layer and a linear layer, the target lead ECG is obtained
as follows:

Target = Linear

(
Feed

(
Softmax

(
Q̂K̂T

√
dmodel

)
V̂

))
(16)



Bioengineering 2024, 11, 293 10 of 20

In order to ensure that the training process of each lead ECG reconstruction net-
work does not interfere with each other, we trained 12 separate M2Eformer models, each
dedicated to reconstructing the corresponding lead ECG signal.

2.3. Evaluation

Based on previous research, we used the Pearson coefficient r (Pr) and the mean value
of absolute error value (MAE) to quantify the differences between the predicted ECG leads
and the recorded leads. Pr measures the degree of linear correlation between two sets of
data, variables X and Y, and is calculated as follows:

Pr =

n
∑

i=1

(
Xi − X

)(
Yi − Y

)
√

n
∑

i=1

(
Xi − X

)2
√

n
∑

i=1

(
Yi − Y

)2
(17)

where X represents the reconstructed ECG leads, Y represents the recorded ECG leads, and
n denotes the duration of each record.

MAE provides a better reflection of the actual amplitude error in the reconstructed
ECG, with smaller values indicating greater reconstruction precision. It is calculated
as follows:

MAE =
1
n

n

∑
i=1

|Xi − Yi| (18)

3. Results
3.1. A Comparison of Training Results

The proposed M2Eformer model employs an attention-based Transformer architecture.
It utilizes a single layer of the 2D-ECGblock module as the Encoder and a single layer of
the ProbDecoder module as the Decoder. The embedding dimension was set to 512. We
initially conducted grid search experiments on the PTB-DN validation set with epochs of
100 and 200, and learning rates of 0.001, 0.0001, and 0.00001. An epoch of 100 and a learning
rate of 0.0001 were selected, taking into account both training speed and reconstruction
performance. Subsequent experiments were conducted on the validation set to evalu-
ate various configurations, including the number of layers in the 2D-ECGblock module
(0, 1, and 2 layers) and the ProbDecoder module (1, 2, and 4 layers), as well as different
embedding dimensions (64, 256, and 512). Based on these tests, we ultimately selected a
setup with one layer for the 2D-ECGblock module, one layer for the ProbDecoder module,
and an embedding dimension of 512. The batch size for training was set to 200, determined
by the GPU’s memory capacity of 24 G. To prevent model overfitting and enhance the
generalization capability of the training model, we employed the Dropout function as the
regularization method, with the dropout rate set to 0.1. The training process utilized the
Adam optimizer and the MSE (Mean Squared Error) Loss function [30–32,34].

The loss curves on the validation set are depicted in Figure 5, where gray represents the
original Transformer, blue represents the T-Transformer, which embeds the 2D-ECGblock
into the Transformer while keeping the Decoder unchanged, and red represents the pro-
posed M2Eformer.

From Figure 5, we can observe that in leads aVR, aVL, V1, and V4, the proposed
M2Eformer achieves a lower validation loss in the validation set, significantly outperform-
ing both the Transformer and T-Transformer. With other leads, the convergence results are
relatively close. The minimum validation loss values and their corresponding best epochs
for each of the three models are listed in Table 3. As indicated in Table 3, the proposed
M2Eformer has a slightly higher validation loss on lead V5 compared with the Transformer
(0.0001) but achieves better or consistent results on the remaining leads. Moreover, Figure 5
demonstrates that M2Eformer does not exhibit a noticeable overfitting phenomenon in all
leads despite its slower convergence compared with the other two frameworks.
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Table 3. Best epoch and minimal validation loss for M2Eformer, T-Transformer, and Transformer.

Model
Best Epoch/Min Loss

I II III aVF V2 V3 V5 V6

M2Eformer 64/0.0027 98/0.0009 97/0.0022 98/0.0008 55/0.0229 74/0.0215 66/0.0050 85/0.0016
T-Transformer 12/0.0028 70/0.0010 91/0.0024 95/0.0009 93/0.0236 10/0.0219 94/0.0054 66/0.0027
Transformer 18/0.0027 51/0.0010 97/0.0038 70/0.0009 28/0.0243 10/0.0215 15/0.0049 89/0.0016

In Figure 5, when comparing the validation loss between the Transformer and the
T-Transformer, we notice that the Transformer exhibits a more pronounced overfitting
issue (especially in leads aVR, V2, and V4). The cause of overfitting may be attributed to
the attention mechanism in the encoder failing to capture reliable temporal dependencies
within the signal [31]. Our parameter analysis revealed that the total number of parameters
in the Transformer (4.2 million) is smaller than that in the T-Transformer (13.4 million). This
result suggests that the phenomenon of overfitting is not caused by excessively large model
parameters, further confirming the effectiveness of the 2D-ECGblock in extracting hidden
cardiac information.

3.2. ECG Reconstruction Effect Comparison

To validate the performance of M2Eformer, we compared it with various algorithms
using two key metrics including Pr and MAE. The algorithms compared included Trans-
former, T-Transformer, as well as algorithms mentioned in previous studies, such as Linear
transformation [16,22,23] and least squares regression (LSR) [25]. We also included the
commonly used Long Short-Term Memory (LSTM) network for comparison in time series
tasks [36–38].

The results demonstrate that several methods used in the experiments can reconstruct
the 12-lead ECG, with superior overall performance achieved by deep learning-based
approaches. Tables 4 and 5 present the Pr and MAE between the reconstructed ECG and
the recorded ECG obtained using these six algorithms in the test dataset, where the ratio of
training, validation, and testing was set at 3:1:1.

Table 4 reveals that the proposed M2Eformer exhibits the best overall reconstruction
performance for the 12-lead ECG (total Pr = 0.8785), followed by the T-Transformer (total
Pr = 0.8579). M2Eformer surpasses the Transformer in performance across leads II-V1 and
V3-V6 for each lead, underscoring the efficacy of the 2D-ECGblock.
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Table 4. Pearson’s correlation r (Pr) in test dataset.

Model I II III aVR aVL aVF V1 V2 V3 V4 V5 V6 Total

M2Eformer
(ours) 0.8465 0.9588 0.7817 0.8921 0.8447 0.8321 0.9105 0.8930 0.9420 0.8641 0.8554 0.9215 0.8785

M2Eformer
(ours) 0.8441 0.9207 0.7496 0.8534 0.7875 0.8647 0.8932 0.9052 0.9220 0.8409 0.8326 0.8814 0.8579

Transformer 0.8568 0.9063 0.6705 0.7983 0.7036 0.8748 0.8865 0.9133 0.9217 0.7883 0.7895 0.9004 0.8342
LSTM 0.6573 0.6357 0.4625 0.6181 0.6273 0.6366 0.7009 0.5212 0.5600 0.5341 0.5612 0.6926 0.6006
LSR 0.8507 0.8266 0.5891 0.9224 0.6456 0.6741 0.9015 0.8835 0.9516 0.8552 0.8594 0.9621 0.8268

Linear 0.8087 0.9485 0.6381 0.8642 0.6155 0.8534 0.9068 0.8795 0.9440 0.7759 0.6735 0.9220 0.8192

Table 5. Mean absolute error (MAE) in test dataset.

Model I II III aVR aVL aVF V1 V2 V3 V4 V5 V6 Total

M2Eformer
(ours) 0.0399 0.0215 0.0395 0.0266 0.0370 0.0241 0.0619 0.1044 0.0815 0.0730 0.0629 0.0406 0.0511

M2Eformer
(ours) 0.0401 0.0260 0.0368 0.0316 0.0465 0.0252 0.0632 0.0972 0.0879 0.0827 0.0688 0.0465 0.0544

Transformer 0.0380 0.0265 0.0430 0.0343 0.0474 0.0241 0.0638 0.1003 0.0933 0.1045 0.0635 0.0457 0.0570
LSTM 0.0479 0.0576 0.0507 0.0488 0.0373 0.0464 0.0789 0.1410 0.1403 0.1147 0.0853 0.0620 0.0759
LSR 0.0352 0.0422 0.0491 0.0234 0.0401 0.0487 0.0517 0.0980 0.0655 0.0756 0.0570 0.0311 0.0515

Linear 0.0516 0.0212 0.0470 0.0322 0.0478 0.0257 0.0432 0.0753 0.0582 0.0954 0.0997 0.0358 0.0528

Although LSR achieves the highest Pr in a few leads (aVR, V3, V5, V6), the average
correlation coefficient in leads III, aVL, and aVF is less than 0.7. This finding indicates that
the ECG reconstructed by LSR in leads III, aVL, and aVF deviates significantly from the
recorded ECG (as shown in Figure 6), especially in lead III, where the amplitude difference
in the S wave reaches 1mV. This divergence could potentially lead to a misdiagnosis
(e.g., patients with reduced ECG amplitudes suggestive of myocardial injury in cases of
coronary artery disease).
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The MAE can characterize the actual errors in the predicted values, with smaller values
indicating a smaller amplitude difference between the reconstructed ECG and the recorded
ECG. In Table 5, M2Eformer only exhibits the lowest MAE in a few leads (aVL, aVF, V4).
However, its overall MAE to reconstruct the 12-lead ECG is the lowest (total MAE = 0.0511).
Although the Linear method achieves the lowest MAE in leads II, V1-V3, its performance
in terms of Pr in Table 4 is not outstanding. This is because the Linear method better fits
the waveforms with larger amplitudes (Q and S waves) in these four leads. As depicted
in Figure 7, the amplitudes of the R and S waves reconstructed in leads III and aVL for
Linear assessment differed significantly. This result can also result in a misdiagnosis by
cardiologists (e.g., diagnosing coronary artery disease as myocardial injury).
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in the test dataset. (The same segment of the ECG is shown in Figure 6.)

In general, considering the results in Tables 4 and 5, M2Eformer achieves the best
overall performance in reconstructing the 12-lead ECG, and the T-Transformer shows
improvement compared with the original Transformer. This result demonstrates that the
2D-ECGblock meets our expectations for effectively extracting ECG information.

Figure 8 presents box plots of Pr in the test set for the Transformer, the T-Transformer,
and M2Eformer. The mean Pr for each lead in Table 4 is also represented in the figure as
squares (□). In Figure 8, M2Eformer shows a more concentrated Pr distribution in most
leads (II, III, aVR, aVL, and V3-V6), with higher mean and median values. This result
indicates that the ECG reconstructed by M2Eformer shows more consistent waveform
changes (synchronously rising and falling) with the recorded ECG.

The Transformer performs better in lead I, but compared with the other two algorithms,
it does not show statistically significant differences at a confidence level of p = 0.05. The
Transformer only shows statistically significant superiority (higher mean) in leads aVF
and V2. By comparing the Transformer and M2Eformer training processes (Figure 5 and
Table 3), we observe that M2Eformer achieves a lower loss in the validation set and does
not exhibit overfitting. We believe that this might be due to the limited size of the validation
dataset, which may not fully reflect the real training process.
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In summary, Figure 8 further demonstrates the superior performance of M2Eformer.
The performance of M2Eformer in reconstructing the ECG is shown in Figure 9. This

segment (1.25 s) of the ECG data was collected from a patient with a myocardial infarction.
The red line represents the reconstructed ECG, while the black line represents the recorded
ECG. We presented a 10 s segment containing this ECG snippet to a cardiac specialist for
diagnosis. The diagnosis based on the reconstructed ECG (red line) indicates “old anterior
myocardial infarction (V1-3 leads exhibit QS morphology)” and “lateral myocardial ischemia
(ST-segment depression in leads I, V5-6)”. The diagnosis based on the recorded ECG (black
line) is “anterior myocardial injury (poor R-wave progression in V1-3 leads)” and “lateral
myocardial ischemia (ST-segment depression in leads I, V5-6)”. Among them, “old anterior
myocardial infarction” and “anterior myocardial injury” correspond to the same cardiac injury,
but the expression is different. In the reconstructed ECG, there is a noticeable discrepancy in the
0.5–1 s region of leads V2 and V3 compared with the recorded ECG. However, these differences
are mainly in terms of amplitude, with their waveforms being nearly synchronous, indicating
that M2Eformer captures the periodic variations in the ECG signal and reflects them in the
output. However, there is room for improvement in M2Eformer in terms of the extraction and
representation of waveform amplitude information.
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In the test dataset, we performed an analysis of the consistency between the diagnostic
results of the reconstructed ECG and the recorded ECG, as shown in Table 6. We selected
10 s ECG segments that demonstrated the highest average Pr between the reconstructed
and recorded 12-lead ECG on that record, resulting in 61 segments of reconstructed ECG
and 61 segments of recorded ECG. Diagnostics were performed using a double-blind
method. When the diagnostic results of the recorded ECG and the reconstructed ECG for
the same segment were consistent with the cardiologists, we considered the reconstructed
ECG to have no impact on clinical diagnosis. Overall agreement (OvA) is a method used to
assess the consistency in diagnoses among three experts. For example, in the case of the
reconstructed and recorded ECG segments, if two experts arrive at the same diagnostic
conclusion, the segment is considered to have consistent OvA, even if the third expert’s
diagnosis diverges.

Table 6. Diagnostic results from the cardiologists in the test dataset.

Data
Cardiologist 1 Cardiologist 2 Cardiologist 3 Overall Agreement (OvA)

CS/AS PoC CS/AS PoC CS/AS PoC CS/AS PoC

Healthy controls 9/11 81.8% 9/11 81.8% 10/11 90.9% 9/11 81.8%
Myocardial infarction 41/43 95.3% 41/43 95.3% 39/43 90.7% 43/43 100%

Dysrhythmia 2/2 100% 2/2 100% 2/2 100% 2/2 100%
Bundle branch block 2/2 100% 2/2 100% 2/2 100% 2/2 100%

Myocardial hypertrophy 1/1 100% 1/1 100% 1/1 100% 1/1 100%
Valvular heart disease 1/1 100% 1/1 100% 0/1 0% 1/1 100%

Cardiomyopathy 1/1 100% 1/1 100% 1/1 100% 1/1 100%
Total 57/61 93.4% 57/61 93.4% 55/61 90.2% 59/61 96.7%

AS: all sample; CS: consistent sample; PoC, percentage of consistency.

As shown in Table 6, the percentage of consistency for cardiologist 1 was 93.4%, for
cardiologist 2 was 93.4%, and for cardiologist 3 was 90.2%. We calculated the overall
consistency among the three experts, which reached 96.7%, with only two cases of inconsis-
tency among the diagnoses of healthy individuals; the reasons for these inconsistencies are
examined in the Section 4.

3.3. EASI Leads to 12-Lead ECG

In order to further validate the reliability of the 12-lead ECG reconstruction through
the EASI lead configuration for monitoring purposes, we conducted simultaneous data
collection of EASI leads and standard 12-lead ECG. Furthermore, to comply with clinical
requirements, we selected patients with various cardiac conditions that require a combined
12-lead diagnosis. Ultimately, we obtained effective ECG data from 10 healthy individuals
and 15 patients, including those with atrial fibrillation, atrial flutter, coronary artery disease,
and myocardial infarction. Moreover, due to the limited sample size, we employed 5-
fold cross-validation for our analysis. The hyperparameters of the M2Eformer model
(epoch = 100, learning rate = 0.00001, batch size = 200) remained unchanged.

The experimental results are presented in Figure 10, where (a) shows the histogram
distribution of Pr between the reconstructed ECG and recorded ECG, (b) displays the
boxplot distribution of Pr and MAE between the reconstructed ECG and recorded ECG,
and (c) illustrates the consistency results of the annotations by cardiac experts for the
reconstructed ECG and recorded ECG.
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Figure 10. Comparison of the 12-lead reconstructed ECG with EASI vs. the recorded signal. (a) The
histogram distribution of Pr; (b) median (interquartile range) of Pr and MAE; and (c) expert labeling
results. (In-CS: inconsistent, CS: consistent, OvA: overall agreement). OvA is a method used to
analyze the consistency in diagnostic outcomes among three experts as a majority voting mechanism.

Figure 10a reveals that in more than half of the leads (lead I, aVR, V2, V4, V5, and V6),
the proportion of Pr greater than 0.8 exceeds 90%. Among the remaining leads, in leads II,
aVF, and V3, more than 80% of the Pr values are greater than 0.8, while in leads III, aVL,
and V1, the proportion of Pr values exceeding 0.8 is around 70%. Combining Figure 10a,b,
we observe that in more than half of the leads (lead I, II, aVR, aVF, and V2–V6), the median
Pr exceeds 0.9, with even lead V1 having a median Pr of 0.9044. Although Figure 10b shows
that the median Pr values for leads III and aVL are below 0.9, their median MAE values are
0.0326 and 0.0302 mV, indicating small differences in amplitude.

We engaged three cardiologists to annotate the reconstructed ECG and the recorded
ECG for a macro evaluation. We selected 10 s ECG segments for each record, comprising
25 segments of reconstructed ECG and 25 segments of recorded ECG. The diagnostic re-
sults are shown in Figure 10c, with individual diagnosis consistency rates of 96%, 96%,
and 92% for the three experts. Notably, among them, inconsistent samples from cardiol-
ogist 2 and cardiologist 3 are interlaced. Importantly, the samples identified as In-CS by
cardiologists 1 and 2 are identical, indicating that the OvA classification for this particular
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sample is marked as In-CS. Conversely, the samples identified as In-CS by cardiologist 3 do
not overlap with those deemed In-CS by cardiologists 1 and 2, thereby not impacting the
final OvA analysis. Therefore, the OvA among the diagnostic results from three cardiac
experts achieved 96% (24/25).

In Figure 10c, for the only sample with In-CS OvA outcomes, the reconstructed
ECG interpretations varied as follows: healthy individuals with variants or old anterior
interwall myocardial infarction (cardiologist 1), coronary heart disease (cardiologist 2),
and healthy (cardiologist 3). Conversely, the recorded ECG was unanimously classified as
healthy by all three cardiologists. This ECG was obtained from a patient who had returned
to sinus rhythm following ablation for atrial flutter. Therefore, in this study, there is a
certain discrepancy between the reconstructed and recorded 12-lead ECG. Nonetheless, the
high consistency observed in the one-versus-all (OvA) outcomes (96%) underscores the
substantial adjunctive value of EASI-reconstructed 12-lead ECGs in the clinical diagnosis
of atrial fibrillation, atrial flutter, and coronary artery disease.

4. Discussion

This study is the first of its kind to propose a deep learning-based ECG reconstruc-
tion network that reconstructs 12-lead ECG from EASI leads, enabling EASI leads to
help diagnose a wider range of cardiac diseases. In this study, the designed novel ECG
reconstruction network involves the following key components: 1. the 2D-ECGblock,
which simultaneously extracts within-cycle and between-cycle dependencies from input
ECG, and 2. the ProbDecoder, which is a carefully designed generation component using
Probsparse self-attention mechanisms to achieve residual-like ECG reconstruction. Fur-
thermore, we conducted clinical diagnostic validation of the reconstructed 12-lead ECG on
our self-established database. The diagnostic results of the cardiologists indicate that the
EASI-reconstructed 12-lead ECG has the potential to assist in the diagnosis of atrial flutter,
atrial fibrillation, coronary artery disease, and myocardial infarction. Conversely, the use of
EASI leads in isolation offers minimal assistance in the diagnosis of these four conditions.

Linear regression (Linear) [15–18] and least square regression (LSR) [15,25,26] are
commonly used methods for the reconstruction of 12-lead ECG. Attention-based deep
learning networks have achieved promising results in time-series prediction tasks [29–32].
Consequently, this study presents M2Eformer, a novel attention-based model for 12-lead
ECG reconstruction, and conducts a comprehensive performance comparison with tradi-
tional methods, including Linear and LSR, widely utilized in prior research. The results in
Tables 4 and 5 and Figures 6 and 7 demonstrate that the proposed M2Eformer outperforms
LSR and linear methods in the overall performance of Frank-XYZ reconstruction of 12 leads
on the PTB-DN database. In Table 4, M2Eformer performs best in the reconstruction of
the ECG for most leads, although its performance is slightly lower than that of LSR in
the reconstruction of the aVR, V3, V5, and V6 leads. In future studies, the complexity
of the parameters required for each lead’s reconstruction can be explored. Additionally,
the dataset can be further expanded to optimize the M2Eformer model and enhance the
reconstruction performance of each lead model.

In Table 6, there were differing opinions among the three cardiologists regarding the
annotations for two healthy individuals. For the first inconsistent sample, the cardiologists
provided different annotations for the reconstructed ECG including bundle branch block
(cardiologist 1) and healthy (cardiologists 2 and 3). However, their annotations for the
recorded ECG were myocardial infarction (cardiologist 1), incomplete right bundle branch
block (cardiologist 2), and healthy (cardiologist 3). According to the PTB-DN database
records, this ECG was collected from a healthy individual. The inconsistency in the di-
agnostic results for this sample is primarily attributed to cardiologist 2’s interpretation
of the recorded ECG as RBBB, due to a significant error in the diagnosis by cardiologist
1 for this sample. In the second inconsistent sample, the cardiologists provided different
annotations for the reconstructed ECG including possible high lateral myocardial ischemic
injury (cardiologist 1), myocardial ischemia (cardiologist 2), and possible myocardial injury
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(cardiologist 3). However, their annotations for the recorded ECG were possible myocar-
dial ischemic injury (cardiologist 1) and healthy (cardiologists 2 and 3). According to the
database records of the PTB-DN, this ECG was also obtained from a healthy individual.
Based on the comprehensive annotations of the three experts, the reconstructed ECG was
annotated as “myocardial injury” (indicating myocardial infarction), while the recorded
ECG was annotated as “healthy”. The diagnostic inconsistencies observed in this sam-
ple may stem from the data imbalance within the PTB-DN database, characterized by a
discrepancy between myocardial infarction cases (213) and healthy individuals (57). This
imbalance, favoring myocardial infarction instances, might have led to the inadvertent inte-
gration of myocardial infarction-related features into the reconstructed ECG, culminating
in erroneous annotations.

The primary limitation of the proposed model is that the loss function employs a
generic calculation method and does not adjust specifically for abnormal ECG waveforms,
such as incorporating the error between the R waves of the reconstructed and recorded
ECG into the training loss for backpropagation. Another limitation of this study is the
relatively small sample size of our self-constructed database, and the issue of data balance
needs further resolution. In our subsequent work, we will address this issue by collecting a
more diverse range of clinical data.

5. Conclusions

This paper explores the clinical diagnostic value of using 12-lead reconstructed ECG
through EASI leads for wearable ECG monitoring. A novel network architecture de-
signed for ECG reconstruction, called M2Eformer, is proposed. This model utilizes the 2D-
ECGblock to synchronously extract information regarding within-cycle and between-cycle
dependencies. Information fusion is achieved through a specially designed ProbDecoder,
enabling the reconstruction of a 12-lead ECG. The experimental results demonstrate that
M2Eformer achieves the best overall reconstruction performance for 12 leads (Pr = 0.8785
and MAE = 0.0511), with Pr values higher than traditional methods such as the LSR and
Linear methods (0.0517 and 0.0593, respectively). Expert annotations obtained from the
recorded data (overall consistency of 96%) suggest the potential value of the reconstructed
12-lead ECG in aiding the clinical diagnosis of conditions such as atrial flutter, atrial
fibrillation, coronary artery disease, and myocardial infarction.
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