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Abstract: Speech impairments often emerge as one of the primary indicators of Parkinson’s disease
(PD), albeit not readily apparent in its early stages. While previous studies focused predominantly on
binary PD detection, this research explored the use of deep learning models to automatically classify
sustained vowel recordings into healthy controls, mild PD, or severe PD based on motor symptom
severity scores. Popular convolutional neural network (CNN) architectures, VGG and ResNet, as well
as vision transformers, Swin, were fine-tuned on log mel spectrogram image representations of the
segmented voice data. Furthermore, the research investigated the effects of audio segment lengths and
specific vowel sounds on the performance of these models. The findings indicated that implementing
longer segments yielded better performance. The models showed strong capability in distinguishing
PD from healthy subjects, achieving over 95% precision. However, reliably discriminating between
mild and severe PD cases remained challenging. The VGG16 achieved the best overall classification
performance with 91.8% accuracy and the largest area under the ROC curve. Furthermore, focusing
analysis on the vowel /u/ could further improve accuracy to 96%. Applying visualization techniques
like Grad-CAM also highlighted how CNN models focused on localized spectrogram regions while
transformers attended to more widespread patterns. Overall, this work showed the potential of deep
learning for non-invasive screening and monitoring of PD progression from voice recordings, but
larger multi-class labeled datasets are needed to further improve severity classification.

Keywords: Parkinson’s disease (PD); deep learning; transfer learning; speech analysis; mel spectrogram

1. Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by
motor symptoms like tremors, rigidity, and slowed movement [1–3]. However, pathology
underlying PD begin years before the clinical diagnosis, with early manifestations like
hyposmia, speech disorders, depression, constipation, and sleep disturbances frequently
overlooked [4,5]. Diagnosing PD during the initial phase and initiating treatment can
potentially impede the rate of progression of this degenerative disorder [6].

While neurological examination methods like the Movement Disorder Society Unified
Parkinson’s Disease Rating Scale (MDS-UPDRS) and brain scans are among the main
criteria for diagnosing PD, they have limitations such as cost, accessibility, clinician bias,
and difficulty monitoring progression and treatment effectiveness [1–3,7,8]. Therefore,
there is a need for alternative diagnostic approaches that are more objective, cost-effective,
and accessible.

Speech difficulties are often one of the initial and most serious signs of PD, severely
affecting how patients communicate and their overall quality of life [9]. Over 80% of PD
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patients have some vocal dysfunction, including decreased volume, lack of tone, reduced
fundamental frequency range, slurred speech, or abnormal rhythms and melodies [10,11]. This
can occur up to 5 years before motor symptoms like tremors appear [12,13]. While assessing
writing and walking needs specialized devices, voice can be captured and analyzed without
special equipment or clinic visits [13]. Therefore, speech analysis provides a promising
opportunity for early PD detection and continuous monitoring.

Various acoustic analysis techniques including measuring fundamental frequency
variation, noise parameters, and non-linear dynamics, have been explored for detecting
and quantifying vocal symptoms [14,15]. However, recent research has increasingly focused
on leveraging advanced machine learning and neural network approaches to automatically
detect PD through speech analysis [16]. Significant work has centered on selecting optimal
features for shallow classifiers as well as determining ideal architectures for deep learning
classifiers.

The first approach involves hand-crafting acoustic features, including certain variants
of the jitter, shimmer, and harmonic-to-noise ratio that are indicative of PD speech im-
pairments [17–22] and using traditional machine learning (ML) methods, such as support
vector machines (SVM), random forests (RF), k-nearest neighbors (KNN), and regression
trees (RT) [20–27].

Mamun et al. tested ten algorithms on 195 vocal recordings, finding that LightGBM, a
gradient-boosting method, achieved 95% accuracy in classifying PD [23]. Govindu et al.
recently studied early PD detection via telemedicine using ML models on audio data
from 30 PD and 30 control subjects. Their RF classifier had the best performance—91.83%
accuracy and 0.95 sensitivity for detecting PD [20]. Wang et al. implemented 12 machine
learning models on the 401 voice biomarkers dataset to classify subjects as PD or not.
They also built a custom deep learning model with a classification accuracy of 96.45% [24].
Pramanik et al. achieved high accuracy in PD detection using Naïve Bayes algorithms [28].
Other studies focused on feature selection techniques. Lamba et al. tested combinations of
three selection methods (mutual information gain, extra tree, genetic algorithm) and three
classifiers (Naive Bayes, KNN, RF), finding that the genetic algorithm plus RF performed
best with 95.58% accuracy [25].

In contrast to the previous approach, which primarily used manual feature engineer-
ing and shallow classifiers, the second approach harnesses deep learning to automatically
learn features directly from speech data. Various neural network architectures have been
designed and tested, including Convolutional Neural Networks (CNNs), Recurrent Neural
Networks (RNN) like Long Short-Term Memory Networks (LSTMs) networks, a combina-
tion of them, and more recently, transformer-based models. These models directly learn
feature representations from the speech signal or spectrograms, including sustained vowels,
continuous speech, and repeating syllables. Deep learning models can alleviate the need for
expert-crafted features and have achieved state-of-the-art (SOTA) results on PD detection
from speech [8].

Aversano et al. developed LSTM and CNN models to analyze voice recordings
segmented into 1 s intervals consisting of vowels, phrases, and sentences. These voice
samples were transformed into mel spectrogram representations as input to the models,
which achieved an F1 score of 97%. However, a notable limitation of this study was that the
researchers did not ensure that the training and validation sets were speaker-independent,
which could potentially introduce biases and may limit the generalizability of the models’
performance [29]. Similarly, Shah et al. employed a CNN-based model that analyzed
1 s speech chunks transformed into log-scaled mel spectrograms (LMS) for detecting PD
from vowel phonations of /a/ and /i/, achieving 90.32% accuracy [30]. Another study
employed a MobileNet CNN model with various types of spectrograms as input. The
findings indicated that speech energy spectrograms and mel spectrograms yielded the
highest accuracy rates of 96% and 92%, respectively [31]. A study by Khojasteh et al.
evaluated the performance of a CNN model on sustained vowel phonation recordings
of the /a/ lasting over 5 s. When tested on 2 s voice samples segmented into 815 ms
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frames, the CNNs achieved a classification accuracy of 75.7%. An interesting aspect of their
approach involved data augmentation techniques like flipping (vertically and horizontally)
and rotating the frames, which were applied to the training dataset. However, since the
inputs were spectrogram-based images representing time-frequency information, such
spatial transformations may not have been suitable augmentation techniques [8]. Quan
et al. employed an end-to-end model incorporating both 2D and 1D CNNs to achieve 92%
accuracy in classifying PD based on speech tasks involving the reading of both simple and
complex sentences. Their model operated on a sequence of overlapping segments derived
from the LMS representation of the input audio. However, the study did not specify the
length of this sequence of overlapping segments [10].

Furthermore, some researchers further improve performance by using transfer learn-
ing to adapt these speech models, leveraging knowledge already gained on other tasks.
Hireš et al. proposed an ensemble approach involving multiple fine-tuned versions of the
Xception deep learning model. When applied to a subset of the sustained vowel recordings
dataset (PC-GITA), focusing on the vowels /a/, /i/, /o/, /u/, and /e/, this ensemble
method achieved an impressive 99% accuracy in classifying the presence of PD based
solely on the voice recordings. In their approach, the 1 s voice signal was transformed
into a spectrogram, which was then blurred before being processed by the models [13]. In
another study, Wodzinski et al. fine-tuned a ResNet architecture model using a subset of
the PC-GITA dataset containing only the vowel sound /a/. By transforming the audio
recordings into spectrograms, their model achieved an accuracy of over 90% in classifying
the presence of PD [11]. More recently, Klempíř et al. found that self-supervised speech
models, such as wav2vec which have been pre-trained on 960 h of 16 kHz English speech,
generate valuable embeddings for PD detection. These models achieved AUROC (area
under the receiver operating characteristic curve) scores ranging from 0.77 to 0.98 across
various datasets, which included repeated /pa/ syllables. Notably, this pipeline can be
immediately applied to raw audio signal recordings without the need for segmenting [32].
In summary, the deep learning approach shows promise for PD detection from voice, with
recent work achieving accuracies over 90% using techniques like CNNs, LSTM models,
and self-supervised learning.

Prior studies have focused on binary classification of PD detection from voice record-
ings, distinguishing between people with PD and healthy controls. However, clinical
applications would benefit from more granular subtype classification beyond this binary
distinction [33]. In this work, we first explored the use of multi-class classification to detect
PD and differentiate between various stages based on their MDS-UPDRS III scores. Part III
of the MDS-UPDRS assesses motor function in Parkinson’s disease patients. We trained
models to classify voice recordings into three classes. This paper also compared three
DL architectures widely used in computer vision tasks. The models were trained using
LMS representations derived from sustained vowel phonations from a publicly accessi-
ble dataset. Secondly, the study examined how the length of audio clips and particular
vowel sounds impacted the effectiveness of these models. Additionally, previous studies
segmented audio recordings before analysis but did not evaluate model performance on
full recordings; in this work, we applied an ensemble method across segments to obtain
overall classifications for entire segments after splitting. Finally, we employed visualization
techniques such as Grad-CAM [34] and t-SNE [35] to provide possible explanations of the
deep learning model’s predictions, highlighting discriminative regions in the LMS inputs
that influence particular classification decisions.

2. Materials and Methods

Figure 1 shows the architecture of our speech classification system that categorizes
speech signals into one of three classes: healthy, Parkinson’s disease mild, or severe.
The system captures the audio signal, preprocesses it into segments, and converts the
segments into LMSs—visual representations of audio frequency content over time. These
spectrograms are input to a deep neural network that extracts informative audio features.
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A classifier model then categorizes the speech into one of three classes by matching the
extracted features to learned patterns. In essence, the system transforms audio into images,
extracts features using deep learning, and classifies speech based on those features.
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2.1. Dataset

The present study used the Italian Parkinson’s voice and speech database. The dataset
comprises speech recordings in the .wav format obtained from Italian individuals diagnosed
with Parkinson’s disease, as well as healthy control subjects. This database was collected
through the efforts of Dimauro et al., as referenced in [36,37]. Building on prior work
that found sustained vowels to be more predictive of Parkinson’s diagnosis compared to
words or sentences [19], this study focused its analysis specifically on short vowels. By
concentrating only on short vowel samples, potential factors like language and education
that could potentially skew the results can be eliminated.

As outlined in Table 1, the subset includes sustained vowel recordings (vowels /a/,
/e/, /i/, /o/, and /u/) from 22 healthy controls (12 female, 10 male) and 28 PD patients
(9 female, 19 male). The participants were closely matched by age, with an average of
67.1 years (±5.2 years) in the control group and 67.2 years (±8.7 years) in the PD group.
The PD patients were further classified by their score on Part III of the MDS-UPDRS.
Figure 2 shows the histogram of audio lengths across three groups: Healthy Controls
(HC), Mild Parkinson’s Disease (PD_Mild), and Severe Parkinson’s Disease (PD_Severe).
Notably, HC samples predominantly fall within approximately 5 s, while PD groups exhibit
a broader range.

Table 1. Demographic information, including gender, and age ranges of the dataset.

Class MDS-UPDRS III
Subjects Age

Male Female Male Female

Healthy ~ 10 12 60–72 60–77
PD_Mild 1–10 7 3 50–77 40–63

PD_Severe 11–24 12 6 65–75 54–80
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2.2. Data Preprocessing

We performed data preprocessing to convert and structure the raw audio data into
an applicable format that could be effectively analyzed via deep learning models. Initially,
all audio recordings from the database were resampled at 16 kHz to ensure a consistent
sampling rate. Subsequently, recordings with excessive background noise were removed
from the dataset during this preprocessing stage (2 healthy participants were excluded for
this reason). The total number of audio recordings after this part was 475. The audio clips
were also trimmed to remove any leading or trailing silence. The raw speech data contained
audio recordings of different lengths, as shown in Figure 2. To create manageable training
batches with consistent sample sizes, the recordings were segmented into fixed-length clips
(1 s and 5 s), with each segment overlapping the previous one by 50%, padding shorter
utterances and truncating longer utterances. The original dataset was processed to create
two distinct versions for training purposes. In the First Segment (FS) version, only the
first segment from each audio recording was utilized. Alternatively, the All Segments (AS)
version encompassed all segments derived from the recordings rather than just the initial
segment. These two approaches to segmentation produced different training datasets, FS
and AS, from the same raw data. These varying combinations of segmentation approaches
and duration made four unique training datasets (FS-1, FS-5, AS-1, and AS-5) from the
same raw data (Figure 3). From now on in this paper, these abbreviations will be utilized to
reference the particular dataset versions. The details of the modified datasets are provided
in Table S1.
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Since the models that were used in this study were suitable for images, after segment-
ing the voice recordings, they needed to be transformed into an image data format. All
recordings were then converted from waveform audio to LMS-based images. The LMS
is a representation of an audio signal that accounts for the human auditory perception
of frequency and loudness. It is obtained by first computing a spectrogram using the
Short-Time Fourier Transform (STFT), which provides the frequency content and amplitude
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over time, with frequency on a linear Hz scale. The linear frequency axis is then converted
to the mel frequency scale using Equation (1):

m = 2595log10

(
1 +

f
700

)
(1)

where m and f represent mel frequency and frequency in mels and Hz, respectively, this
conversion results in a mel spectrogram, where the frequency axis is represented in the
mel scale, which better approximates the human auditory system’s response to sound
frequencies. Finally, the logarithm of the amplitude values (in dB) is taken to mimic the
human ear’s logarithmic perception of loudness. The resulting LMS displays the frequency
content in mels on one axis and time on the other, with the amplitude represented by a
logarithmically scaled color map [38]. In this research, LMS representations were computed
using 128 ms (2048 samples) window lengths and 32 ms (512 samples) hop lengths for the
STFT, with examples provided in the referenced Figure 4.
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Figure 4. Speech sound examples. The upper panel in each example shows the acoustic waveform.
The lower panel shows the corresponding log mel spectrogram representation (128 mel-bands).

Additionally, to reduce overfitting given the initially small training dataset, the lim-
ited data set was expanded by applying different types of audio augmentation before
executing the voice-to-image transformation process. This data expansion aims to improve
generalizability. For this purpose, we performed data augmentation using the torch audio
spectrogram augmentation library [39]. Here, various techniques, including time masking,
frequency masking, and a combination of them, were applied to each audio and then
transformed to the LMS image (Figure 5). Data augmentation was not used for the vali-
dation sets, so these sets would resemble real-world data. Finally, the LMSs were resized
to 224 × 224 pixels and converted to 3-channel grayscale images for input into the deep
learning models.
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Figure 5. The effects of data augmentations on LMSs: (a) displays the original LMS without any
augmentations; (b) shows the LMS with time masking applied, which masks blocks of time steps. This
forces the model to rely more on context; image (c) shows the LMS with frequency masking applied,
which masks blocks of frequencies; and (d) demonstrates the combination of these augmentations.

2.3. Training and Deep Learning Models

In this study, we utilized several popular deep learning models for computer vi-
sion tasks. Specifically, two popular CNN architectures were employed: ResNet and
VGG [40,41]. These CNNs have achieved good performance on benchmark datasets and
have become standard models for computer vision. VGG16 and VGG19 are deep con-
volutional neural network architectures that have 16 and 19 layers, respectively. Both
architectures consist of 5 sets of convolutional layers, where each layer is followed by a
max pooling layer. The main difference between VGG16 and VGG19 is the number of
cascaded convolutional layers in each set. The architecture of VGG16 is shown in Figure 6a.
ResNet-50, on the other hand, is a residual network architecture that contains 50 layers
(49 convolutional layers organized into 16 residual blocks and one final fully connected
layer for output). It utilizes skip connections, which allow the network to skip certain
convolutional layers during backpropagation, alleviating the vanishing gradient problem.
ResNet-18 is a simplified variant of the original ResNet architecture for image classification.
As shown in Figure 6b, it contains 18 layers in total—17 convolutional layers organized
into eight residual blocks and one final fully connected layer for output [40–42].

In recent years, transformers have become the predominant model architecture for nat-
ural language processing (NLP) tasks due to their continuously improving efficiency [43].
The capabilities of transformers are not limited to NLP, though they have also shown
excellent skill in image recognition. Architectures like the Vision Transformer (ViT) [44]
demonstrate how transformers can match or even surpass CNNs on computer vision
datasets. Building on the concepts of ViT, the Swin Transformer [45] introduces a hierar-
chical design for greater efficiency and the flexibility to model at a variety of scales [43].
We also employed the Swin Transformer architecture in this study to take advantage of its
state-of-the-art capabilities. The Swin Transformer model is a pure transformer architecture
model that is becoming a general-purpose backbone for various tasks. There are four Swin
Transformer configurations: Swin_t, Swin_s, Swin_b, and Swin_l [45]. The Swin_s and
Swin_b were chosen as feature extractors in this study. The numbers of parameters for
them are 49.6 M and 87.8 M, respectively, as shown in Table 2. The overall architecture
of the Swin Transformer is illustrated in Figure 6c. The Swin_s and Swin_b models differ
primarily in the size of the embeddings and the number of heads used in their transformer
architectures. Swin_b has larger embeddings and more heads than Swin_s. Further details
about these models can be found in the original paper [45].
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Figure 6. Overview of the architecture of models used in this research.

Table 2. Presents the architectural details of the ResNet, VGG, and Swin Transformer models
employed in this study, along with their respective performances on the ImageNet-1K dataset. All
these models were designed to process input images with dimensions of 224 × 224 pixels.

Model acc@1 acc@5 #params

ResNet18 69.758 89.078 11.7 M
ResNet50 76.13 92.862 25.6 M
VGG16 71.592 90.382 138.4 M
VGG19 72.376 90.876 143.7 M
Swin_s 83.196 96.36 49.6 M
Swin_b 83.582 96.64 87.8 M

These models have already been trained on a large-scale labeled dataset. The perfor-
mance metrics of these models on the ImageNet dataset are presented in Table 2. During the
training phase, the pre-trained weights (the weights obtained when a model was trained
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on the ImageNet dataset) were utilized. Transfer learning was applied by tuning the pre-
trained layers. The weights learned on ImageNet provide a much better initialization for
many computer vision tasks than random weights [46].

The classification layers of the original models were removed and replaced with new
classification head. This new classifier uses a neural network with two dense layers before
the final classification layer. The first dense layer has 256 neurons, and the second dense
layer has 128 neurons (Figure 6d). After each dense layer, a dropout with a probability of
0.5 was applied. This same classification architecture was utilized across all models in the
study.

2.4. Experimental Setups and Evaluation Criteria

Our implementation leveraged various Python libraries such as PyTorch [39] for
deep learning model development, Pandas [47] and NumPy [48] for data analysis, and
Matplotlib [49] and Scikit-learn [50] for visualization and some analysis tasks.

As detailed in Table 3, key training hyperparameters used during model optimization
included learning rate, batch size, and number of epochs. The models were trained using
an Adaptive Moment Estimation optimizer with Weight Decay (AdamW), an optimization
algorithm with cross-entropy loss to measure prediction error. A learning rate of 0.0003
was set initially and adjusted over time per a scheduler. We implemented the experiments
using a system comprising an Intel Core i7-11700K CPU @ 3.60 GHz, with 128G of RAM
and GPU NVIDIA RTX 3090 24G.

Table 3. Parameter settings for training models.

Parameter Values

Image size 224 × 224 pixels
# Epochs 100
# Batch-size 64
Initial Learning Rate 3 × 10-4

Optimizer AdamW (β1 = 0.9, β2 = 0.999, Weight decay = 0.01)
Loss Cross entropy

This study followed two approaches for classifying audio samples and training the
models. The first approach involved segmenting the audio clips into 1 and 5 s segments,
as AS-1 and AS-5 methods explained in Section 2.1, thereby increasing the dataset size.
The second approach only used the first segments of each audio clip, FS-1 and FS-5. We
evaluated whether the segmentation helped improve model accuracy compared to using
only the first segmented part.

This study utilized four main evaluation criteria: Precision, Recall, F1 score, and
Overall accuracy. Precision refers to the percentage of positive classifications that were
correct. Recall (also called sensitivity) measures the percentage of actual positives that
were correctly identified. The F1 score combines precision and sensitivity by taking their
harmonic mean. Finally, overall accuracy is simply the percentage of total classifications
that were correct out of all classifications made.

To calculate these performance metrics, we determined the numbers of true positives
(TP), false positives (FP), and false negatives (FN) per class. A TP represents a correct
prediction for a given class. An FP is an incorrect prediction that wrongly predicted that
class. An FN is a case that belongs to that class but was incorrectly excluded.

Accuracy =
TP + TN

TP + TN + FN + FP
(2)

Precison = TP
TP+FP (3)
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Recall = TP
TP+FN (4)

F1 = 2 × Recall × Precison
Precison + Recall (5)

3. Results and Discussion

In this section, we will describe and discuss our results in detail while evaluating the
studied models’ performance.

3.1. Classification Performance

A stratified patient-independent three-fold cross-validation approach was utilized for
all experiments, where the data was partitioned into three folds with no patient overlap
across folds to avoid data leakage and reduce potential biases in model evaluation. The
model was trained on two folds and evaluated on the held-out fold, and this was repeated
three times so that each fold served as the evaluation set once. This ensured a rigorous
assessment of model performance on unseen data. We decided not to use a separate test set
due to the small database size. To mitigate potential issues caused by an imbalance of class
distribution, we utilized the train-time oversampling technique to achieve a more balanced
class distribution [51,52].

The cross-validated performance metrics, including precision, recall, F1 score, and
accuracy, for each model are presented in Tables 4 and 5. Additionally, Figure 7 depicts a
graphical representation of the cross-validated classification accuracy for each model. In
addition, performance by two additional recent architectures were compared in Table S2.

Table 4. Cross-validated classification performance (mean ± SD) for each model using the FS datasets.
The table compares precision, recall, F1-score, and accuracy across models.

FS Datasets Models

Metric (%) VGG16 VGG19 ResNet18 ResNet50 Swin_s Swin_b

5 s HC Precision 96.67 ± 4.71 96.67 ± 4.71 96 ± 4.32 96.67 ± 4.71 97.00 ± 4.24 96.67 ± 4.71
Recall 99.67 ± 0.47 99.33 ± 0.94 100.00 ± 0 100.00 ± 0 100.00 ± 0 100.00 ± 0

F1 score 98.00 ± 2.83 98.00 ± 2.16 98.00 ± 2.16 98.33 ± 2.36 98.33 ± 2.36 98.33 ± 2.36

PD_Mild Precision 91.00 ± 6.38 92 ± 3.56 80.33 ± 1.25 86.00 ± 7.07 88.67 ± 7.72 83.33 ± 3.09
Recall 82.67 ± 8.06 73.00 ± 3.74 88.67 ± 5.73 79.33 ± 6.6 74 ± 22.45 73.67 ± 21.17

F1 score 86.00 ± 1.63 81.00 ± 3.56 84 ± 2.94 82.33 ± 2.05 77.67 ± 12.5 76.33 ± 12.97

PD_Severe Precision 84.67 ± 8.96 75.33 ± 4.5 89.67 ± 7.72 80.00 ± 10.42 77.67 ± 13.27 75.67 ± 9.81
Recall 88.67 ± 9.74 92.33 ± 3.09 69.33 ± 2.49 82.33 ± 8.34 83.67 ± 13.6 79.00 ± 8.29

F1 score 85.67 ± 5.91 82.67 ± 1.89 78.33 ± 4.64 80.33 ± 2.62 78.33 ± 0.47 76.33 ± 1.25
Accuracy 91.15 ± 0.64 88.84 ± 1.54 88.83 ± 1.71 88.41 ± 1.13 87.39 ± 3.92 86.34 ± 4.50

1 s HC Precision 96.00 ± 4.32 93.67 ± 3.3 95.33 ± 4.5 96.33 ± 4.5 95.00 ± 3.56 96.67 ± 2.49
Recall 99.67 ± 0.47 99.67 ± 0.47 100.00 ± 0 99.33 ± 0.47 98.33 ± 2.36 97.67 ± 0.94

F1 score 97.67 ± 2.62 96.67 ± 2.05 97.33 ± 2.36 97.67 ± 2.62 97.00 ± 1.63 97.00 ± 0.82

PD_Mild Precision 75.67 ± 10.4 78.33 ± 10.08 74.00 ± 8.52 80.67 ± 7.13 74.33 ± 9.46 74.33 ± 9.98
Recall 77.33 ± 2.49 65.67 ± 18.45 67.67 ± 7.76 62 ± 23.15 72.67 ± 8.22 75.00 ± 6.68

F1 score 76.33 ± 6.6 70.33 ± 13.02 70.67 ± 7.93 66.33 ± 15.08 72.67 ± 6.02 74.67 ± 8.26

PD_Severe Precision 73.67 ± 4.03 69.00 ± 6.48 65.67 ± 0.94 65.00 ± 8.52 69.67 ± 4.5 69.00 ± 7.87
Recall 64.67 ± 16.11 73.00 ± 16.31 67.33 ± 9.46 76.33 ± 14.38 63.67 ± 17.56 67.67 ± 11.15

F1 score 67.67 ± 9.29 69.67 ± 9.18 66.00 ± 5.35 69.00 ± 2.16 64.33 ± 8.96 68.00 ± 7.87

Accuracy 83.60 ± 4.85 82.33 ± 4.97 81.29 ± 4.01 81.28 ± 3.59 81.50 ± 3.27 82.55 ± 4.48

Boldfaced values indicate the best performance for each metric.

Table 4 highlights that utilizing the first 5 s of each recording results in higher classifi-
cation accuracy across all models compared to using only the initial 1 s segment. While
all models demonstrate strong performance in correctly identifying HC subjects, they
face challenges distinguishing between varying degrees of PD severity. The FS-5 dataset
exhibited superior performance in classifying the different stages of PD. When considering
only the recognition of HC subjects, the Swin_s model slightly outperformed other models,
demonstrated the best performance in terms of precision (97.00 ± 4.24), recall (100.00 ± 0),
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and F1 score (98.33 ± 2.36). However, its performance showed minimal deviation compared
to the other models.

Table 5. Cross-validated classification performance (mean ± SD) for each model using the AS datasets.
The table compares precision, recall, F1-score, and accuracy across models.

AS Datasets Models

Metric (%) VGG16 VGG19 ResNet18 ResNet50 Swin_s Swin_b

5 s HC Precision 94 ± 7.79 94.67 ± 7.54 97.67 ± 3.3 94 ± 7.07 94.33 ± 7.32 94 ± 8.49
Recall 98.67 ± 1.25 99.33 ± 0.94 97.67 ± 1.89 98 ± 1.41 99.67 ± 0.47 98.67 ± 0.47

F1 score 96 ± 3.56 96.67 ± 4.71 97.33 ± 1.25 96 ± 4.32 96.67 ± 4.03 96 ± 4.24

PD_Mild Precision 92.67 ± 3.30 95 ± 4.08 88.67 ± 3.09 91 ± 2.94 93.33 ± 3.77 92 ± 2.16
Recall 87.67 ± 5.44 85.67 ± 4.5 87.67 ± 3.3 85.67 ± 4.64 86 ± 2.45 85.33 ± 6.6

F1 score 90.33 ± 4.19 90 ± 3.27 88 ± 2.94 88.33 ± 4.03 89.33 ± 3.3 88.67 ± 3.68

PD_Severe Precision 87 ± 8.83 82.67 ± 7.41 76.67 ± 2.36 79 ± 8.16 83.67 ± 10.21 82.67 ± 7.13
Recall 87.67 ± 6.18 90 ± 8.16 79.33 ± 5.91 82.67 ± 6.6 86.67 ± 8.26 86.33 ± 5.44

F1 score 86.33 ± 3.68 85.33 ± 1.25 78 ± 3.74 80.67 ± 6.18 84.33 ± 0.94 84 ± 1.63
Accuracy 91.80 ± 3.55 91.66 ± 3.15 89.64 ± 2.55 89.79 ± 2.57 91.18 ±2.56 90.54 ± 2.85

1 s HC Precision 95.33 ± 6.6 93.67 ± 8.96 93.67 ± 3.3 90.67 ± 6.24 95.67 ± 2.87 93.33 ± 7.32
Recall 95.33 ± 3.09 99.33 ± 0.47 98.33 ± 1.25 96.67 ± 2.87 97.33 ± 1.7 97 ± 0.82

F1 score 95 ± 3.27 96 ± 4.24 95.67 ± 2.05 93.33 ± 4.03 96.33 ± 2.49 95 ± 3.56

PD_Mild Precision 82 ± 2.16 85.33 ± 7.41 78.33 ± 4.11 78.33 ± 2.36 80.33 ± 5.19 83.67 ± 4.92
Recall 79.33 ± 6.94 79.67 ± 12.66 77 ± 11.34 72.33 ± 5.31 72.33 ± 9.43 74 ± 16.67

F1 score 80.33 ± 3.4 81.67 ± 6.55 77.33 ± 4.92 75.33 ± 3.30 75.67 ± 5.31 76.67 ± 8.73

PD_Severe Precision 69 ± 6.38 71 ± 8.60 58.33 ± 7.59 63.67 ± 13.02 57.33 ± 8.5 66.33 ± 10.4
Recall 71 ± 4.08 68.67 ± 17.52 54.33 ± 18.55 63.67 ± 10.37 66.33 ± 18.37 71.67 ± 13.72

F1 score 69.67 ± 3.68 69 ± 12.83 54.67 ± 11.79 63.67 ± 11.26 61 ± 11.58 67.33 ± 6.80

Accuracy 83.94 ± 2.61 85.12 ± 4.64 80.57 ± 3.07 80.05 ± 2.42 80.82 ± 3.35 82.51 ± 4.38

Boldfaced values indicate the best performance for each metric.
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Our findings indicated that the models demonstrated better accuracy when using
longer phonation samples as input. As shown in Table 5, models trained on complete
audio segments, rather than just the initial segment, exhibit higher average accuracy on 5 s
datasets (AS-5). However, this improvement comes at the cost of increased performance
variability, as evidenced by larger standard deviations. Notably, the Swin Transformer
models demonstrate the largest gain of around 3% when utilizing the AS-5 dataset. In
contrast, for the 1 s dataset, particularly the ResNet models, there is no improvement when
using the AS dataset. Among the tested models, VGG19 experiences the most significant
boost on the 1 s dataset when trained on all segments compared to just the initial segments.
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Overall, utilizing complete audio clips for training tends to improve model accuracy,
especially for longer 5 s datasets, although this benefit is less pronounced on the shorter
1 s dataset (AS-1). In addition, visual inspection of bar plots in Figure 7 suggests that,
for the specific task we have, the deeper architectures do not demonstrate a substantial
improvement in accuracy when compared to their shallower counterparts. Furthermore,
the transformer-based model showed noticeable performance gains when trained on the
AS dataset. Conversely, the CNN-based models evaluated did not exhibit significant
improvements from utilizing the full segmented data.

The proposed models for 5 s datasets were evaluated using cumulative confusion ma-
trices and receiver operating characteristic (ROC) curves across three-fold cross-validation.
The confusion matrices aggregated results across folds to showcase the overall model
performance. Color bars accompanying the confusion matrices illustrated the proportions
of observations within each class that were correctly or incorrectly classified, with values
ranging from 0 to 1. The ROC curves plotted the trade-off between the true positive rate
and the false positive rate, depicting the diagnostic capability of the models. A One versus
Rest (OvR) method constructed the ROC curves. The area under the ROC curve (AUC) sig-
nified model performance, with higher values indicating better classification ability. Across
models, the AUC for the HC class approached 1.00 (Figures 8 and 9), demonstrating strong
identification of healthy subjects. For PD classes, VGG16 achieved slightly higher AUCs
compared to other models. Furthermore, the analysis revealed an increase in the AUC
from the FS to the AS dataset, particularly for the PD_Mild class, with a 4% improvement.
This suggests that the models exhibited slightly better discrimination capabilities when
utilizing the full-segment dataset. Furthermore, the transformer-based models exhibited
higher AUC values when trained on the larger AS-5 dataset, suggesting that these models
benefited from the increased data availability for improved classification performance.

The analysis of the confusion matrices in Figures 8 and 9 suggests that the models
excel at accurately identifying samples from the HC group, exhibiting the highest precision
and recall for this class. For the FS-5 dataset, there were no instances where an HC sample
was incorrectly predicted as PD_Severe or vice versa. However, some instances labeled
PD_Severe were misclassified as PD_Mild, and vice versa, indicating potential challenges in
distinguishing between these two classes. To better evaluate the VGG16 model’s accuracy
for different vowels, we grouped the results by the sustained vowel present in the dataset.
The confusion matrices for each vowel are shown in Figure 10. Of the vowels, /u/ had the
highest recall for HC and PD_Severe groups (100%) while having a lower recall value for
the PD_Mild group (75%).

Although binary classification was not employed in this study, we combined the results
to compare accuracy with previous works that utilized the Italian-speaking Parkinson’s
speech dataset. Specifically, we categorized HC as negative and all PD cases as positive.
The accuracy results of this binary classification are summarized in Table 6.

These results are promising; however, recent studies [53,54] indicated that the models
employed for pathological voice detection are typically trained using small-scale data,
hindering their ability to perform consistently across diverse datasets. As a result, the
performance of these models fluctuates considerably depending on the dataset encoun-
tered. This is largely due to the scarcity and variability in the quality of medical voice
recordings available for training such systems [54]. This can limit model robustness com-
pared to speech recognition systems trained on ample large-scale datasets. For greater
generalizability and diagnostic precision, more consistent and substantial medical voice
datasets are required.

In previous studies [11,29] on PD classification using audio recordings, researchers
have typically segmented the recordings into smaller parts before extracting features and
training machine learning models. The researchers assessed the models’ performance on
the segmented audio excerpts and reported the corresponding results for these segments.
However, they did not provide performance results for complete audio samples. This
study employed a simple ensemble method to enable a fair evaluation and comparison of
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different audio segmentation approaches. Specifically, we passed each segment through
the trained model to get a prediction, then took the most common predicted class across
all segments as the final prediction for the recording, effectively using majority voting.
This allows the comparison of different segmenting approaches equally in terms of overall
recording classification. After using this approach, we calculated the cumulative confusion
matrix and accuracy, as shown in Figure 11 for the AS-5 dataset. This is a more realistic test
scenario, as in real-world applications, we would need to make predictions on individual
audio. When implementing this approach, the accuracy of the VGG19 model increased by
around 1% compared to results on the AS-5 dataset. Accuracy for the other models did
not change significantly or even decreased slightly for this dataset. Despite overall lower
performance compared to not using ensembling, our dataset still achieved slightly higher
accuracy than when we used the FS dataset, especially when leveraging transformer-based
models. This increases more pronounce for the AS-1 dataset that is shown in Figure S1.
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Table 6. Comparison of accuracy results obtained on the Parkinson Italian speaking dataset.

Author Model Accuracy [%]

Aversano et al. [29] LSTM 97.1
Klempíř et al. [32] Wav2Vec 95.0
Hireš et al. [54] Xception 97.8
Toye et al. [17] SVM 98.9 1

Current study Swin_s 98.5 ± 2.50
Current study VGG16 98.1 ± 3.23

1 Using hand-crafted features.
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all segments as the final prediction for the recording, effectively using majority voting. 
This allows the comparison of different segmenting approaches equally in terms of overall 
recording classification. After using this approach, we calculated the cumulative confu-
sion matrix and accuracy, as shown in Figure 11 for the AS-5 dataset. This is a more real-
istic test scenario, as in real-world applications, we would need to make predictions on 
individual audio. When implementing this approach, the accuracy of the VGG19 model 
increased by around 1% compared to results on the AS-5 dataset. Accuracy for the other 

Figure 10. The cumulative confusion matrix for each sustained vowel recording for the VGG16 model.
Color bars display the proportion of observations within each class that were correctly or incorrectly
classified, with values ranging from 0 to 1.
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We further evaluated the segmentation and ensemble approach by applying it sep-
arately to each individual vowel sound, aiming to determine which vowel benefited the
most from this technique and achieved the highest performance. The results summarized
in Tables 7 and 8 demonstrate that the vowels /u/ and /o/ may have the greatest ability
among the models to differentiate between Parkinson’s classes. Notably, the findings
suggest that when utilizing solely the vowel /u/ for classification with the VGG16 model,
an impressive F1 score of 96% can be attained. The performance on vowel /u/ in [29]
contributed to the overall improved accuracy across the different methods utilized. These
results align with earlier findings in [55] that the vowel /u/ had the highest classification
accuracy out of the vowels /a/, /o/ and /u/ tested. Rusz et al. [15] provided further
support, identifying abnormalities in vowel articulation and acoustics, such as reduced
vowel space area, among PD patients, especially for the vowel /u/.

Table 7. The average F1 score for each model grouped by sustained vowels only for the first
segment datasets.

FS Datasets Models (Avg F1 Score [%])

Vowel VGG16 VGG19 ResNet18 ResNet50 Swin_s Swin_b

5 s /a/ 91 95 90 89 86 85
/i/ 90 87 88 91 86 85
/e/ 90 88 85 85 86 85
/o/ 91 90 88 87 85 86
/u/ 92 83 92 88 93 90

1 s /a/ 80 77 75 80 75 80
/i/ 85 84 85 82 83 83
/e/ 82 82 82 83 82 85
/o/ 82 83 81 79 81 84
/u/ 86 84 82 82 85 80

Table 8. The average F1 score for each model grouped by sustained vowels for all segment datasets
after applying major voting.

AS after Major Voting Models (Avg F1 Score [%])

Vowel VGG16 VGG19 ResNet18 ResNet50 Swin_s Swin_b

5 s /a/ 90 90 85 88 88 89
/i/ 90 92 89 92 90 90
/e/ 91 90 86 88 87 88
/o/ 90 93 88 87 95 92
/u/ 96 96 92 89 94 91

1 s /a/ 86 77 75 80 83 84
/i/ 85 84 85 82 79 82
/e/ 82 82 82 83 80 83
/o/ 90 83 81 79 84 86
/u/ 83 84 82 82 82 88

3.2. Grad Cam Feature Visualization

Grad-CAM (Gradient-weighted Class Activation Mapping) is a visual explanation
technique for CNNs [34]. Grad-CAM utilizes the gradient information from the final
convolutional layer of a CNN to generate a heat map representing the regions of the input
image that are most relevant for the network’s prediction. Specifically, it computes the
gradients of the target concept (i.e., the class output) with respect to the feature maps
of the last convolutional layer. By pooling these gradients over the spatial dimensions,
Grad-CAM produces a coarse localization map that highlights the parts of the image that
have the greatest influence on CNN’s decision [34,38]. The architecture explaining the
Grad-CAM technique is shown in Figure S2.
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The Grad-CAM feature map visualizations in Figure 12 represent three 5 s audio clips
of the vowel sound /o/ from the FS-5 dataset. To maintain consistency, we exclusively
used data from the second fold of the FS-5 dataset and the corresponding trained models.
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The generated heatmaps highlighted the specific regions in an LMS input image
that significantly influenced the model’s prediction. A comparison of the visualization
results across different columns revealed key differences between the CNN-based and
Swin transformer-based architectures. The CNN models demonstrated more localized
attention, focusing on specific local areas in the images [56]. In contrast, the visualizations
for the Swin transformer network displayed attention that was more scattered and less
spatially localized.

The models generally placed less emphasis on the higher frequency components of
the LMSs, particularly in the range greater than 1024 Hz, suggesting that these regions
were less discriminative for the classification task. However, it was noteworthy that the
Swin Transformer models, in addition to their focus on lower frequencies, less than 512 Hz,
also exhibited sensitivity to relatively higher frequencies when detecting healthy control
subjects. Furthermore, the ResNet 18 model for the healthy control class demonstrated
primary activation in the high-frequency range.

When examining the temporal patterns for the healthy class, it was evident that
CNN models primarily focused on the first half to the middle of the audio clips, while
transformer-based models were more consistent across time frames. For the mild class,
models generally concentrated on the middle period. For the severe class, VGG16 displayed
a distinct pattern compared to the other studied models. This model was activated on
the middle frequency range (around 2048 Hz) and the timeframes of the initial segments.
Additionally, there was a moderately intense region towards the end of the spectrogram.
In contrast, the other models focused more on the second half of the audio clips and
lower frequencies.

Additional visualizations showcasing Grad-CAM feature maps are presented in Sup-
plementary Figure S3.

This suggests that the network heavily relies on the spectral patterns in this spe-
cific time-frequency region, indicating that the network is also considering some higher-
frequency components.

3.3. Analyzing Feature Extraction Capability

In the previous section, Grad-CAM visualizations demonstrated qualitative differences
between the features extracted by different architectures on our classification FS-5 dataset.
To further analyze these representations, the t-distributed Stochastic Neighbor Embedding
(t-SNE) technique can be utilized to project high-dimensional feature spaces into a 2D
representation, allowing for visualization and interpretation of the learned representations.

Figure 13 presents 2D scatter plots that visualize the distribution of features extracted
from the layer just before the classifier in each model. Each class is represented by a
different color, allowing for visual analysis of how well the features separate the classes
prior to classification.

The t-SNE visualization clearly shows three distinct clusters corresponding to the
Healthy, PD_Mild, and PD_Severe classes across all models. Architectures like VGG16,
Swin_s, and ResNet50 exhibit cleaner separations between these class clusters, suggesting
their ability to extract more discriminative features from the log mel spectrogram images.
Notably, the ResNet50 model forms the most compact clusters, indicating higher feature
similarity within each class. However, there is some overlap between the PD_Mild and
PD_Severe classes, particularly in the region where their feature points intersect. This
overlap suggests that certain mild and severe cases may share similar feature characteristics,
making it challenging to distinguish them based solely on the extracted features.

Despite the subtle overlap between PD_Mild and PD_Severe classes, all models suc-
cessfully separated the Healthy class from the Parkinson’s disease classes, demonstrating
the effectiveness of using log mel spectrogram images for distinguishing between healthy
and Parkinson’s voices.
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4. Conclusions

This study explored multi-class classification of Parkinson’s disease from speech
recordings using deep learning approaches. Several popular CNN and transformer models
were trained on log mel spectrogram representations of sustained vowel recordings to
categorize samples as healthy controls, mild, or severe Parkinson’s disease labeled based on
their MDS-UPDRS III scores. The models demonstrated strong capabilities to distinguish
healthy samples from those with Parkinson’s, achieving over 95% precision. However, they
struggled to reliably differentiate between mild and severe Parkinson’s, with classification
precision closer to 85%. The findings revealed that models performed better when utilizing
longer speech segments. The Swin transformer architecture attained the best accuracy
in terms of binary classification, though its superiority over CNNs was marginal for this
task. Considering overall accuracy, VGG16 can be proposed as the best model with 91.8%.
Applying ensemble techniques across segments and focusing analysis on vowels, /u/ and
/o/ recordings further improved accuracy by 1–4%. Moreover, visualization methods
highlighted discriminative regions and features learned by models, showing transformers
identify more widespread patterns while CNNs focus on localized spectrogram areas.

A key limitation of this study was the relatively small dataset size, which may have
impacted the models’ ability to reliably distinguish between mild and severe cases of
Parkinson’s disease. The limited availability of large-scale, well-annotated medical datasets
can hinder the generalization capabilities of such models for real-world clinical applications.

In conclusion, this work demonstrates the potential of leveraging deep learning tech-
niques on spectrogram inputs derived from voice recordings to enable non-invasive detec-
tion and monitoring of different stages of Parkinson’s disease progression. However, to
further enhance the identification of disease severity from patient voices, our future work
will focus on building larger multi-class labeled datasets of Parkinson’s cases. Additionally,
further research could explore a broader range of SOTA architectures and input representa-
tions beyond log mel spectrograms, potentially enhancing the classification accuracy.
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