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Abstract: Microarray gene expression analysis is a powerful technique used in cancer classification
and research to identify and understand gene expression patterns that can differentiate between
different cancer types, subtypes, and stages. However, microarray databases are highly redundant,
inherently nonlinear, and noisy. Therefore, extracting meaningful information from such a huge
database is a challenging one. The paper adopts the Fast Fourier Transform (FFT) and Mixture
Model (MM) for dimensionality reduction and utilises the Dragonfly optimisation algorithm as the
feature selection technique. The classifiers employed in this research are Nonlinear Regression, Naïve
Bayes, Decision Tree, Random Forest and SVM (RBF). The classifiers’ performances are analysed
with and without feature selection methods. Finally, Adaptive Moment Estimation (Adam) and
Random Adaptive Moment Estimation (RanAdam) hyper-parameter tuning techniques are used as
improvisation techniques for classifiers. The SVM (RBF) classifier with the Fast Fourier Transform
Dimensionality Reduction method and Dragonfly feature selection achieved the highest accuracy of
98.343% with RanAdam hyper-parameter tuning compared to other classifiers.

Keywords: lung cancer detection; MAGE data; DimRe; cancer classification; Adam and RanAdam
tuning; FFT; mixture model

1. Introduction

Cancer is a major threat and health concern worldwide. It is a medical condition
characterised by the unregulated growth of abnormal cells. Different types of cancers occur
in virtually any tissue or organ in the body as mentioned in Egeblad et al. [1]. Among the
different cancer types, lung cancer is one of the leading causes of cancer-related deaths
worldwide, as reported by Dela et al. [2]. It is considered the most dangerous type of cancer
due to several factors, such as late diagnosis, rapid spread, limited treatment options, poor
survival rate, etc., as mentioned by Schabath et al. [3]. Lung cancer begins in the cells of
the lungs and is primarily caused by smoking, as indicated by Alaoui et al. [4]. Additional
risk factors for lung cancer include a familial background of the disease and prior chest
radiation therapy, exposure to second-hand smoke and occupational exposure to certain
hazardous substances like asbestos, arsenic, diesel exhaust, and chromium as pointed out in
Mustafa et al. [5]. The survival rates of lung cancer are highly dependent on the prognosis
of cancer at early stages. Next, we discuss some of the related research literature associated
with lung cancer prognosis.

Review of Previous Work

As suggested in Dela et al. [2], the early detection and identification of lung cancer
tissues will increase the survival rate. Diagnosing lung cancer involves a combination of
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medical history assessment, physical examination, and clinical techniques such as Chest
X-rays, Computer Tomography (CT) scans, Sputum Cytology, Bronchoscopy, Positron
Emission Tomography (PET) Scans, etc., to effectively detect cancer tissue presence in the
human body. CT scans produce detailed cross-sectional images of the lungs by utilising
X-ray images captured from various angles. CT scans can provide more precise information
about lung nodules or a tumour’s size, shape, and location, Causey et al. [6]. Sputum
cytology involves examining a sample of mucus coughed up from the lungs under a
microscope. It is mainly used to detect lung cancer in individuals with coughing, chest
pain, or shortness of breath, Mukae et al. [7]. The sensitivity and specificity of these
clinical procedures can be used to explain their major limitations. Chest X-rays have
relatively low sensitivity, mainly for detecting cancer cells in the early detection stages,
as indicated by Konstantina Kourou et al. [8]. Also, high radiation exposure often makes
CT cumbersome. Sputum Cytology also faces issues like low sensitivity, particularly in
the early stages of cancer, and dependency on the presence of cancer cells in the collected
sputum. Bronchoscopy collects small lesions from peripheral lung areas and may contain
potential false negatives, Leong et al. [9]. Like the Bronchoscopy technique, PET Scans
analyse small lesions to distinguish benign and malignant abnormalities but have limited
spatial resolution, Visser et al. [10].

Furthermore, invasive procedures such as Bronchoscopy and Sputum Cytology carry
the potential risk of severe complications, including bleeding, pain, and infection, and it is
only possible to detect malignant cells. So, there are inherent risks invested in collecting
tissue samples for the above methods as mentioned in Rivera et al. [11]. Hence, these
methods are suggested when an oncologist witnesses significant and solid observations in
the early stages of lung cancer.

For the above concern, as suggested in Lubitz et al. [12], the MicroArray Gene Expres-
sion (MAGE) data analysis is often preferred due to its use of minimally invasive methods
such as fine needle biopsies and blood tests for sample collection. The microarray method
comforts and lowers the overall risk profile, making molecular analysis a safer alternative
for obtaining diagnostic information, Dhaun et al. [13]. The MAGE data analysis provides
a comprehensive molecular profile of the tumour, allowing for a detailed understanding of
the genetic alterations associated with lung cancer. This way, the microarray data analysis is
unique compared to bronchoscopy and sputum cytology methods, which may only detect
malignant cells. The microarray method can unveil specific genetic compositions and its
mutations, MAGE patterns, and molecular signatures indicating lung cancer’s possibility.
Thus, the microarray method aids accurate diagnosis and envisages personalised treatment
strategies based on unique genetic characteristics.

MAGE data is typically a high-dimensional dataset containing measurements of thou-
sands of gene expression levels, as discussed in Nguyen et al. [14]. Data analysis is difficult
due to the large number of features, which makes it cumbersome to visualise the relation-
ships between the genes. This problem is often regarded as the curse of dimensionality,
as mentioned in Saheed et al. [15]. In [15], the authors have suggested dimensionality
reduction (DimRe) as an effective tool to improve the classification performance of the
Machine Learning (ML) classification model for MAGE data. The DimRe process aims to
decrease the number of features in a dataset while retaining the crucial information. The
DimRe methods facilitate the identification of patterns and relationships within the data
at subspace, ultimately enhancing the effectiveness of ML algorithms. Further, Feature
Selection (FS), as performed by Jager et al. [16], refines the features obtained after DimRe to
improve the classification performance.

In De Souza et al. [17], Principal Component Analysis (PCA) was suggested as one
of the methods for DimRe in lung cancer MAGE data sets. However, PCA does not
capture the inherent nonlinear relationships in the MAGE data. A t-distributed Stochastic
Neighbor Embedding (t-SNE) is proposed as a DimRe method by Rafique et al. [18].
However, t-SNE is sensitive to the choice of hyper-parameters, and different runs may yield
different results. Inamura et al. [19] utilised Non-negative Matrix Factorisation (NMF) as a
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DimRe for MAGE data. The NMF is very sensitive to initialisation conditions, leading to
potential results variability, especially when applied to microarray data. Sparse Principal
Component Analysis (Sparse PCA) was proposed by Hsu et al. [20] for the processing
of lung cancer microarray datasets. The major challenge in Sparse PCA that impacts the
overall results is selecting an appropriate sparsity parameter. Mollaee et al. [21] utilised
Independent Component Analysis (ICA) to reduce MAGE data’s dimensionality. However,
the ICA assumes statistical independence in the data, which may only hold well in complex
biological datasets like the MAGE data. For DimRe, Chen et al. [22] proposed LASSO (Least
Absolute Shrinkage and Selection Operator) for MAGE analysis of Adenocarcinoma and
lung squamous cell carcinoma medical conditions. The LASSO requires careful tuning of
regularisation parameters and selecting an optimal parameter might be data dependent.
The use of a Genetic Algorithm (GA) FS and manifold learning technique is implemented
by Wang et al. [23] for cancer classification using microarray data. This Isomap (Isometric
Mapping) technique is computationally expensive and sensitive to noise in the data. So,
absolute noise removal is essential for a properly working Isomap in MAGE data analysis.
The methods like Locally Linear Embedding (LLE) are investigated by Lee et al. [24] for
DimRe in MAGE data. LLE is sensitive to the choice of neighbours, and results may vary
with different parameter settings. The Fast Fourier Transform (FFT) technique is utilised
for the DimRe of DNA methylation data by Raweh et al. [25]. FFT-aided classification
reported accurate results with reduced training time. FFT enables the fast computation
of frequency components and reduces the training time. Also, the Frequency Domain
Interpretation enhances the classification accuracy by revealing hidden periodic and cyclic
patterns in the data, providing insights not easily captured using methods like PCA or
t-SNE. Otoom et al. [26] utilised Mixture Model (MM) analysis for the DimRe of breast
cancer microarray data. The MM method’s DimRe reported an enhanced classification
performance for the ML classifiers. The MM is a probabilistic framework that allows a
more nuanced understanding of uncertainty and variability in the microarray dataset. The
MM also shows cluster interpretability that can naturally represent clusters within the data,
interpreting distinct subgroups of MAGE profiles easier. For the above advantages in this
research, we adopt FFT and MM as DimRe methods for the lung cancer microarray data.

After DimRe, the reduced data containing distinct and relevant features are subjected
to classification. Orsenigo et al. [27] utilised nonlinear manifold techniques for various
cancer microarray data classification. The nonlinear manifold technique reported 81%
classification accuracy for the lung cancer microarray data. Independent component
analysis with naïve Bayes classification attained 83% accuracy for lung microarray datasets,
as reported by Fan et al. [28]. Chen et al. [29] used a combination of particle swarm
optimisation and C4.5 decision tree classification for cancer classification from MAGE
data that reported an 87% accuracy. Díaz et al. [30] achieved a minimum Out-of-bag
(OOB) error rate between 0.1% and 0.2% for Random Forest-based classification with
exhaustive evaluation (large tree size). Support Vector Machine (SVM) and Radial Basis
Function (RBF) classification is applied by Azzawi et al. [31] for the cancer classification
with microarray data, reporting 90% classification accuracy. Given the above research, we
choose Nonlinear Regression (NR), Naive Bayesian (NB), Random Forest (RF), Decision
Tree (DT) and SVM (RBF) as the classification methods for lung cancer classification from
microarray data. However, these classification methods need further enhancement to
improve overall classification performance.

One of the significant techniques to improve a classifier’s overall classification outcome
is through optimising the parameters associated with the classifier methodology. As
sermonised in Kotsiantis et al. [32], the parameters are internal coefficients or weights
learned during the training phase of the classifier. The parameters adapt the model’s
decision boundaries to represent what it has learned from the input data. Traditionally, a
fixed learning rate for parameter updates is chosen in classifiers. However, as mentioned
by Ioannou et al. [33], adjusting this rate can impact convergence speed and prevent
overfitting or underfitting. Therefore, a hyper-parameter tuning method can control how
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the classifier model learns from the data. It can optimise the learning rates, regularisation
strength, kernel parameters, etc., thereby significantly boosting the classification accuracy
and overall performance of the classifier. Hyper-parameter tuning helps to balance the
classifier model in terms of complexity and flexibility. In this way, the hyper-parameter
tuning can improve the memory of training data, preventing overfitting, and unveiling
unseen data and patterns, preventing underfitting.

The grid search is used for parameter tuning by Alrefai et al. [34] to improve the
classification performance of microarray data. The Bayesian optimisation is employed by
Quitadadmo et al. [35] for microarray data. It is more computationally efficient than Grid
Search but may not always outperform Random Search. A momentum back propagation
is implemented as parameter tuning for cancer detection from microarray data in Wis-
esty et al. [36], who reported 94% accuracy in lung cancer classification. Rakshitha et al. [37]
used RMSprop (Root Mean Square Propagation) as a tuning technique for classifying
and predicting ovary cysts and reported 89% accuracy. Adaptive Moment Estimation
(Adam) combines ideas from both momentum optimisation and RMSprop. This optimiser
can adjust learning rates based on gradients, offering faster convergence for MAGE data.
Sena et al. [38] utilised Adam for ECG classification using Convolutional Neural Networks
(CNNs). Random Adaptive Moment Estimation (RanAdam) is an extension of the Adam
optimisation algorithm with the addition of randomisation. So, RanAdam anticipates
further improvement in the tuning capability compared to the Adam hyper-parameter
tuning method. So, based on all the above observations in the literature, this research
considers both Adam and RanAdam hyper-parameter tuning methods for improving the
classification performance of the ML classifiers.

2. Materials and Methods

The well-known Gordon MAGE dataset [39] that contains malignant pleural Mesothe-
lioma and Adenocarcinoma is used for this research. The dataset contains gene expressions
useful in lung cancer classification and aid in cancer prognosis at a much earlier stage.

The overall methodology adopted in this research work consists of three approaches.
In all three approaches, DimRe is performed as a first step. The DimRe converts higher
dimensional MAGE data into lesser dimensional data, retaining the unseen patterns and
significant information. The first approach classifies the data after DimRe using ML
classifiers into Adeno and Meso classes. The evaluation of the classifier’s performance
involves various performance metrics. The second approach utilises FS methods after
reducing dimensionality to remove redundant or noisy information. These relevant features
are subjected to classification, and their performance is evaluated. In the third approach,
after performing FS, the Adam and RanAdam hyper-parameter tuning is incorporated into
the classifiers to optimise the overall performance of the classifiers. The above approaches
employed in this research are abridged in Figure 1.
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2.1. Details about the Dataset

The Gordon dataset [39] comprises two distinct classes: Adenocarcinoma and Mesothe-
lioma. The dataset consists of 181 tissue samples (12,533 × 181), with 150 samples of
Adenocarcinoma (12,533 × 150) and 31 of malignant Mesothelioma (12,533 × 31). Here,
12,533 characterise each tissue sample. The total number of rows in the matrix is 12,534,
including the last row for class labels: ADCA for Adenocarcinoma and MPM for malignant
Mesothelioma samples. The number of patient data for ADCA and MPM are different;
there is a data imbalance. The MAGE dataset is built on original surgical specimens from
patients with microarray experiments. The method is independent of the platform em-
ployed for data acquisition and does not need an integration of the method of transcription
to translation for selected genes. These reasons make MAGE ratios a useful method for
training and evaluating algorithms for lung cancer classification.

2.2. Dimensionality Reduction (DimRe)

As previously stated, the microarray data is inherent with the curse of dimensionality,
leading to significant Computational Complexity (CC) and reduced model generalisation.
DimRe techniques become imperative here, as they mitigate the risk of overfitting, enhance
interpretability, and facilitate more efficient analysis by extracting meaningful patterns
from the high-dimensional data. The volume of data is reduced while preserving essential
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information. So, the method improves accuracy and scalability in analysing MAGE data.
The methodology for DimRe using the Mixture Model and the Fast Fourier Transform
algorithm is discussed in the next section.

2.2.1. Mixture Model for DimRe

In the MM methodology, each gene’s expression pattern is considered a univariate
distribution, as indicated by Liu et al. [40]. So, one or two Gaussian distributions will be
fitted for each distribution and then unequally sub-distributed to fractions and variances.
The maximisation of Bayesian Information Criteria is the base for selecting the Gaussian
fitted distribution. It is expressed as follows:

BA,N = xlog (n)− 2 log(HA,N(y|θ)) (1)

B = y2 + xln(n) (2)

here, model A contains N components with a maximum likelihood function of HM,N(y|θ),
where θ is the maximising parameter of the model with respect to mean and variance and
x is the total of the estimated parameters with sample size ‘n’. Since MM is a probabilistic
framework, it can model nonlinear relationships and identify latent structures within the
data. Therefore, it provides a more nuanced representation of the underlying biological
processes of the microarray data. However, MM requires more computational resources
and is often sensitive to the choice of model parameters. Next, we discuss the Fast Fourier
Transform (FFT), which is computationally efficient compared to the MM.

2.2.2. Fast Fourier Transform for DimRe

Fast Fourier Transform (FFT) is a frequency-domain technique that is computationally
efficient and can be used as a DimRe technique. The FFT algorithm is a technique for
calculating the discrete Fourier transform of a sequence for a time domain signal. The data
are transformed from the time domain to the frequency domain using FFT, allowing for
the detection and extraction of prominent periodic patterns naturally present in MAGE
profiles. In this way, the relationships inherent in MAGE data are uncovered, and the subtle
biological nuances could be unveiled. As given in Cheong Hee Park et al. [41], it is possible
to simplify FFT by separately considering odd and even terms and also considering the
periodic terms from the DFT expression given as:

X(c) = ∑N−1
n=0 x(n)WN

cn (3)

where
WN = e−j2π/N (4)

here N stands for number of FFT points, n = 1, 2, 3 . . . N, c = 1, 2, 3 . . . N.
Similarly, the Inverse DFT (IDFT) is given by:

x(n) =
1
N∑C−1

c=0 X(c)WN
−cn (5)

Next is a statistical analysis of the feature-extracted data to understand the changes in
the dataset after the adopted DimRe methods.

2.2.3. Impact Analysis of DimRe Methods through Statistics

The Pearson Correlation Matrix (PCM) can be used to analyse microarray gene ex-
pression data after dimensionality reduction, as performed by Kim et al. [42]. The PCM
provides insights into the relationships between gene expression profiles by calculating
pairwise correlations between genes across samples. Thus, PCM can uncover key gene
clusters or functionally related modules, facilitating the discovery of cancer biomarkers. In
this work, we evaluate the dataset with PCM after DimRe using the correlation coefficient
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p. The PCM measures the linear relationship between two data, ranging from −1 to 1.
Here, p = 1 represents a positive linear relationship, p = −1 represents a negative linear
relationship, and if p = 0, there is no relationship. Figure 2 explores the Correlation of the
FFT DimRe method for Adeno and Meso cancer classes, respectively. For the Adeno class,
correlation values lie between 0.63 and 1.00. So, there is a strong positive linear relationship
within the data of the Adeno class. The positive relationship implies that the data in this
class move together in a positive direction, and an increase in one variable is associated
with an increase in the other. So, the data are more internally consistent and cohesive.
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For the Meso class, correlation values lie between −0.08 and 0.27. Correlation values
closer to zero suggest a weak or no relationship; hence, it is internally consistent. In essence,
for the Adeno case, consistent patterns and relationships are available, and the Meso has
inconsistent and diverse patterns and relationships. Figure 3 examines the Correlation of
the MM DimRe Method for Adeno and Meso cancer classes, respectively. For the Adeno
class, correlation values lie between 0.30 and 0.93. So, once again, there is a positive linear
relationship within the data of the Adeno class. For the Meso class, correlation values lie
between −0.10 and 0.14. So, the data presents a weak positive correlation and a negative
correlation. Once again, Meso data are internally consistent. Overall, in the case of both
FFT and MM DimRe techniques, weaker correlations pose a challenge for the classification
model because it may need to rely on nonlinear relationships or interactions between
features to distinguish instances of the class accurately. Also, the high correlations in the
Adeno class pose a risk of overfitting. So, further data processing techniques like the FS
method must be employed to mitigate the impact of these highly consistent and inconsistent
correlated features to improve the classifier model’s generalisation performance.

After DimRe, we assess whether the selected features provide meaningful information
about the underlying patterns in MAGE data. Statistical analysis helps validate the effectiveness
of DimRe techniques by examining the significance of the extracted features about the target
variable or the problem at hand. This section analyses whether the outcomes of MAGE data after
DimRe is related to statistical parameters such as the mean, variance, skewness, t-test, kurtosis,
CCA, p-value, and Pearson correlation coefficient (PCC). Table 1 represents the statistical features
analysis for MAGE data after DimRe. As mentioned in Table 1, the FFT-based method displays
higher mean values and variance among the classes.
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Table 1. Average statistical features for mixture model and FFT dimensionally reduced Adenocarci-
noma and Meso cancer cases.

Sl.No Statistical Features
Mixture Model FFT

Adeno Carcinoma Meso Cancer Adeno Carcinoma Meso Cancer

1 Mean 12.77239 84.4254 50,051.74 64,399.1406

2 Variance 28,701.74 72,406.87 8.14 × 108 1,207,801,420

3 Skewness 25.62594 11.83928 22.08858 17.9010876

4 Kurtosis 1008.477 211.3989 1392.65 1072.04601

5 PCC 0.84004 0.926835 0.944664 0.94001594

6 t-test 0.017655 3.14 × 10−18 2.06 × 10−24 1.096 × 10−21

7 p-value < 0.01 0.493103 0.5 0.5 0.5

8 Canonical Correlation
Analysis (CCA) 0.3852 0.3371

The MM method depicts low mean and variance parameters, indicating a class part
of variables within the cancer classes. All three types of DimRe methods give positive
skewness values and flat kurtosis values. PCC shows a good correlation in intra-class
outputs. The t-test and p-value reveal no significant nature after DimRe of the MAGE
data. The canonical correlation coefficient indicates the strength and direction of the linear
association between the canonical variables. The value of 0.3852 and 0.3371 suggests a
moderate positive linear association between the two sets of variables after FFT and MM
DimRe. So, there is some degree of association between the variables in the first and second
classes, suggesting shared patterns or information between the two classes. Moderate
CCA values after feature extraction positively affect classification by providing relevant
information for distinguishing between classes.

In the previous discussion, the correlation plot delivered the correlation of data within
each cancer class across various subjects in the database. However, it is important to visu-
alise the two cancer classes combined to visualise the distribution of the overall dataset. The
violin plot is a data visualisation combining aspects of a box plot and a kernel density plot,
providing insights into a dataset’s distribution and probability density. The comparison of
Adeno and Meso cancer classes FFT and MM methods are performed using the violin plot
in Figure 4. The width of each violin represents the frequency of data points at different
values. The range of the violin represents the comprehensive view of the data distribution.
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In Figure 4a, the Adeno data is distributed from 0 to 17,500 and Meso data from 0 to 20,000.
In Figure 4b, the Adeno data is distributed from −75 to 180 and Meso data from −210 to 830.
All the observations from Table 1 are reflected in Figure 4. Overall, DimRe reveals unseen
patterns and creates complex relations in the data distribution between the two cancer
classes. In essence, the DimRe enhances the pre-classification step. But still, techniques like
FS are essential and must be put forth to avoid overfitting and underfitting issues during
classification. Following this, in the next section, the FS technique is discussed.
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2.3. Feature Selection (FS) Techniques

FS is a crucial step in classifying lung cancer data from MAGE data, as it discovers
relevant genes that contribute significantly to the classification task while removing ir-
relevant and redundant features. Several FS techniques exist, including filter, wrapper,
and embedded methods prevailing in the literature. Filter Methods like correlation-based
involving information gain and mutual information techniques are performed over MAGE
data in Almugren et al. [43], which delivered an 85% to 90% accuracy on different datasets.
The filter techniques may not capture complex interactions among features that contribute
to the classification of MAGE data. Wrapper Methods like Recursive Feature Elimina-
tion (RFE) and forward selection with backward elimination are used as FS techniques in
lung cancer MAGE data classification by Cai et al. [44] and Alhenawi et al. [45] with an
86.54% and 94% accuracy, respectively. Wrapper Methods are computationally expensive
and prone to overfitting, as they optimise based on the specific classifier’s performance
on the training data. LASSO FS for tumour classification using MAGE data was tested
in Kang et al. [46] with a 96% accuracy. A Random Forest-based FS was performed by
Dagnew et al. [47] for cancer classification from MAGE data, with a 94% accuracy. LASSO
and Random Forest-based FS sometimes fail to figure out the intricacies of MAGE data
due to the diverse and nonlinear nature of MAGE data. However, Cui et al. [48] proposed
Dragonfly FS for MAGE data that delivered 97% accuracy on lung cancer datasets. Based
on the above reports in the literature, this research employs the meta-heuristic DragonFly
(DF) Optimisation technique for FS on MAGE data after DimRe.

The DF is an optimisation technique influenced by dragonflies’ static and dynamic be-
haviour. In the research by Majdi Mafarja et al. [49], the binary version of the DF algorithm
approach is employed to solve FS problems. The static swarming is for feeding and the dy-
namic swarming is for migrating. Dragonflies make small groups for feeding and fly over a
small area to hunt their prey. But for migration, they will form large groups and fly in one
direction over a long distance. In static swarming, the movement is not in a single direction,
but follows a back-and-forth movement. These are the exploration and exploitation phases
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of a meta-heuristic algorithm. As represented by Chnoor M. Rahman et al. [50], separation,
alignment, cohesion, attraction to food and distraction from the enemy are the important
features of the DF algorithm.

Separation is the mechanism for avoiding collision with neighbours.

Si = −
N

∑
j=1

X − Xj (6)

Here Si is the i-th individual’s separation motion, X is the position of the current
individual, Xj is the position of the j-th dragonfly and N is the total number of dragonflies
in the swarm.

Alignment is the matching velocity with the neighbours.

Ai =
∑N

j=1 Vj

N
(7)

Here, Ai is the i-th individual’s alignment motion, V is the velocity of the j-th dragonfly
in the neighbourhood. Cohesion represents the tendency of a neighbouring group towards
the centre.

Ci =
∑N

j=1 Xj

N
− X (8)

Here, Ci is the i-th individual’s cohesion, X is the position of the current individual, Xj
is the position of j-th dragonfly, and N is the total number of dragonflies in the swarm.

Attraction to food can be calculated as

Fi = X+ − X (9)

Fi is the attraction to food for i-th individual, X is the position of the current individual,
and X+ is the position of the source of food.

Distraction from enemies is as follows:

Ei = X− + X (10)

Ei is the i-th individual’s distraction motion from the enemy, X is the position of the
current individual and X− is the position of enemy. DF algorithm uses two vectors in an
optimisation problem, step vector and position vector. The step vector is as follows:

∆Xt+1 = (sSi + aAi + cCi + fFi + eEi) + w∆Xt (11)

where w is the inertia weight, t is the iteration number, s indicates the separation weight, Si
gives the separation of the i-th individual, a represents the alignment weight, Ai shows the
alignment of i-th individual, c is the cohesion weight, Ci indicates the cohesion of the i-th
individual, f is the food factor, Fi gives the food source of the i-th individual, e represents
the enemy factor, Ei is the position of enemy of the i-th individual, after calculating step
vector, position vector can be calculated as follows:

Xt+1 = Xt + ∆Xt+1 (12)

here, t is the current iteration. Figure 5 depicts the impact of MM and FFT DimRe methods
with DF FS for Adeno and Meso carcinoma cancer classes through the Normal Probability
Plot. In ideal probability plot cases, a straight diagonal line suggests normality, aiding
in identifying outliers and assessing the quality of data preprocessing. However, there
are departures from linearity which indicate non-normality and the presence of subpop-
ulations. There are distinct clusters or deviations from linearity, indicating nonlinearity
and divergence within the dataset, representing the underlying subtypes and biological
variations between cancer classes.
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2.4. Classification

The prime objective of the research is lung cancer classification from MAGE data. As
discussed previously, we use five classification algorithms from various observations in
reported research: NR, NB, DT, RF and SVM (RBF). The presence of distinct clusters and
subpopulations makes these classifiers perform better for the lung cancer MAGE data.
MAGE data often exhibits nonlinear relationships, where the expression levels of genes
may interact in complex ways to determine the class label. NR classifiers can better capture
complex decision boundaries in the data. They can flexibly model complex relationships,
potentially improving classification accuracy. Almugren et al. [43] have utilised NB as
one of the classification techniques for cancer classification from MAGE data. The Naive
Bayesian Classifier is based on the probabilistic principle, specifically Bayes’ theorem. NB
will calculate the probability based on feature values, and then the class label will be
allocated with the highest probability. NB is better suited for huge datasets due to the
computational efficiency of the classifier. Decision trees, especially when deep and complex,
can model these nonlinear relationships effectively.

Peng et al. [51] classified different cancer types from MAGE data, including lung,
breast, and colon tumours. In MAGE data, where the number of genes can be very high,
the ability of DT to automatically select relevant features can be advantageous. Mohapatra
P et al. [52] used the Random Forest to classify medical data, which consists of eight
datasets for different cancer types like breast cancer, prostate cancer, colon tumours and
leukaemia. Random Forests, which are ensembles of decision trees, can further enhance
the performance of decision tree models. They reduce overfitting, increase accuracy, and
estimate feature importance. Random Forests are popular for MAGE data classification
because they handle noise and variability in MAGE data. Huynh et al. [53] analysed SVM
as a classification technique to classify MAGE data. An SVM classifier deals with the curse
of DimRe by obtaining a hyper-plane in high dimensional feature space. In most cases,
SVM produces sparse solutions, which will reduce computational burden and thereby
improve accuracy.
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2.4.1. Nonlinear Regression

NR is a statistical method that works on linear/nonlinear data. One of the powerful
tools for analysing the data is linear regression. But in real-time scenarios, researchers
have to deal with the mathematical models whose results are related to nonlinear predictor
variables, as mentioned by Martín, C.A et al. [30]. The Euclidean distance is primarily
considered from the target of MAGE data with input data using the following equation as
represented in Wenseng et al. [54],

∑ d = ||Ti − Xi||2 (13)

Ti indicates the data target, and Xi represents the input data with index i. A cuboid
expression representing a 3D space is used to project ‘d’ in the following way.

The projection to the 3D space is expressed using the following cuboid equation:

Minimise: a = n1 × d + n2
2 × d2 + n3

3 × d3 (14)

Subject to :


n1 > n2 > n3 > 0, ni[0, 1] for i = 1, 2 and 3(

n1−n2
2

)2
< 0.5

n2 = n1
10 , n3 = n2

10


later, f = min (a) is calculated and threshold function ‘s’ is chosen for the NR with b0 as the
sum of the squares of average deviation.

s = f + b0 (15)

The computation of the b0 is performed using the least squares method.

2.4.2. Naive Bayesian Classifier

NB is based on Bayesian statistical principles. It is a simple and efficient classifier for
MAGE data, as described by A. Kelemen et al. [55]. The equations and expressions for
Naïve Bayesian Classifier are as follows: Let yi be the class label for i-th training instance.

P(y) = n/N (16)

where P(y) is the prior probability of class y, n is the number of instances of class y and N is
the total number of training instances. The likelihood of class y can be calculated as

P(x|y) = P(x1, y) ∗ P (x2, y) ∗ . . . . . . . . . ∗ P(xn, y) (17)

The posterior probability of each class given the observed features x is found using
Bayes theorem:

P(y|x) = (P(x|y) ∗ P(y))/P(x) (18)

By evaluating the posterior probability of each class, it is possible to make predictions
for a new feature vector x.

2.4.3. Decision Tree Classifier

DT can be used for both classification and regression problems. It is a tree-like structure
which uses decision nodes for making decisions, and leaf nodes represent the output of
those decisions. It will start from the root node and traverse to the leaf node to make new
predictions. The class label was stored at the leaf node. A feature and a threshold are
used to split the data into two subsets at each node. In each node, the class labels will be
in a mixed way. Hastie et al. [56] stated that information gain and Gini impurity are the
common impurity measures for measuring it.
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The information gain can be calculated as follows:

Information gain(S, X) = Entropy(S)− ∑
u∈values(X)

|S u|
S

∗ Entropy(Su) (19)

here X is the feature, S is the set of instances in a node, and Su is the subset of instances
with the value u of feature X. Gini impurity in given as follows:

Gini(p) = 1 −
N

∑
j=1

(
pj

)2
(20)

where p represents the proportion of instances of class j in the node and N is the total
number of classes. The goal is to select the feature and threshold to reduce maximum
impurity, called best split. The best split can be represented by

Bestsplit(S) = argmaxa,tImpurity(S)− ∑
u∈values(X)

|S u|
S

∗ Impurity(Su) (21)

here X is the feature, S is the set of instances in a node, Su is the subset of instances with the
value u of feature X.

2.4.4. Random Forest

Random Forest classifier is an effective technique for both regression and classification
problems. It includes a set of decision trees. It takes predictions from each decision tree, and
the final prediction will be based on the majority votes of prediction. It helps to improve
the accuracy of prediction for the dataset. Random Forest works based on the technique of
bootstrap sampling. There is a decision tree for each bootstrap sample. As discussed in
previous cases, decision trees select the best split using information gain or Gini impurity
criteria. At each node in the decision tree, a random subset of features is chosen to decide
the split. Each tree in the Random Forest will independently make predictions, and the final
prediction is taken by aggregating the votes of all the trees. The expression for prediction
using the majority vote in Random Forest described by James et al. [57] is

x = argmaxa

N

∑
n=1

xi = a (22)

where x is the final prediction, N is the number of decision trees in the forest, xi is the
prediction of the i-th tree, and ‘a’ is the class label.

2.4.5. SVM (RBF)

The support vector classifier with the Radial Basis Function is a powerful classifier for
handling nonlinear decision boundaries, as explained by El Kafrawy et al. [58]. The RBF
kernel maps the input data into a higher dimensional feature space. Vapnik [59] pioneered
the SVM concept, which emphasises finding a decision boundary that maximally separates
the data points of different classes by maintaining a maximum margin, thereby enhancing
the classifier’s generalisation capability. The margin, representing the distance between the
decision boundary and the closest support vector, is crucial in determining the classifier’s
robustness and ability to classify unseen data accurately. The margin is given by:

K
(
ai, aj

)
= e(−γ||ai−aj||2) (23)
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here ai and aj are FS vectors of i-th and j-th occurrences, and the width of the radial basis
function is controlled using the parameter γ. The objective function of SVM RBF can be
represented as:

minimizev
1
2

N
∑

i=1

N
∑

j=1
vivjxixjK

(
aiaj

)
−

N
∑

i=1
vi

With ∑N
i=1 vixi = 0

0 ≤ vi ≤ R for i = 1, 2, . . . . . . N

(24)

here, R indicates the regularisation parameter, xi is the class label of the i-th instance, v
is the dual vector, ai is the i-th instance, and N is the total of instances. The prediction
for a new instance is made by computing the value of the decision function. The decision
function is given by:

g(x) = sign(
N

∑
i=1

vixiK(ai, a)+b) (25)

here K(ai, a) is the radial basis kernel function, a is the new instance, and b is the bias.

2.5. Training and Testing

As the MAGE dataset is limited, the research used the K-fold cross-validation method
for training. Xiong et al. [60] explained that the dataset will be distributed into k–equal-
sized subsets in the K-fold cross-validation technique. Each fold should have an almost
equal distribution of classes. Then, k iterations should be performed where each iteration
uses a different fold as the validation set, and the remaining folds used for training. In each
iteration, the model will be trained using the training set, and the results will be assessed by
means of the validation set. The process will be repeated until all folds are taken from the
validation set. Once the k-fold cross-validation process has been completed, it is possible to
retrain the full dataset, and new predictions can be made on unseen data. In this paper, a
10-fold cross validation is performed. There are 1253 features per patient in this work after
DimRe. Mean Square Error (MSE) is utilised for supervising the training methodology.

MSE =
1
N∑N

j=1

(
Oj − Tj

)2 (26)

Here, Tj is the target value at model j and Oj is the observed value at time j.
Table 2 shows the training and testing MSE of the classifiers with and without FS

methods for both MM and FFT DimRe methods. The training MSE always lies between
10−7 and 10−9, while the testing MSE changes from 10−5 to 10−8. The maximum number of
iterations for the training process is 2000. The Naïve Bayesian classifier without FS method
settled at a minimum training and testing MSE of 1.56 × 10−9 and 2.93 × 10−7, respectively.
A SVM (RBF) Classifier with a Mixture Model DimRe method and DF FS scores a minimum
training and testing MSE of 1.96 × 10−9 and 5.18 × 10−7 correspondingly. As in the case
of the FFT DimRe method and with DF FS, the Nonlinear Regression classifier attained
a minimum training and testing MSE of 2.54 × 10−9 and 6.24 × 10−8, respectively. The
parameters and their values selected for classification are furnished in Table 3.
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Table 2. Training and testing MSE of classifiers for Mixture Model and FFT DimRe technique without
and with DF FS.

Classifiers
Mixture Model DimRe Method

and without FS
FFT DimRe Method and without

FS
Mixture Model DimRe Method

and with DF FS
FFT DimRe Method and with DF

FS

Training MSE Testing MSE Training MSE Testing MSE Training MSE Testing MSE Training MSE Testing MSE

Nonlinear
Regression 3.84 × 10−7 5.63 × 10−5 3.11 × 10−6 0.000016 1.44 × 10−6 3.6 × 10−6 2.54 × 10−9 6.24 × 10−8

Naïve
Bayesian 1.56 × 10−9 2.93 × 10−7 5.61 × 10−9 3.24 × 10−8 3.48 × 10−6 4.2 × 10−5 3.03 × 10−7 5.04 × 10−5

Random Forest 1.23 × 10−8 1.94 × 10−5 1.44 × 10−7 6.89 × 10−5 3.06 × 10−7 5.76 × 10−6 6.4 × 10−6 2.92 × 10−5

Decision Tree 3.25 × 10−6 5.48 × 10−5 2.56 × 10−6 4.49 × 10−5 2.89 × 10−7 2.6 × 10−5 8.1 × 10−7 4.76 × 10−5

SVM(RBF) 2.6 × 10−8 1.69 × 10−6 8.1 × 10−8 2.5 × 10−7 1.96 × 10−9 5.18 × 10−7 1.02 × 10−8 1.56 × 10−7

Table 3. Classifier parameters and their values.

Classifier Parameter Value

NR T1 = 0.85, T2 = 0.65, n1, n2, and n3 is retrieved from (15), b0 = 0.01, Convergence Criteria (ConvCrit) = MSE

NB Smoothing parameter, α = 0.06, Prior Probability = 0.15, ConvCrit = MSE

RF Number of trees NT = 100, Depth D = 10, ConvCrit = MSE

DT Depth D = 10, ConvCrit = MSE

SVM (RBF) Width of the radial basis function, γ = 1, ConvCrit = MSE

3. Results and Discussion

In this research, diverse ML algorithms are assessed with the help of a confusion
matrix as given in Table 4, which uses 90% of input features for training and 10% for testing.

Table 4. Confusion matrix for binary classification.

Truth of Clinical Situation
Observed

Adeno Meso

Actual
Adeno TP FN

Meso FP TN

For lung cancer detection, based on the confusion matrix shown in Table 4, the clinical
situations are defined as:

True Positive (TP): A patient is accurately recognised with an Adeno cancer.
True Negative (TN): A patient is accurately recognised with Meso cancer.
False Positive (FP): A patient is wrongly recognised with Adeno cancer when they

have Meso cancer.
False Negative (FN): A patient is wrongly recognised with Meso cancer when they

have Adeno Cancer.
Next is an analysis of the different parameter metrics such as Accuracy, F1 score, MCC,

Error Rate, Youden Index, and Kappa which can be used for analysing the performance.
The equations corresponding to the different performance metrics used for evaluating the
classifier performance are represented in Table 5. The Accuracy metric is used to evaluate
the overall correctness of the classifier’s predictions, which is crucial for ensuring the
reliable identification of gene expression patterns associated with lung cancer. The F1 score
balances precision and recall between the imbalanced Adeno and Meso class distributions.
The F1 score is important in this research as it aids in accurately identifying genes relevant
to disease classification for the imbalanced dataset. The Matthews Correlation Coefficient
(MCC) provides a balanced measure of classifier performance by evaluating models in
datasets with varying class distributions. The proportion of misclassified instances is
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marked with Error Rate. The Error Rate offers insights into the classifier’s performance
in accurately distinguishing between different gene expression profiles, which is essential
for minimising false discoveries in microarray data analysis. The Youden Index is used to
quantify the classifier’s ability to identify true positives while minimising false positives
correctly. The Kappa metric measures the agreement between observed and predicted
classifications, showing the repeatability of the produced classification results.

Table 5. Performance metrics for various classifiers.

Performance Metrics Derived from Confusion Matrix

Accuracy Accuracy = (TN+TP)
(TN+FN+TP+FP)

F1 Score F1 = 2∗TP
(2∗TP+FP+FN)

Mathews Correlation
Coefficient MCC (TN∗TP−FP∗FN)√

((TP+FP)∗(FP+TN)∗(TN+FN))

Error Rate ErR = (FP+FN)
(TP+TN+FP+FN)

Youden Index YI(%) = TP
TP+FN + TN

TN+FP − 100

Kappa
Kappa =

(
TP+TN

100 − Eacc )/(1-Eacc)
Eacc = (((FP + TP)/100) ∗ (FN + TP)/100 + (((FP + TN)/100) ∗ ((TN + FN)/100))

Table 6 depicts the performance of the classifiers based on metrics such as Accuracy,
Error Rate, F1 Score, MCC, Kappa and YI for Mixture Model and FFT DimRe techniques
without FS. From Table 6, it is shown that the Naïve Bayesian Classifier with the FFT DimRe
technique performed with a high accuracy of 88.950%, an F1 Score of 93.464% and with
a low error rate of 11.050%. The Decision Tree Classifier with the FFT DimRe technique
performed with a low accuracy of 54.144%, an F1 Score of 66.122% and with a high error
rate of 39.779%.

Table 6. Performance analysis of classifiers for Mixture Model and FFT DimRe techniques without FS.

DimRe
Method Mixture Model FFT

Classifiers
NR NB RF DT SVM

(RBF) NR NB RF DT SVM
(RBF)Parameters

Accuracy 67.403 76.243 75.691 65.746 59.669 72.928 88.950 62.983 54.144 60.221

F1 Score 78.067 84.912 84.397 76.692 70.445 81.369 93.464 74.131 66.122 69.492

MCC 0.197 0.307 0.317 0.179 0.194 0.404 0.583 0.170 0.067 0.315

Error Rate 32.597 23.757 24.309 34.254 40.331 27.072 11.050 37.017 45.856 39.779

Youden
Index 24.839 35.505 37.398 22.839 25.742 51.978 53.398 22.065 8.839 41.763

Kappa 0.178 0.298 0.304 0.159 0.153 0.353 0.578 0.145 0.052 0.230

Table 7 depicts the performance analysis of the classifiers for the Mixture Model and FFT
DimRe techniques with DF FS. It is clear from Table 7 that the Decision Tree Classifier achieved
a high accuracy of 91.160%, an F1 Score of 94.558%, and a low error rate of 8.840% for the
mixture model DimRe method. The Random Forest classifier is placed at the lower edge with
a low accuracy of 53.039%, a high Error Rate of 46.961% and an F1 Score of 65.021%. The
comparison with Tables 6 and 7 reveals that the accuracy of the NB classifier is reduced from
76.243% to 68.508%. The reduction in accuracy is because NB assumes independence between
features, and DF FS has removed certain independent features that are not directly correlated
with class labels. Conversely, with the application of DF FS, the performance of SVM (RBF) is
improved from 59.669% to 91.160%. This improvement in classification accuracy is because DF
FS reduced the dimensionality of MAGE data by selecting subsets with informative features.
With these fewer features, the SVM RBF classifier can more effectively model the MAGE data



Bioengineering 2024, 11, 314 17 of 27

and avoid overfitting. Moreover, DF FS has retained the most discriminative features that
helped the SVM RBF classifier to establish clearer decision boundaries that separates data in the
higher-dimensional feature space.

Table 7. Performance analysis of classifiers for Mixture Model and FFT DimRe techniques with DF FS.

DimRe
Method Mixture Model FFT

Classifiers Nonlinear
Regression

Naïve
Bayesian

Random
Forest

Decision
Tree

SVM
(RBF)

Nonlinear
Regression

Naïve
Bayesian

Random
Forest

Decision
Tree

SVM
(RBF)Parameters

Accuracy 67.956 68.508 53.039 60.221 91.160 85.083 58.011 53.591 67.956 82.873

F1 Score 77.863 78.967 65.021 71.875 94.558 90.970 68.333 65.854 78.519 88.889

MCC 0.277 0.209 0.057 0.124 0.715 0.481 0.217 0.042 0.203 0.554

Error Rate 32.044 31.492 46.961 39.779 8.840 14.917 41.989 46.409 32.044 17.127

Youden
Index 35.742 26.172 7.505 16.172 76.538 48.731 28.860 5.613 25.505 66.538

Kappa 0.240 0.191 0.043 0.103 0.711 0.481 0.163 0.033 0.184 0.524

The above uncertainty of classifier performance observed with DF FS is improved by
employing Adam and RanAdam hyper-parameter tuning methods. Adam and RanAdam
are adaptive optimisation algorithms that can efficiently adjust each parameter’s learning
rate associated with the classifier during the training phase. This adaptiveness helps in
navigating the parameter space more effectively. Therefore, an accelerated convergence
leads to better solutions within a few iterations.

3.1. Hyper-Parameter Tuning

The objective of hyper-parameter tuning is to optimise the hyper-parameters of ML
models to improve the performance as described by Daud Muhajir et al. [61]. Hyperparam-
eters are parameters not learned from the data but are set before training the model. They
can control various aspects of the training process. There are different approaches to deter-
mine the best values, such as the Adaptive Moment Estimation method (Adam), Stochastic
gradient method, Relative Randomness Function (RRF), Random Weights (RW) hyper-
parameter updating and Grid Search (GS) method, as indicated by Elgeldawi et al. [62].
RanAdam is a new hyper-parameter tuning method used in this work to improve the
accuracy of lung cancer classification.

3.1.1. Adam Hyper-Parameter Tuning

Adam is one of the commonly used optimisation algorithms used in training. It is more
effective in handling non-convex optimisation problems as mentioned by Sena et al. [38].
The key parameters used by Adam for tuning are learning rate, β1, β2, ∈, and decay rates.
Lr (learning rate) controls the step size during parameter updates in the Adam algorithm. β1
and β2 were used to control the exponential moving averages of the gradient and its square,
respectively. ∈ is a small constant added to the denominator in the Adam update rule to
prevent division by zero. Adam often has optional learning rate decay mechanisms. It is
possible to prevent overfitting by combining Adam with L2 regularisation. The strength of
regularisation can be controlled by tuning the weight decay coefficient. Another parameter
which has an impact on the convergence of Adam is batch size. Larger batch sizes can
provide more accurate gradient estimates, while smaller ones can introduce more noise,
which might require a smaller learning rate. The number of training epochs can also be
considered a hyper-parameter, as stated by Kaur S et al. [63]. Finding the optimal number
of epochs for each specific task is necessary. After defining the hyper-parameter space,
we must select a tuning strategy like grid search, random search, Bayesian optimisation,
etc. In this work, accuracy is chosen as the performance metric to optimise classifier
parameters. For each hyper-parameter set in our tuning strategy, a classifier model is
trained using Adam on the training data and validated on the validation set as indicated
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by Masud et al. [64]. Table 8 indicates the optimal and initial values of hyper-parameter
tuning with Adam for different classifiers. The hyper-parameters are updated according to
the following equation:

wt+1 = wt −
Lr

∈ +
√

Ŝt
∗ V̂t (27)

V̂t =
vt

1 − βt
1

(28)

Ŝt =
st

1 − βt
2

(29)

vt = β1 ∗ vt−1 + (1 − β1) ∗
∂L

∂wt
(30)

st = β2 ∗ st−1 + (1 − β2) ∗
(

∂L
∂wt

)2
(31)

Table 8. Optimal and initial values of hyper-parameter tuning with Adam for different classifiers.

Classifiers
Optimal Values Initial Values

β1 β2 ∈ Lr wt vt st

NR 0.5 0.5 0.2 0.28 0.42 0.1 0.15

NB 0.6 0.4 0.26 0.32 0.5 0.1 0.2

RF 0.45 0.55 0.38 0.4 0.38 0.1 0.25

DT 0.55 0.45 0.33 0.41 0.6 0.15 0.2

SVM(RBF) 0.35 0.65 0.32 0.45 0.5 0.1 0.2

In the above equations, wt and wt+1 denote to past and new hyper-parameters; ∂Lr
∂wt

refers to the loss function which has to be minimised according to hyper-parameter w.

∂L
∂wtr

=
ERtr

win
, if tr = 1 (32)

∂L
∂wtr

=
ERtr − ERtr−1

wtr − wtr−1
, if tr > 1 (33)

Here, Error Rate is indicated by ER with tr as the present iteration and tr − 1 as the
previous iteration. Algorithm 1 illustrates the execution of classifier with Adam method.

Algorithm 1. Adam Hyper-parameter Tuning

Step 1. Start Algorithm
Step 2. Initialise iteration counter, t = 0
Step 3. Initialise and assign values to hyper-parameters β1, β2, ∈, Lr, wt, wt+1, vt, st
Step 4. Initialise parameters (weights) for the chosen classifier
Step 5. Define the loss function to be minimised.
Step 6. For each iteration t:
Step 7. Compute the gradient of the loss function with respect to the hyper-parameters, ∂Lr

∂wt
Step 8. Update the exponential moving averages of the gradient and its square, vt and st using Equations (30) and (31)
Step 9. Compute bias-corrected estimates of the averages, V̂t and Ŝt using Equations (28) and (29)
Step 10. Update the parameters (weights) or the chosen classifier
Step 11. Calculate ER for the current equation
Step 12. If tr = 1, compute the gradient of the loss function with respect to the hyper-parameter win
Step 13. Else if tr > 1, compute the gradient of the loss function with respect to the hyper-parameter wtr
Step 14. Update the hyper-parameter wt+1
Step 15. If t = ConvCrit
Step 16. Go to Step 19
Step 17. Else
Step 18. Go to Step 7
Step 19. End Algorithm



Bioengineering 2024, 11, 314 19 of 27

3.1.2. RanAdam Hyper-Parameter Tuning

RanAdam is a hyper-parameter optimisation technique that efficiently searches for
the best hyper-parameters for ML models. Randomised Search is particularly useful when
the hyper-parameter search space is large, and the computational resources are limited.
The RanAdam method is introduced to improve the classification performance of Adam
further. The procedure can be divided into Adam and Controlled Randomisation (CR).
The Adam part of the algorithm is the same as performed previously and is used without
any changes in the RanAdam method. The CR procedure in RanAdam is responsible
for improving performance over the Adam method. Algorithm 2 represents the way of
implementing RanAdam. The ideal values for hyper-parameters with high precision can
be identified using the nested CR procedure inside the Adam algorithm. In other words,
the CR will explore optimal and highly precise hyper-parameters neighbouring the values
Adam’s method gives in each iteration. The Controlled Randomisation approach uses
randomisation with two control parameters, such as solution considering rate and solution
adjusting rate. The optimal and initial values of hyper-parameters β1, β2, ∈, Lr, wt, wt+1,
vt, st are considered to be the same as that of the Adam method. Algorithm 2 illustrates the
execution of classifier with RanAdam method.

The RanAdam method employed in this research uses the following values: band-
width = 0.0095, maximum number of iterations = 100 or ConvCrit MSE, whichever is met
first, solution considering rate = 0.6, solution adjusting rate = 0.9, Rand 1, Rand 2, Rand 3
∈ (0, 1) and Rand 4 ∈ (0, 0.1). Next is the analysis of training and testing accuracy with
Adam hyper-parameter tuning for MM and DDT DimRe techniques with DF FS.

Table 9 shows the Training and Testing Accuracy Analysis of Classifiers with Adam
hyper-parameter tuning for the Mixture Model and FFT DimRe technique with DF FS.
Random Forest classifier shows the highest test accuracy of 91.95%, and SVM (RBF) shows
a 93.79% training accuracy for the FFT DimRe Method and with DF FS. For the Mixture
Model DimRe Method and Dragonfly FS, SVM (RBF) shows the highest accuracy for both
training and testing at 98.66% and 96.47%.

Algorithm 2. RanAdam Hyper-parameter Tuning

Step 1. Start Algorithm
Step 2. Initialise iteration counter, t = 0
Step 3. Initialise and assign values to hyper-parameters β1, β2, ∈, Lr, wt, wt+1, vt, st
Step 4. Initialise parameters (weights) for the chosen classifier
Step 5. Define the loss function to be minimised
Step 6. For each iteration t:
Step 7. Compute the gradient of the loss function with respect to the hyper-parameters, ∂Lr

∂wt
Step 8. Update the exponential moving averages of the gradient and its square, vt and st using Equations (30) and (31)
Step 9. Compute bias-corrected estimates of the averages, V̂t and Ŝt using Equations (28) and (29)
Step 10. Update the parameters (weights) or the chosen classifier
Step 11. Calculate ER for the current equation
Step 12. If tr = 1, compute the gradient of the loss function with respect to the hyper-parameter win
Step 13. Else if > 1, compute the gradient of the loss function with respect to the hyper-parameter wtr.
Step 14. Initialise random numbers for Rand1, Rand2, Rand3, Rand4 and specify bandwidth
Step 15. if rand 1 < solution considering rate
Step 16. w′

t+1 = w′
t

Step 17. End if
Step 18. if rand 2 < solution adjusting rate
Step 19. w′

t+1 = w′
t * bandwidth * rand 3

Step 20. End if
Step 21. If w′

t+1 < Lower bound (LB)
Step 22. w′

t+1 = LB
Step 23. End if
Step 24. if w′

t+1 > Upper bound (UB)
Step 25. w′

t+1 = UB
Step 26. End if
Step 27. if w′

t+1 < UB
Step 28. w′

t+1 = LB + rand4 * bandwidth
Step 29. End if
Step 30. If (ER = minimum ER)
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Step 31. Optimum weight, w′
opt = w′

t+1
Step 32. Else
Step 33. Go to Step 14
Step 34. If t = ConvCrit
Step 35. Go to Step 38
Step 36. Else
Step 37. Go to Step 7
Step 38. End Algorithm

Table 9. Training and testing accuracy analysis of classifiers with Adam hyper-parameter tuning for
Mixture Model and FFT DimRe technique with DF FS.

Classifiers
with Adam

Hyper-Parameter Tuning

Mixture Model DimRe Method and with DF FS FFT DimRe Method and with DF FS

Training Accuracy Testing
Accuracy Training Accuracy Testing

Accuracy

Nonlinear Regression 90.31 88.23 91.34 89.84

Naïve Bayesian 91.23 89.29 92.56 90.39

Random Forest 92.97 91.84 93.47 91.95

Decision Tree 86.31 82.87 92.54 90.39

SVM (RBF) 98.66 96.47 93.79 90.84

Table 10 shows the training and testing accuracy analysis of classifiers with RanAdam
hyper-parameter tuning for the Mixture Model and FFT DimRe technique with DF FS. The
SVM (RBF) classifier shows the top test accuracy of 98.86% and 99.41% of training accuracy
as well for the FFT DimRe Method and with DF FS. For the Mixture Model DimRe Method
and Dragonfly FS, the Naïve Bayesian classifier shows the highest accuracy for training
and testing at 93.22% and 95.87%.

Table 10. Training and testing accuracy analysis of classifiers with RanAdam hyper-parameter tuning
for Mixture Model and FFT DimRe technique with DF FS.

Classifiers
with RanAdam

Hyper-parameter Tuning

Mixture Model DimRe Method and with DF FS FFT DimRe Method and with DF FS

Training Accuracy Testing
Accuracy Training Accuracy Testing

Accuracy

Nonlinear Regression 92.62 89.74 92.44 90.64

Naïve Bayesian 95.87 93.22 93.52 90.51

Random Forest 94.25 92.86 94.62 92.19

Decision Tree 92.37 90.219 95.61 93.53

SVM (RBF) 93.66 90.72 99.41 98.86

Table 11 depicts the performance analysis of the classifiers with Adam hyper-parameter
tuning for the Mixture Model and FFT DimRe techniques with DF FS. It is identified from
Table 10 that SVM (RBF) achieved a high accuracy of 94.475% and an F1 Score of 96.667%
with an Error Rate of 5.525% for the mixture model DimRe method. The Random Forest
classifier is placed at the higher edge with an accuracy of 88.950%, an Error Rate of 11.050%
and an F1 Score of 93.243% for the FFT DimRe method.

Table 12 shows the performance analysis of the classifiers with RanAdam hyper-
parameter tuning for the Mixture Model and FFT DimRe techniques with DF FS. It is
identified from Table 11 that SVM (RBF) achieved a high accuracy of 98.343% and an F1
Score of 98.997% with a low Error Rate of 1.657% for the FFT DimRe method. The Random
Forest and Naïve Bayesian classifiers are placed at the higher edge with the same accuracy
of 91.160%, with an Error Rate of 8.840% for the FFT DimRe method. The F1 Score is
94.667% for the Naïve Bayesian classifier and 94.702% for the Random Forest classifier.
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Table 11. Performance analysis of classifiers with Adam hyper-parameter tuning for Mixture Model
and FFT DimRe techniques with DF FS.

DimRe
Method Mixture Model FFT Method

Classifiers Nonlinear
Regression

Naïve
Bayesian

Random
Forest

Decision
Tree

SVM
(RBF)

Nonlinear
Regression

Naïve
Bayesian

Random
Forest

Decision
Tree

SVM
(RBF)Parameters

Accuracy 80.110 87.293 87.845 82.873 94.475 87.845 88.398 88.950 88.398 87.845

F1 Score 87.413 92.256 92.667 89.199 96.667 92.466 92.929 93.243 93.023 92.414

MCC 0.417 0.570 0.572 0.494 0.805 0.618 0.607 0.631 0.586 0.630

Error Rate 19.890 12.707 12.155 17.127 5.525 12.155 11.602 11.050 11.602 12.155

Youden
Index 47.849 59.075 57.183 56.301 80.538 67.419 62.968 66.194 57.849 69.978

Kappa 0.406 0.569 0.572 0.483 0.805 0.612 0.606 0.630 0.586 0.620

Table 12. Performance analysis of classifiers with RanAdam hyper-parameter tuning for Mixture
Model and FFT DimRe techniques with DF FS.

DimRe
Method Mixture Model FFT Method

Classifiers Nonlinear
Regression

Naïve
Bayesian

Random
Forest

Decision
Tree

SVM
(RBF)

Nonlinear
Regression

Naïve
Bayesian

Random
Forest

Decision
Tree

SVM
(RBF)Parameters

Accuracy 86.740 91.160 91.160 88.398 87.293 88.950 85.635 88.398 90.608 98.343

F1 Score 91.892 94.667 94.702 93.023 92.256 93.289 91.216 93.069 94.352 98.997

MCC 0.557 0.689 0.681 0.586 0.570 0.621 0.520 0.576 0.665 0.943

Error Rate 13.260 8.840 8.840 11.602 12.707 11.050 14.365 11.602 9.392 1.657

Youden
Index 58.409 68.860 66.301 57.849 59.075 63.634 54.516 55.290 65.634 95.441

Kappa 0.556 0.689 0.680 0.586 0.569 0.620 0.519 0.575 0.665 0.942

The Radar plot is depicted in Figure 6, which compares the classification methodolo-
gies researched in this paper. The analysis uses ten selected subsets of the main MAGE data
based on high variability. Four classification methods are compared: Classification without
DF, Classification with DF, Classification with DF and Adam, and Classification with DF
and RanAdam. The angular axis (X) represents the various classifiers, and the radial axis
(Y) represents the ten selected data sets. The distance of each data point from the centre on
its corresponding axis indicates the classifier’s accuracy. The classification technique with
maximum accuracy is the data point farthest from the centre on the X and Y axis. The Radar
plot indicates that the classification with DF and RanAdam is the best performer. Also, in
the Radar plot, there are large differences in distances between data points on the same
axis. This spread of data points indicates significant performance variations, suggesting
that some methods are more sensitive to data and parameter changes.

Finally, Table 13 shows the improvement in the Accuracy of Classifiers with Adam
and RanAdam hyper-parameter tuning for the Mixture Model and FFT DimRe technique
with DF FS. The Random Forest classifier has the highest improvement in accuracy of
41.81% with the RanAdam Method. The SVM (RBF) classifier has the lowest accuracy
improvement of 3.509% with Adam hyper-parameter tuning.
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Figure 6. Radar plot for various classification methodologies employed in the paper.

Table 13. Improvement in Accuracy of Classifiers with Adam and RanAdam hyper-parameter tuning
for Mixture Model and FFT DimRe technique with DF FS.

Classifiers

Mixture Model DimRe Method and with DF FS FFT DimRe Method and with DF FS

Accuracy
Improvement by
Adam Method

(%)

Accuracy
Improvement by

RanAdam Method
(%)

Accuracy
Improvement by
Adam Method

(%)

Accuracy
Improvement by

RanAdam Method
(%)

Nonlinear Regression 15.172 21.65 3.145 4.347

Naïve Bayesian 21.519 24.84 34.375 32.258

Random Forest 39.623 41.81 39.752 39.375

Decision Tree 27.333 31.875 23.125 25

SVM(RBF) 3.509 4.43 5.66 15.73

3.2. Computational Complexity (CC)

The classifiers are studied by evaluating the CC. The CC is identified according to
input O (n) size. CC is less if it equals O (1). The CC will increase as the number of inputs,
‘n’, increases.

Table 14 depicts the CC for all the classifiers among different DimRe methods with
and without FS techniques. It is reported from Table 14 that the Naïve Bayesian classifier is
at the level of low CC. The SVM (Linear) and Naïve Bayesian classifiers attained moderate
complexity for the EHO and Cuckoo search FS methods across the three DimRe techniques.
The Least Square Linear regression DimRe method with EHO FS leads to high CC overhead
of the classifiers. The Random Forest classifiers across the DimRe methods with and
without FS techniques induced high CC, but the achieved accuracy of the classifier is at the
lower edge. The SVM (Linear) and SVM (RBF) classifiers perform well with moderate CC.

Table 15 displays the comparison of research work reported in this paper with the pre-
vious works on the lung cancer detection from the microarray gene using binary classifiers.
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Table 14. CC of the classifiers for FFT DimRe method without and with FS methods and hyper-
parameter tuning.

Classifiers Without FS With DF FS
With DF FS and Adam

Tuning
With DF FS and

RanAdam Tuning

Nonlinear Regression O (2n3 log2n) O (2n6 log 2n) O (2n6 log 2n) O (2n4 log2n)

Naïve Bayesian O (2n4 log2n) O (2n7 log 2n) O (2n7 log 2n) O (2n5log2n)

Random Forest O (2n3 log2n) O (2n6 log 2n) O (2n6 log 2n) O (2n4 log2n)

Decision Tree O (2n3 log2n) O (2n6 log 2n) O (2n6 log 2n) O (2n4 log2n)

SVM(RBF) O (2n2 log4n) O (2n5 log 4n) O (2n5 log 4n) O (2n3 log4n)

Table 15. Comparison of previous work.

S.No Author (with Year) Database Classifier Classes Performance Accuracy
in%

1 Azzawi (2015) [31]
National Library of

Medicine and Kent Ridge
Bio-medical Dataset

SVM, MLP, RBFN Adenocarcinoma,
Meso

91.39
91.72
89.82

2 Gordon (2002) [39] Gordon MAGE Data MAGE ratios Adenocarcinoma,
Meso 90

3 Fathi et al. (2021) [65] Gordon MAGE Data Decision Tree with feature
fusion

Adenocarcinoma,
Meso 85

4 Guan et al. (2009) [66]
Affymetrix Human

GeneAtlas
U95Av2 microarray dataset

SVM (RBF) with gene based
feature

Adenocarcinoma,
Meso 94

5 Gupta et al. (2022) [67] TCGA dataset Deep CNN Adenocarcinoma,
Meso 92

6 Mramor et al. (2007) [68] Gordon MAGE Data SVM, Naïve Bayes, KNN,
Decision Tree

Adenocarcinoma,
Meso

94.67
90.35
75.28
91.21

7 Lin Ke (2022) [69] Gordon MAGE Data DT—C4.5 Adenocarcinoma,
Meso 93

8 Daniel Xia et al. (2020) [70] Gordon MAGE Data Minimalist Cancer Classifier Adenocarcinoma,
Meso 90.6

9 Morani et al. (2021) [71] TCGA and GEO Dataset Multivariate cox regression
analysis

Adenocarcinoma,
Meso 90

10 This Research Gordon MAGE Data

RanAdam Hyper-parameter
tuning for FFT DimRe

techniques with DF FS and
SVM (RBF) Classification

Adenocarcinoma,
Meso 98.34

Our research handles the problem of noise and outliers, which are significant in
microarray gene expression data using the integrated approach of MM and FFT dimen-
sionality reduction techniques with Dragonfly feature selection techniques. FFT brings out
periodic patterns and clustered data as they extract frequency-related features. The FFT
alone does not directly handle noise and outliers; rather, the integrated FFT and Dragonfly
feature selection reduces the dimensionality and noise by selecting the most discriminating
features from the MAGE data. In the case of the Mixture Model (MM), the dimension-
ality is reduced so that the data are considered as a combination of multiple probability
distributions. MM-based dimensionality reduction can capture the underlying structure
of gene expression patterns, with noise and outliers affects. MM handles the noise and
outliers by considering them as components with lower probabilities, effectively down
weighting their influence on the overall model. The application of Dragonfly over MM
dimensionality reduction will further reduce the noise reduction and dimensionality to
simplify the classification overhead.
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4. Limitations

The conclusions of this research may be restricted to the specific population of Adeno
and Meso cancer classes and may not apply to other populations. The techniques proposed
in this work depend on MAGE data, which may involve complex and expensive procedures
that are not practicable for routine clinical trials. The presence of outliers in the data have a
big role in the accuracy and reliability of the classification results in this work. An outcome
of this study is the establishment of a comprehensive database for mass screening and
sequencing cancer genomes. By incorporating MAGE data and adopting the proposed
classification techniques, this database allows the identification of patterns and trends in
cancer genomes. Early stage detection and prediction are paramount to improving cancer
patients’ survival rates.

5. Conclusions and Future Work

The early detection of lung cancer has a very important role in improving treatment,
thereby increasing the survival rate. The MAGE data analysis of lung cancer is an effective
technique for early detection. This research combines ML techniques with MAGE data
analysis to enhance lung cancer data classification. FFT and MM are used as DimRe
techniques and DF is employed as an FS technique. The classification was completed using
five classifiers with hyper-parameter tuning that were compared and their performance
was evaluated. The result shows that the SVM (RBF) classifier with the FFT DimRe method
and DF FS achieved the highest accuracy of 98.86% with RanAdam hyper-parameter
tuning. The future work planned for this research is to employ LASSO as a method for
dimensionality reduction and use ML classifiers, CNN classifiers, DNN classifiers, and
LSTM methods for lung cancer classification from MAGE data.
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