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Abstract: A multichannel three-dimensional chip of a microfluidic cell culture which enables the
simulation of organs is called an “organ on a chip” (OC). With the integration of many other
technologies, OCs have been mimicking organs, substituting animal models, and diminishing the
time and cost of experiments which is better than the preceding conventional in vitro models, which
make them imperative tools for finding functional properties, pathological states, and developmental
studies of organs. In this review, recent progress regarding microfluidic devices and their applications
in cell cultures is discussed to explain the advantages and limitations of these systems. Microfluidics
is not a solution but only an approach to create a controlled environment, however, other supporting
technologies are needed, depending upon what is intended to be achieved. Microfluidic platforms
can be integrated with additional technologies to enhance the organ on chip simulations. Besides,
new directions and areas are mentioned for interested researchers in this field, and future challenges
regarding the simulation of OCs are also discussed, which will make microfluidics more accurate and
beneficial for biological applications.
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1. Introduction

Microfluidics, a multidisciplinary developing field, is related to small volumes, sizes, energy
consumptions, and domains which are used to run, intermingle, discretize, or process fluids [1,2]
for better analysis of single cells to organs on fully automated chips [3]. Two dimensional (2D)
cell culture systems are not reliable for predicting many cellular functions like drug activities, and
for controlling the precise physical and chemical microenvironments. These systems do not fulfill
the main requirements of cellular microenvironments in vivo [4]. So, they are replaced by three
dimensional (3D) systems which better represent the interactions of factors and the complexity of
tissues. However, organoids, formed in 3D cell cultures, have different shapes and sizes and it is hard
to maintain the positions of their cells for analysis. Functional analysis, i.e., trans-cellular transport,
secretion, and absorption, and biochemical and genetic analysis of cultured cells, are also difficult
in 3D systems. In many systems, multi-scale architectures and the tissue-tissue-interfaces, such as
vascular endothelium and the media layers, are missing. There is a lack of exposure to mechanical
cues like tension, compression, and flow shear stress (FSS) for cells, which are very important for
organ development and functions for both disease and health states [5]. Microfluidic systems offer
opportunities to overcome these limitations.

An organ is a complex unit of different tissues, and these tissues are composed of various
types of cells with diverse functions. Organs of the human body can be simulated by microfluidic
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devices. These microfluidic devices usually contain cell culture chambers lined with living cells.
For the simplest system, there is only one single cell lining which represents corresponding tissue
functions [6]. However, for complex systems, different types of cells related to various tissues are
cultured. These cells are interconnected with porous membranes and are lined on opposite sides
for proper organ simulation [7]. Microfluidic devices can be used to mimic the organ functionality
by multi-cellular architecture, interfacing the tissues and physiochemical microenvironments along
with perfusion of the body. Fluidically associated cells of different organs on a chip, mimicking
the physiological connections between organs with integrating FSS, mechanical compression, and
cyclic strain or other physical forces, can be used for analyzing drug distribution and organ specific
responses [6]. Electrochemical monitoring, selective cell attachment patterns, sensing systems for
electrochemical transductions, and enzymes and biomarkers in microfluidic devices can be achieved
by the integration of some supporting technologies with these devices.

Although better results can be achieved by mimicking the in vivo microenvironment using
microfluidic systems as compared to other traditional systems, for simulation from the cell to tissue
level, more complex environmental conditions are required. These enhanced prerequisites make
simulations more difficult. Similarly, for organ simulation, where two or more dissimilar tissues
are associated with each other causing tissue-tissue-interactions and greater intervening factors, the
conditions for simulation become stricter. When discussing the disease model of an organ, this
complexity is further augmented. So, for organ simulation involvement of different parameter
increases, microfluidics alone cannot control all these parameters precisely. Fortunately, it is not
necessary to form a complete working organ, but a functional unit that can be synthesized, which
summarizes the organ level functions. However, some other technologies are still needed to control
these parameters.

2. Organ Simulation Is Better with Microfluidics

The following characteristics and advantages of microfluidic systems make them more reliable
and competent for better physiological analysis and for controlling system parameters more precisely
than other systems. (1) The flexibility of microfluidics can provide physiological microenvironments
using perfusion or 3D tissue like structures. In 3D cell culture, cells are embedded in natural or
synthetic polymers. These natural or synthetic polymers may be collagen, matrigel, and hydrogel.
In microfluidic channels, hydrogels are widely used for cell encapsulation [8]. Many models are formed
by hydrogels, e.g., cells intersperse randomly in the extracellular matrix (ECM) or form organoids
which are clusters of self-assembled cellular structures. These 3D models are useful for studying signal
pathways, drug responses, and tissue functions [9–12]; (2) In chips, the fluid flow is vital because at the
smaller scale, viscous forces are dominant. If the diameter of the channel is less than 1 mm, the flow is
laminar and allows for the production of chemical and physical gradients. These gradients have been
used in studying cardiac tissue formation, directional cell migration [13], nerve axon outgrowth [14],
differentiation [15], graded metabolism [16], neurotoxin responses [17], cell-cell junction integrity, and
sub-cellular structures [18]. Microfluidic systems provide vasculature on chips for studying drug
screening [19]. The FSS can be controlled, irrespective of gradients, by changing the channel dimensions
and/or flow rates, by using a nonporous membrane which separates cells from the flow path or
restricts the cell passage by micro-engineered posts; (3) Cell survival and functions can be enhanced
by fluid mechanical computational models. These models optimize the micro-channel geometry
which increases nutrients and oxygen delivery; (4) The complex mechanical microenvironment of
organs can be summarized in vitro by chips; (5) Flexible side chambers and cyclic suctions can be
used to create cyclic mechanical strains [7,20–22]. Cells can be exposed to FSS and cyclic mechanical
deformations like the living cells which are involved in the processes of cardiovascular cycling,
breathing, and peristalsis [7,20,21,23]. Similarly, enhanced pressure can be applied to compress the
tissues which normally respond to compression [24]; (6) In the micro-channel, different cell types can
be placed in different patterns or in direct concurrence on the same planer substrate by many methods.
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For example, laminar streams can be used to plate ECM proteins or cells [25]. Complex micro-channel
path designs can be applied to make contact with the adhesive substrates. Micro-posts can be situated
between adjacent cells [26] or ECM can be printed in different positions in micro-channels [23,27];
(7) Using molding techniques, substrates can be fashioned into organ-like forms, e.g., the villous shape
of intestine [28]. Chip designs include implanted cells in 3D ECM gels [29–33] and multi-cellular
constructs using tissue engineering (TE) [23,33]. The integration of porous substrates for separating two
micro-channels helps to analyze the absorption, secretion, transcellular transport, and tissue-barrier
functions [7,20–22,34–36]. Tissue-tissue-interfaces can be produced by culturing different cells on
opposite sides of the substrate. These interfaces can mimic the interactions of parenchyma and
vascular endothelium tissues, i.e., identified by almost all organs [7,20,36].

Organ on chip (OC) is beneficial in investigating organ physiological and disease models. It is
suitable for analyzing tissue architecture and perfusion dependent biological mechanisms. OC can
be applied to different diseases or drug studies as an alternative to other cell cultures and animal
models. Large numbers of samples are easier to handle on a chip and it also increases the significance
of results. Due to its ability to control fluid-flow, cell survival and differentiation can be increased,
e.g., lung has been cultured for one month on a chip [20]. In the future, it can also help to study
chronic pathophysiological responses, computational modeling for fluid-dynamical interactions with
metabolites, and cell and gas interactions with circulating cells, e.g., blood, tumor, immune cells, and
bacteria [21].

3. Limitations of Organ Simulation on Microfluidics

Microfluidics is a field of engineering, while in organ simulation it is being used mainly by the
biomedical community. Thus, researchers will face some integrating problems of the two separated
fields [37,38]. Currently, co-culture systems within microfluidic models are widely used for OC.
For example, Huh et al. fabricated a lung model on a chip with epithelial and endothelial cells on
a porous membrane [20]. Microfluidics is very beneficial in simulating different organs, but only
microfluidic technology is not sufficient for simulation of all organs. For example, for the simulation
of the heart and nerves, it is interlinked with electrodes to produce an electrochemical environment
for their proper simulation [38,39]. Although a lot of work has been done and published in this
new field, organ simulation with microfluidics is still in its infancy, and further development is
required to overcome its limitations. Many physical and chemical factors become dominant at the
micro-scale, and can influence the results. For example, the surface area and its roughness affect
not only the capillary forces but also the flow rate of the micro-fluid, and it is hard to neglect
the chemical interactions. The chemical nature of the construction material affects the reaction
processes. These unnecessary interactions and interventions influence the accuracy of the results.
These types of physical and chemical factors make the microfluidic organ simulation more difficult
and it requires the coupling of supporting technologies. During micro-fabrication, it is necessary
to keep high accuracy and precision according to the principles of engineering [40]. In addition,
the chemicals and chips used in these processes are disposable and re-sterilization is very difficult
if reuse is necessary. OC is not reliable for certain areas, such as adaptive immune responses,
responses to endocrine systems, nervous systems, skeletal systems, and chronic diseases [6]. They are
mostly good for studying diseases of short time frames depending upon the cell positions in the
micro-architecture. However, researchers still need to improve the efficiency of organ simulation by
completely understanding the micro-environmental factors, which regulate the cell differentiation,
development, disease progression, healing and regeneration, immune cell contribution to toxicity,
infection, inflammation, and multi-organ failure. Combining induced pluripotent stem (iPS) cells
or patient-specific primary cells along with gene editing technologies and personalized models of
disease and health needs to be developed. Up to now, the complexities of organ functions and other
requirements for its simulation on chip have not allowed researchers to replace human testing [6,40,41].
Selective cell attachment patterns, detection systems for electrochemical transductions, fluorescence,
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enzymes, biomarkers, genomics, proteomics, lipidomics, electrochemical monitoring, and viable
tissue production cannot be achieved by microfluidic systems, so the integration of other supporting
technologies are needed for supporting and enhancing the simulation of OCs.

4. Microfluidics Devices Accompanied with Supporting Technologies for Better Simulation

Organ simulation is more complex because of the enhanced environmental conditions and
requirements. For organ simulation, microfluidic platforms can be integrated with additional
supporting technologies to enhance OC simulations. Below are some technologies which can
be integrated with microfluidic systems to mimic the microenvironment and simulate organs
more precisely.

4.1. 3D Bioprinting

3D bioprinting technologies are involved in creating cell patterns where the functions and
viabilities of cells are preserved in printed constructs [42] by layering different biomaterials and
cellular compositions [43]. Bioprinting can produce organ and tissue like structures which can be
used in research [44]. Bioprinting creates complex design channels and draws or digs connectors by
fabrication. Microfluidic devices with automated 3D fabrication are produced with 3D technology [45].
Therefore, 3D printing of an OC is possible. With the convergence of bioprinting and microfluidic OCs,
complex artificial tissues are formed which have human body like micro-architectures for chemical
and mechanical stimuli [46]. For example, for drug testing, liver on a chip (LoC) was developed
for the long term culture of 3D hepG2/C3A spheroids using a bioreactor design. This engineered
bioreactor could interface with a bioprinter for fabricating 3D hepatic constructs, which remained
functional for a 30 day cultural period [47]. Recently, by bioprinting hepatic spheroids, a device
conducive to hepatotoxicity analysis was developed [48]. This microfabrication allows for better
control over the microenvironment for stabilizing the liver for weeks [49]. Now various designs of
the bioprinted LoC have been demonstrated for the different functions of the liver [50]. The need
for blood vessels makes cardiovascular organoid simulation more complex. Now, 3D bioprinting is
being used to fabricate endothelialized myocardium for better analysis and disease modeling [51–53].
The 3D bioprinted microfluidic systems with complex biological culture systems improve the proximal
tubule functionality and epithelial morphology [54]. Johnson et al. demonstrated the extrusion-based
3D cell printing model, used for nervous system modeling [55]. The future of this technology is 4D
bioprinting, which may be helpful in exploring the functional biological constructs [56].

4.2. Biosensors

Combining biosensors with microfluidic devices helps to improve the performance of sensing
systems by improving the transport of analytes. Reduced volumes and distances in microfluidics make
the biorecognition of elements easier. These results can further be improved by specially designed
channels. There are different types of biosensors used for different purposes. Some microfluidic
biosensors are based on electrochemical transductions. These biosensors can be used in heart and nerve
microfluidic devices [57,58]. Microchambers of polydimethylsiloxane (PDMS) with electrodes and
sensors can monitor cardiomyocytes optically and electrochemically [59]. Electrical field application
is studied in contractile cells [23] and wound healing [60]. This technology has been mostly applied
to primary/established cell lines up to now, but it can be used for any cultureable cell line including
insects and plant cells for the identification of toxic pesticides/defoliants to humans. An organo-typic
model of nerve tissues mimicking nerve compound action and nerve fiber density may be more useful
in clinical outcomes. However, physiology, neurological architecture, and the surrounding ECM are
very hard to mimic. A study describes the electrophysiological-recording of intra and extra cellular
recordings with a micro-engineered sensory neural fiber tract [61].

Enzyme-based detection has also been improved in microfluidics. Different enzymes have been
detected by using these types of biosensors [62]. Electrochemical biosensors can be applied for
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analyzing affinity-based biorecognition events. Electrochemical signals can also be recorded from
binding events. Amperometric detection is common, but electrochemical impedance spectroscopy
can also be applied [63,64]. Similarly, other biosensors are fluorescence based and non-fluorescence
based biosensors, micromechanical transduction based, thermal, magnetic, magnetoresistive sensors,
etc., which can be linked with microfluidics and their linkage can provide crucial information
which microfluidics cannot provide alone [63]. Bioreactors linked with electrochemical sensors
provide the functional status of cells or specific organelles, and real-time monitoring of oxygen
uptake [65,66]. A microfluidic thermal biosensor is designed to detect L-glutamate which can be
helpful in recognizing the dynamics of the neurotransmitter [67]. The 3D microfluidic devices
are also improved by culturing techniques to detect the biomarkers of drug interactions and drug
induced injury in the kidney. A biosensing platform for protein detection was proposed, which can
be used for the detection of biomarkers [68]. Sometimes traditional analyses like immunoflurescence
microscopy, microplate immunoassay, and immunoblot are also required. The incorporation of a
fluorescence-nanoparticle immunoagglutination/immunocapture assay into OC allows dual mode
monitoring for drug toxicity [69,70]. Recently, a smart phone based, fluorescence-microscope was
fabricated for monitoring the device attached with OC, and this dual mode monitoring permits both
internal and external monitoring of OC [70].

4.3. Multi-Electrode Array (MEA)

Electrochemical signals are produced in cardiomyocytes due to their alterations in different ionic
concentrations at cellular levels, in which the calcium ion concentration and membrane depolarization
are responsible for the contractile force and cell shortening due to the initiation of actin-myosin motors.
Similarly, nerves also show electrophysiological behaviors. These electrophysiological and contractility
responses have caused many problems for mimicking the replication of nerve and cardiac tissue
environments in vitro. The simulations of heart and nerve are interlinked with electrodes to produce
an electrochemical environment for proper simulation. Electrophysiological techniques are applied
by a multi-electrode array (MEA) for detecting environmental toxins [71,72], therapeutic testing, and
disease modeling [73,74] in nervous systems. The integration of muscular thin films (MTFs) into
microfluidic devices [23] helps in exploring the fluid-flow, tissue-tissue-interactions, and electrical
and mechanical cues involved in the development of heart diseases (Figure 1). The contractility
measurements of engineered 3D cardiac tissue constructs are made either isometrically or auxotonically
against the applied force. The I-wire platform is used to control the applied force which creates the
electrical and mechanical characterization of these tissues. Therefore, it is valuable for studying cardiac
diseases, drug development, and screening [75]. Recently, a microfluidic device [76] including a
hanging-posts-array and a pneumatic-actuation-system to confine cell laden gels and homogeneous
uniaxial cyclic-strains to cell constructs during culture, respectively, was developed for generating
mature microengineered cardiac tissues. This model presents a step forward in this field and provides
a 3D functional cardiac model [76]. A microfluidic chip containing thousands of microelectrodes was
designed and tested for bacterial sterilization using a pulsed electric field. The sterilization of bacteria
as a function of the strength of this electric field, width and pulse number, treatment buffer, bacterial
growth, and bacterial enrichment with positive dielectrophoresis were experimentally analyzed on
the chip. It was observed that 100 V was enough for good sterilization. The configuration of the
microelectrode arrays influenced the bacterial sterilization. Firstly, the bacteria were concentrated in
the high electric field region by dielectrophoresis and then the enriched bacteria were killed by the
pulsed electric field through microelectrode arrays [77].



Bioengineering 2017, 4, 39 6 of 14
Bioengineering 2017, 4, 39  6 of 14 

 

Figure 1. Heart on a chip [23]: (a) Scheme of the fabrication process; (b) Assembly of the microfluidic 

device, consisting of an aluminum bottom, a recess for holding the chip, polycarbonate top held by 

three screws, and barbed fittings with fluidic tubes for fluidic input/output. 

4.4. Tissue Engineering (TE) 

Electrochemical tissue engineering (TE) is useful in improving or replacing biological functions. 

It involves new viable tissue production for medical purposes. Cell-cell interactions, i.e., homotypic 

and/or heterotypic interactions, maintain tissue functions and structures, and many cells respond to 

these interactions. For example, LoC mimics heterotypic interactions via separating hepatocytes, 

cultured in low shear stress and diffusion prevailing microenvironments, at a high homotypic 

cell-density. A silicon micro-machine comb [78] is used to control the spacing among the cell 

populations, and the patterns of stamped substrate interactions between the fibroblast and 

hepatocytes (Figure 2). 

 

Figure 2. Liver on a chip [79] with cell culture: Red colour represents the hepatocytes, gray colour 

represents the endothelium like gaps, and yellow colour represents the medium. Channels are 

separated with microfabricated barriers for the separation of hepatocytes from fluid. 

Figure 1. Heart on a chip [23]: (a) Scheme of the fabrication process; (b) Assembly of the microfluidic
device, consisting of an aluminum bottom, a recess for holding the chip, polycarbonate top held by
three screws, and barbed fittings with fluidic tubes for fluidic input/output.

4.4. Tissue Engineering (TE)

Electrochemical tissue engineering (TE) is useful in improving or replacing biological functions.
It involves new viable tissue production for medical purposes. Cell-cell interactions, i.e., homotypic
and/or heterotypic interactions, maintain tissue functions and structures, and many cells respond to
these interactions. For example, LoC mimics heterotypic interactions via separating hepatocytes,
cultured in low shear stress and diffusion prevailing microenvironments, at a high homotypic
cell-density. A silicon micro-machine comb [78] is used to control the spacing among the cell
populations, and the patterns of stamped substrate interactions between the fibroblast and hepatocytes
(Figure 2).
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Recently, a liver lobule-like structure was constructed on a chip by a microfluidics-based
bioengineered strategy, which was used for exploring liver tissue engineering, pathological studies, and
drug induced toxicity [80]. In 3D systems, the integration of synthetic polymer gels into microfluidic
channels gives greater complexity to the tissue microenvironment on a chip. Uniform cell aggregated
co-cultures of hepatocytes and fibroblasts are encapsulated in 3D hydrogels for the production of
hepatic micro-tissues [81]. These micro-tissues can be individually harvested over time in the device
and exposed to drugs and fluids [81,82]. Yu-suke Torisawa has introduced bone on a chip [83],
which contains complex bone marrow by uniting microsystems with TE. TE has evolved from
biomaterials development. It features the combination of cells, material methods, and engineering
physiochemical and biochemical factors to replace/improve tissues [84]. A PDMS device with a
central cylindrical cavity (open at both sides) was designed and implanted on the back of mice after
filling the cavity with bone inducing materials [83] (Figure 3). A bone marrow containing bone
resulted after eight weeks, which was confirmed by its identical morphology comparison to natural
bone. Another microfluidic device was used for culturing engineered bone marrow (eBM) and that
eBM was removed surgically and placed in a microfluidic device [83]. The eBM’s cells kept their
viability after 4 days of culture, and the results showed similarity to the mouse femur BM, but not to
blood cells. This type of bone simulation with microfluidics was supportive in learning about drug
discovery research, transplantation of BM, and hematopoietic stem cell diseases. The combination
of mechanical forcing regiments and fluid-flow, similar in vivo, could improve tissue and organ
functions. When adipocyte derived cells and bone marrow on a chip were exposed to dynamic
hydraulic compression, enhanced bone differentiation was measured [24]. Recently, Torisawa et al.
used that model to demonstrate the bone marrow responses in vitro and blood cell production to
radiation countermeasure drugs [85]. The association of TE and microfluidics also improved the
functional analysis of other organs such as lung on a chip [86] and heart on a chip [87]. Conventional
micro-electromechanical systems technologies, in the field of TE, have also been used for fabrication on
silicon wafers. These technologies are expensive and less developed for biological processes. The digital
micro-mirroring microfabrication system incorporates a dynamic mask-less fabrication technique and
utilizes its digital micro-mirrors for fabricating the biological devices. This microfabrication system
provides the fabrication of biological microfluidics, designed to mimic in vivo conditions [88].
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Figure 3. Bone on a chip [83]: Polydimethylsiloxane (PDMS) device with cylindrical cavity filled with
induced bone material (open at either ends or closed at one end) is to form engineered bone marrow
(eBM) in vivo for 8 weeks and then this eBM is cultured in a microfluidic device. The green and blue
channels are medium perfusion channels for maintaining the eBM in the central chamber.

4.5. Omics and Microbiome

Omics technology is related to the collective characterization and quantification of biological
molecules, which are translated into the structures, functions, and dynamics of organisms.
Bioinformatics or other database related work integrations with microfluidic systems are also important
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achievements. Coupling microfluidics and micro-wells can be used to compare and profile the
gene expression of thousands of single cells from different or similar experimental conditions [89].
Microfluidic devices are designed to separate neutrophils from blood for genomics and proteomics [90].
Similarly, microfluidic devices based on electro-spray ionization increase lipid separation and the
identification of individual molecular species is extended by multidimensional mass spectrometry
for lipidomics [91]. Electrochemical microfluidic devices are further developed by co-culturing the
living micro-biomes with micro-engineered intestinal villi (Figure 4). This protocol can provide a
platform for host-microbiome ecosystems, found in other organs. It can be helpful in exploring the
role of the human-microbiome in health and disease states [92,93]. Omics technology, gut on a chip,
and bacterial engineering are being used to treat intestinal diseases [94]. Hence, Omics technology
and the microbiome in gut on a chip system made it physically and functionally analogous to human
intestine and could be used for studying the major unsolved issues of intestinal diseases, drug testing,
and toxicities. This can also facilitate research in the field of antibiotics and bacterial infections [95].
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Figure 4. Gut on a chip [21]: (a) Gut on a chip device showing an extra cellular matrix (ECM) coated
flexible porous membrane with gut epithelial cells through the middle of the central microchannel and
vacuum chambers on both sides; (b) An image of the gut on a chip device. Syringe pumps are used to
perfuse the blue and red dyes (directions indicated by arrows) to visualize these channels.

5. Future Opportunities and Challenges

Problems in the field of simulations of OCs can be solved by the combination of other technologies
and can be used for the improvement of human health. Significant work has been done in this
field but there are still many opportunities and challenges. (1) Many early challenging applications
of these systems include the analysis of cells and fluidic optics, organic synthesis, detectors, high
throughput screening, microelectromechanical systems (MEMS), and extension into nanofluidics.
(2) Mimicking of human organs and their physiological responses is being made more affordable
so that biomimetic microfluidic systems should be efficient enough to replace animal testing in the
future. A computer simulated functional human model of multi-organ toxicity (four organ system)
was established for evaluating multi-organ toxicity. The results obtained from this model agree
with the results from both human and animal models [96]. (3) Bubble formation has been a serious
problem in the operation of microfluidic devices [97]. A new perfusion process needs to be developed
for mimicking the cell environment, which will provide a new platform for testing, possibly for
the production of closer in vivo mechanisms that affect absorption, elimination, distribution, and
metabolism. (4) Pharmacokinetic models, by which the fate of drugs can be studied in organisms, can
be improved [38,39]. The use of iPS cells is beneficial in designing diseased organs. Current protocols
generally produce immature cells, e.g., hepatocytes, cardiomyocytes, and endothelial cells [98–100].
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This problem is being solved by multiple approaches, e.g., the use of progenitors and through the
identification of small molecules which can establish renewable sources of hepatocytes [101,102].
The culture of stem cells of a specific lineage, in a physical microenvironment, on a chip may also
be valuable for differentiation, and finally these lines may lead to a human on a chip with all the
organs from one patient [6]. (5) The fabrication of OCs needs to be improved. Some polymers such
as polyurethane elastomers are found to be resistant to small hydrophic compound absorption [103],
but a suitable material is still in demand in this field. ECM coating degradation or contraction may
also be a problem. Avoiding microbial contamination, culturing healthy cell seeding, the maintenance
of cell-cell interactions, and ECM-cell interactions for precise tissue structures and functions are
still challenges. (6) With the increase in functionality and complexity, from the cell to organ level,
high resolution imaging becomes difficult because it is difficult to visualize processes in complex
living systems. It is required to combine these systems with microfluorimetry, fluorescence confocal
microscopy, trans-epithelial/endothelial electrical resistance (TEER) measurements, and electrodes for
better analytical assays. TEER measurements are indicators of the integrity of cellular-barriers, used
for measuring the integrity of tight junction dynamics in endothelial and epithelial cell cultures [104].
In the future, micro-sensors, such as molecular reporters, may be linked to chips using microscopes and
robotic systems for better imaging [6,40,41]. A universal blood substitute is needed. Scaling approaches
should be improved for accurate fluid-flows, appropriate organ functional activity, tissue masses and
volumes, and computational pharmacokinetics/pharmacodynamics models [3,105].

6. Conclusions

The complexities of organ functions and other requirements for their simulation on a chip will
not allow researchers to replace human testing so easily. Although preliminary microfluidic platforms
have helped researchers with OC simulations, the next generation of microfluidic platforms needs
to be integrated with diverse technologies to enhance their capabilities. Some of these techniques
could be 4D bioprinting, automated instruments, advanced TE methods, and sensors of functional
parameters, e.g., flow, pressure, pH, temperature, glucose, lactate, oxygen, electrical conduction, and
TEER, linked with microscopic-microfluorimetric imaging for monitoring system performance.
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