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Abstract: We extend the nonstandard finite difference method of solution to the study of
pharmacokinetic-pharmacodynamic models. Pharmacokinetic (PK) models are commonly used to
predict drug concentrations that drive controlled intravenous (I.V.) transfers (or infusion and oral
transfers) while pharmacokinetic and pharmacodynamic (PD) interaction models are used to provide
predictions of drug concentrations affecting the response of these clinical drugs. We structure a
nonstandard finite difference (NSFD) scheme for the relevant system of equations which models
this pharamcokinetic process. We compare the results obtained to standard methods. The scheme
is dynamically consistent and reliable in replicating complex dynamic properties of the relevant
continuous models for varying step sizes. This study provides assistance in understanding the
long-term behavior of the drug in the system, and validation of the efficiency of the nonstandard
finite difference scheme as the method of choice.

Keywords: pharmacokinetic; standard finite difference; nonstandard finite difference; intravenous
bolus injection; intravenous infusion

1. Introduction

The first attempt into what led to pharmacokinetics was described by Andrew Buchanan in
his work Physiological effects of the inhalation of ether [1] in which he pointed out that for short ether
inhalations, the speed of recovery of the ether was related to redistribution of ether in the body.
Pharmacokinetics is the science of the kinetics of drug absorption, distribution, and elimination
(more precisely relating to excretion and the metabolism). The mathematical representation of this work
started with Michaelis and Menten [2] who first developed the now well-known Michaelis-Menten
equation to describe enzyme kinetics; later this equation was also used to describe the elimination
kinetics of drugs. Widmark and Tandberg [3] in 1924 published equations now known as (a) the
one-compartment open model with bolus intravenous injection and multiple doses administered
at uniform intervals and (b) the one-compartment open model with constant rate intravenous
infusion [3]. Though the full concept of pharmacokinetics was introduced by Teorell [4], Holford
and Sheiner [5] defined pharmacokinetics as a branch of pharmacology that employs mathematical
models to better understand how drugs are absorbed, distributed, metabolized and excreted by the
body. It has been well reported recently that the Food and Drug Administration (FDA) and other drug
regulatory agencies have been using modeling and simulation to assist in making informed decisions.
Furthermore, pharmaceutical companies are expected to justify their dose, their choice of patient
population, and their dosing regimen, not just through clinical trials, but also through modeling and
simulation [6,7].
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After a drug is released from its dosage form, the drug is absorbed into the surrounding tissue,
the body, or both. As commented on by Shargel et al. [8], the distribution through and elimination of
the drug in the body varies for each patient but can be characterized using mathematical models and
statistics. Being able to characterize drug distribution and elimination is an important prerequisite to be
able to determine or modify the dosing regimens of individuals and groups of patients. From among
the three main types of pharmacokinetic (PK) models—compartment, physiologic and statistical
moment approach models—compartmentally-based models are known to be a very simple and useful
tool in pharmacokinetics [8]. In essence, a compartment model provides a simple way of grouping
all the tissues into one or more compartments where drugs move to and from the central or plasma
compartment. Assuming a drug is given by intravenous (I.V.) injection and that the drug dissolves
(distributes) rapidly in the body fluids, one may employ a one-compartment PK model that can
describe the situation as a tank containing a volume of fluid that is rapidly equilibrated with the
drug [8]. The concentration of the drug in the tank after a given dose is governed by two parameters,
namely the fluid volume of the tank that will dilute the drug, and the elimination rate of the drug
per unit of time—these are both assumed constant for a given drug [8]. Simplistic as this model
may be with regards to drug distribution and elimination in the human body, a drug’s PK properties
can frequently be described via such a one-compartment open model. Assuming such a model, the
drug is both added to and eliminated from a central compartment which represents plasma and
highly-perfused tissues that rapidly equilibrate with the drug. When an 1.V. dose of drug is given, the
drug enters directly into the central compartment while elimination of the drug occurs from the central
compartment given that the organs involved in drug elimination, primarily the kidney and liver, are
well-perfused tissues.

In a two-compartment model, the drug can move between the central or plasma compartment to
and from the peripheral or tissue compartment [8]. Although the peripheral compartment does not
represent a specific tissue, the mass balance accounts for the drug present in all the tissues. Knowing
the parameters of either the one- or two-compartment model, one can estimate the amount of drug left
in the body and the amount of drug eliminated from the body at any time. A drug that follows the
pharmacokinetics of a two-compartment model does not equilibrate rapidly throughout the body, as is
assumed for a one-compartment model [9]. In the former, the drug distributes into two compartments,
the central compartment and the peripheral compartment. The central compartment represents the
blood, extracellular fluid, and highly-perfused tissues. The drug distributes rapidly and uniformly in
the central compartment. The peripheral compartment contains tissues in which the drug equilibrates
more slowly. Drug transfer between the two compartments is assumed to take place by first-order
processes. We will be considering this model in our work.

The simplicity and flexibility of the compartment model is the principal reason for its wide
application. A major advantage of such models is that the time course of the drug in the body
may be monitored quantitatively with a limited amount of data [10]. Furthermore, these models
account accurately for the mass balance of the drug in the body and the amount of drug eliminated
(Mass balance includes the drug in the plasma, the drug in the tissue pool, and the amount of drug
eliminated after dosage administration.). Compartment models have successfully been applied for the
prediction of the pharmacokinetics of the drug and the development of dosage regimens. Moreover,
compartment models are very useful in relating plasma drug levels to pharmacodynamic (PD) and
toxic effects in the body [10]. Underlying physiologic mechanisms can also be obtained via such a
model through model testing of the data. Thus, compartment analysis may lead to a more accurate
description of the underlying physiologic processes and the kinetics involved. In clinical PK literature,
drug data comparisons are based on compartment models and the easy tabulation of important
parameters accomplished [10].

In practice, PK models seldom consider all the rate processes ongoing in the body [9]. Due to
the complexity models which incorporate such information pose, simplifying assumptions are often
made so that solutions may be obtained. Traditional PK models, being simplified mathematical
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expressions, are based on the assumption of a linear relationship between the dose of a drug and
its concentration [11]. In a linear model, these rate coefficients, called k, are assumed to be constant.
However, such assumptions regarding the linearity of the model do not necessarily describe the
actual physical processes as accurately as a non-linear relationship may. In fact, the non-linearities
seen in such models are related to drug absorption, distribution, metabolism and excretion, and the
pharmacokinetics of drug action. Another example where simplifying assumptions are made pertains
to the number of tissue compartments in a perfusion model. Multi-compartment models were
developed to explain the observation that, after a rapid I.V. injection, the plasma level-time curve
does not decline linearly as a single, first-order rate process [9]. The plasma level-time curve reflects
first-order elimination of the drug from the body only after distribution equilibrium, or plasma drug
equilibrium with peripheral tissues occurs. Therefore, while the number of tissue compartments
in a perfusion model does vary with the drug, the tissues or organs that have no drug penetration
are invariably excluded from consideration. Organs such as the brain, the bones, and other parts
of the central nervous system are often excluded, as most drugs have little penetration into these
organs [8]. To describe each organ separately with a differential equation would make the model very
complex and mathematically difficult to solve. Under such circumstances more sophisticated methods
of solution need to be employed.

Our research is aimed at the well-known two-compartment model. We have chosen to consider
the two-compartment model in this study, given that the one-compartment model assumes immediate
distribution of the drug and attainment of equilibrium throughout the body. Realistically however,
very few drugs display these characteristics, and hence we turn to a two-compartment model for
consideration. While still a simplification of the actual physics of the problem, it is a well-justified
model as commented on above. This model is capable of providing data on rates in and out of specific
organs, which is of interest. The work conducted here is done with the aim of introducing a numerical
method which may be employed in future research for the solution of models which are non-linear
and describe multiple compartments. As such, we propose and illustrate the use of a numerical
method of solution, namely the nonstandard finite difference method (NSFD), capable of efficiently
obtaining solutions which are not only accurate but maintain the underlying dynamics of the system
of equations. This choice of method impacts on whether we are able to consider non-compartment
models; the NSFD is not amenable to the simulation of non-compartment models as it provides a
meta-analysis of the inter-compartment dynamics, whereas non-compartment models are unable to
describe these meta-dynamics and instead conduct parameter estimation of the entire system as a
whole through the use of experimental data. The advantage of the NSFD method is the ability to predict
the concentration—time profile of a drug when there are alterations in the dosing regimen—this would
not be possible were one to consider non-compartment analysis. Another advantage of the NSFD
method is that it preserves significant properties of the analogous models and consequently gives
reliable numerical results even when analytical solutions are not possible. The standard approaches to
multi-compartment models assume linear dynamics over the duration of each time step, whereas the
NSFD method assumes exponential dynamics. Thus, in the case of a linear model the NSFD method
recovers the model dynamics exactly. This paper illustrates the ability of the NSFD method to solve
a two-compartment PK model in a stable and robust fashion, with the ability of being extended to
non-linear and/or multi-compartment models.

2. Methods

2.1. Finite Difference Method

While the implementation of the NSFD method is the focus of this research, we employ the
standard finite difference (SFD) method as a means of comparison. We define finite difference methods
as numerical methods used for the solution of differential equations by approximating them with
difference equations, in which finite differences approximate the derivatives.
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We will introduce the concept of the SFD method from Taylor’s theorem, where / is termed the
step size between the values of the independent variable x. Were we to increase x by & then according
to Taylor’s theorem we could create a Taylor series expansion:

2
Flx+h) = f(x) +hf (x) + %f”(x) "
such that,

f’(x) _ f(x+h2l _f(x) —I—O(h)

Under the assumption that # — 0 then,

fo) & LN 2SO o () St 2 <1>

Similarly, if we expand f(x) at f(x — h) then,

h2
fle=h) = Fx) =hf' () + 5 " (x) -
such that,
f’(x) - w +0(h),
which, if h — 0, gives,

f/(x):f(x)_f(x_h) or f/(xn)%fn _hfn—l' (2)

Subtracting the Taylor series expansion of f(x — h) from f(x + h) provides us with:

f(JH—h)—]‘(x—h):th’(x)—i—z?ji!3 "(x) + -

which, under the assumption that & — 0, provides us with a third approximation for the derivative:

1y - St h) = flx—h) fosr = fu1
£(x) = — or  fu) ~ I )
Equations (1)—(3) are known as forward difference, backward difference and central difference
approximations to the first order derivative, respectively. The approximation given by Equation (3)
has an error of O(h?) and is hence deemed the most accurate of the three approximations provided.

2.2. Nonstandard Finite Difference Method

The NSFD schemes developed by Mickens et al. [12-16] were proposed to compensate for the
weaknesses of methods such as the SFD methods; numerical instabilities being a prime example.
As commented on by Liao and Ding [17], with regard to the positivity, boundedness, and monotonicity
of solutions, NSFD schemes have performed better than SFD schemes. Because it is more flexible in
its construction, an NSFD scheme can more easily preserve certain properties and structures obeyed
by the original equations and can have better dynamical consistency for dynamical problems [17].
The advantages of NSFD methods have been observed when being employed for many numerical
applications. Gonzdlez-Parra et al. [18,19] developed some NSFD methods to preserve the positivity
condition and population conservation law of biological models. Heat transfer problems have also
been considered via this method in Jordan [20] and Malek [21].

The initial foundation of NSFD schemes came from exact finite difference schemes [22]. It is
thought that numerical methods that approximate differential systems are expected to be consistent
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with the original differential systems. Mickens [23] provides a theorem which states that each ordinary
differential equation corresponds to an “exact” finite difference scheme. He also introduces the
NSFD method for designing schemes that are dynamically consistent with the original differential
systems, preserve physical properties, obtain reliable results and require less effort to implement
than those obtained via standard methods [24]. In this study, we employ the NSFD method to obtain
solutions for the two-compartment I.V. bolus injection and the two-compartment I.V. infusion models.
We furthermore, conduct a comparative analysis by also considering an analytical solution, the SFD
method and ODE45 in MATLAB (MathWorks, Natick, MA, USA). The purpose of this paper is to
obtain an “exact” finite difference scheme for a linear PK model using the procedure of Mickens [14].
In this fashion we hope to prove the degree to which this method may provide meaningful solutions
to equations within this context.

NSFD Modeling Fundamental Principles

NSFD methods provide numerical solutions to differential equations by constructing discrete
models. They preserve the significant properties of their continuous analogues and consequently give
reliable numerical results. The following rules were given by Mickens in [25] for constructing an
NSFD scheme:

Rule 1. The orders of the discrete representation of the derivative must be equal to the orders of the
corresponding derivatives appearing in the differential equations.

Remark 1. If the order of the discrete representations for derivatives are larger than those occurring in the
differential equations, then numerical instabilities will occur.

Rule 2. Denominator functions for the discrete representations for derivatives must, in general,
be expressed in terms of more complicated functions of the step-sizes than those conventionally used.

Remark 2. Consider a first-order differential equation of the form:

= ftu ). @

The conventional denominator At of the system in (4) is:

du U — Uy

I A ©)
which is replaced by a nonnegative function ¢(At) where,
¢(h) = h+O(?). (©)
In the above, we have:
h=At, t—=t,="hk, u(t)— uy, 7)
where k is an integer. The exact discrete representations of Equation (4) are given as:
du U1 — QU ®)

dt p(h)

where,
@(h) =14 0(h).
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Rule 3. Nonlinear terms must, in general, be modeled by nonlocal discrete representations.

Remark 3. The nonlinear terms that occur in f(t,u, ) are approximated in a nonlocal way by a suitable
function of several points on the mesh. For example, Mickens” approximation of nonlinear terms [14,26,27] is
given as:

2uZ,  u?
W2~ wgyq and  ud ~ — LK 9
Ujet1 + Uk
Erdogan and Ozis’ approximation of the nonlinear term, which was clearly stated in [27], is given as:
2 3.1 0
u® R uglgy and u’ =~ E”k(3”k+1 — uyg). (10)

Rule 4. All the special conditions that correspond to either the differential equation and/or its solutions
should also correspond to the difference equation and/or its solutions.

Remark 4. For example, the system described in Equation (8) is called time-invariant if the behavior of the
system does not explicitly depend on the absolute time. In other words, if f(t1,u,A) = f(tz,u, A) for any two
times t1 and ty, then the system is time-invariant. If the discrete representation of the same model does not also
have this property, numerical instabilities may occur.

Rule 5. The discrete scheme should not introduce extraneous or spurious solutions.

Remark 5. The discrete representation of the derivative must, in general, converge to the same fixed-point
solutions as the corresponding derivative. If it does otherwise, numerical instabilities may occur.

2.3. Phase Plane Analysis

For a system of linear differential equations x’ = Ax, the phase portrait is a representative set of its
solutions, plotted as parametric curves (with t as the parameter) on the Cartesian plane tracing the path
of each particular solution (x,y) = (x1(t), x2(#)) where 0 < t < co. Thus, by evaluating Ax at a large
number of points and plotting the resulting vectors, one obtains a direction field of tangent vectors to
solutions of the system of differential equations. This phase portrait is a graphical tool which assists
us in visualizing how the solutions of a given system of differential equations would behave as time
evolves. In this context, the Cartesian plane where the phase portrait resides is called the phase plane.
The parametric curves traced by the solutions are sometimes also called their trajectories. A qualitative
understanding of the behavior of the solutions and local stability of the numerical solution near steady
states can usually be gained from a direction field. More precise information can be discovered by
including in the plot some solution curves or trajectories.

A phase portrait is able to assist us in establishing whether the trajectories of a solution will
approach the equilibrium solution as t increases, where the equilibrium solution is obtained when
Ax = 0. The behavior of these trajectories around equilibrium points provides further insight into the
dynamics of the solution, particularly pertaining to varied parameter values.

3. Results

3.1. Compartmental Models for Pharmacokinetics

PK models deal with the mathematical description of the rates of the drug movement into,
within and upon exiting the body. In this work we depict the whole system as two compartments;
employing a two-compartment model is often more appropriate mathematically and physiologically
when modeling the rate of a drug in the body. These models are used to predict the time course of drugs
in the body and to allow maintenance of drug concentration in the therapeutic range by predicting
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drug levels in each compartment. In this work we will assume that the drug is uniformly distributed
within each compartment. The compartments are also considered to be well-stirred and mixing of the
drug is assumed to be rapid. Elimination is depicted as occurring in the central compartment, so the
drug in the peripheral compartment must transfer back to the central compartment.

For the g-compartment, we have:

A N (e — k 11
T Z(:)( jicj — kijci), (11)
]:

where ¢;(t) is the concentration of the drug in compartment i, i = 1,2, ...,q and the rate constant
kij governs the rate of the drug movement from the ith compartment to the jth-compartment and
vice versa.

The variables of importance in this problem structure are as follows:

c : Concentration of drug in central compartment.

p : Concentration of drug in peripheral compartment.

k1p: Transfer rate of drug from central to peripheral compartment.
k1: Degradation rate of drug in peripheral compartment.

k1o: Clearance rate of drug leaving the central compartment.

The data relating to the pharmacokinetics of sisomicin, a new single component aminoglycoside
antibiotic, were obtained from Péchere et al. [28] to test the model in this study. The elimination
profile of this antibiotic follows two-compartment model kinetics after I.V. administration. The V.
bolus injection is structured as the initial condition which has the units of concentration as mg/mL.
In turn, the L.V. bolus infusion is administered as a dose, D, with unit mg/min, as shown in Table 1.
The equations considered below are focused on obtaining the concentration in each compartment such
that C, = 7;’ where Ay is the amount of drug present in the p!" compartment, V) is the volume of the
drug in the p'" compartment, with C, representing the compartments: ¢ (Central) and p (peripheral) [9].
As such, we consider the infusion I to be defined as V% with the unit % [28].

Table 1. Values for sisomicin kinetic parameters derived from two-compartment open model analysis
of serum data after intravenous (I.V.) administration. These values are visualized in Figure 1 and are
obtained from the work by Péchere et al. [28].

Parameter Unit Value: Subject1 Value: Subject2 Value: Subject3 Value: Subject 4

k1o min~1 0.00940 0.01110 0.01030 0.01520
k1p min~1 0.04050 0.02504 0.02750 0.04120
koq min—1 0.02910 0.02230 0.02830 0.02410

D mg/min 1.00000 1.00000 1.00000 1.00000

Suppose we consider a two-compartment LV. infusion model. We employ c(t) and p(t)
to represent the drug in the central and peripheral compartment, respectively, within the
two-compartment model as depicted in Figure 1. The central compartment is identified with the
blood while the peripheral compartment describes soft tissue. The absorption phase is omitted because
the drug was administered with I.V. infusion at time zero. Then, Equation (11) reads:

de — Jyyp — kpge — kioc + 1(8), (12)
d
di; = klzC - kle'
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k1o

Figure 1. Two-compartment model with intravenous (I.V.) infusion introduced into the plasma
compartment.

We will provide both analytical and numerical solutions to this equation for the case: I(t) = 0
and I(t) = Ip.

Case1: I(t) =0

If I(t) = 0 then (12) becomes a two-compartment L.V. bolus injection model, given as:

de = kyp —kic —kioe, ¢(0) =1, 13
d
% = k12C — k21p P(O) =0.
Case2: I(t) = I
If I(t) = Iy then (12) becomes a two-compartment L.V. infusion model, given as:

% = k21p — k1pc — k1o + I, C(O) =0, 14)

d

P =knc—kap p(0) =0.

The values considered are obtained from the work by Péchere et al. [28]. In this work sisomicin
kinetic parameters were derived from a two-compartment open model analysis of serum data after
L.V. administration. The values for Subjects 1-4 are employed for the dynamical systems analyses;
for the numerical solutions obtained we considered the values of Subject 1. We have also considered
different values of the dose; realistically these alternate values should correspond to different values
of Iy, however the assumption is that the parameter values are within the correct range to provide us
with at least a semblance of the correct dynamics.

3.2. Analytical Solution

3.2.1. Case 1

We obtain the analytical solution for the blood compartment c(t) and tissue compartment p(t)
to Equation (13) via the Laplace transform L. The Laplace transform is an integral transformation
where the linear operator £{f()} transforms a function f(t) with t € R>( from the time domain to a
function f(s) with s € C in an image domain [29,30]. The main advantage of the Laplace transform is
that differentiation and integration in the time domain corresponds to simple algebraic operations in
the image domain. Transforming Equation (13) and writing Q1, Q> for £{c} and L{p} respectively,
we obtain:

{(s + k1o +k12)Q1 —k21Q2 =1 (15)

—k12Q1 + (s +k21)Q2 =0,
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upon substitution of the initial conditions and rearranging accordingly. These are simultaneous
algebraic equations in Q; and Q; we can solve for these upon employing the method of elimination:

Q> (-SZ — skoq — skig — kioka1 — skip — kioko1 + k12k21) = —k2

(52 + (k1o + k12 + ko1)s + klOklZ) Q2 = ki2

Q, = k12
s2 + (k1o + k12 + ka1)s + kiokiz
providing,
k12
_ 16
Q2 (S+/\1)(S+)\2) ( )
where,
1 2
Mp =5 kio +kip +ky £ \/(klo + k12 + kp1)? — dkioko (17)
such that,

A1+ Az = k1o + ko1 + ko, AMA2 = karkqo.

To obtain the solution for the peripheral compartment we take inverse Laplace transform of
Equation (16) which gives:

£Q) = plt) = £ { s )
(18)

_ -1/ _A B
= kL {5+A1 T &0 } ,
where,

k1> __—kn
Ay —Ar’ Ay — Ay

A=

such that,

() = 52 (exp(~ut) — exp(~at)).

This then allows us to find ¢(t) by eliminating Q, in Equation (15) or by substituting the solution
for p(t) in one of the equations given in (13). In this case, it will be simpler to substitute for p(t) in the
second equation of (13), giving,

dp

kioe = ¢ +ka1p(t)

= AR (A — exp(—at)) ) 4k K2 (exp(~Mit) — exp(—Aat))

i\ H-n P 1 P 2 21 - p 1 P 2
k k1ok

= 5 (Fhexp(—Mat) + Azexp(—Aat)) + 122 (exp(—Avt) — exp(—Azt))

2—M 27— M
such that,
A —kyn B ka1 — Az _
(t) = Y exp(—Aqt) + N exp(—Aat).
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The concentration in the central compartment is hence,
c(t) = Eexp(—Aqt) + (1 — E) exp(—Aat) (19)
and the concentration of the drug in the peripheral compartment is:

P = T2 (expl—at) — exp(—Aat), 20

_ M—kn
where E = PP

3.2.2. Case 2

The general solution for (14) is of the form q(t) = q, + g where g, is a particular solution and g is
the complementary solution, i.e., the general solution of the homogeneous part of the Equation (14).
To obtain a particular solution of Equation (14), we assume c(¢) and p(t) to be constant, such that,

ko1p — kizc —kipc+1p =0 (21)

and,
kiac —ky1p = 0. (22)

Upon substituting (21) into (22) we obtain the particular solution of (14):

()b 1
qp_(l’(t)>_k10<2f>‘ 23)

To find the complementary solution to Equation (14) at I(t) = 0 we consider,

'\ [—kio—kip kn c
()= ) ) s

providing the corresponding matrix,

A— <k10 — ki kx ) . (25)

k12 —ko1

We can find a fundamental set of solutions for the matrix by finding the eigenvalues and the
corresponding eigenvectors. The matrix A has eigenvalues A such that:

A%+ (k1o + k12 + ko1)A + kigkay = 0 (26)

which, upon solution, provides the following eigenvalues:

1
AMp = 5 <_k10 —kip — ko £ \/(klo +kip + k)2 — 4k10k21> . (27)

Suppose v = Zl are the eigenvectors corresponding to the eigenvalues, then (A — AI)v = 0.
2

—kio — k12 — A2 ko1 1) _ (0
k12 —ky1 — A2 v 0

Hence we have that,
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or,

(=kio — k12 — A1 )01 +kp1vp =0
(28)

k1201 + (—kp1 — A1p)v2 = 0.

From (28), we have that:
_ ko1 + )\1,20

v
! k12

2,

and,

kot ki + A
== "y

0
z ko1

Suppose v, = 1, then we have that,

oy = ko1 + A1
- 7

k12
Ky1+

ko1+A12
) ,
Q = 1 e klZ .
02 1
Let 71/2 - Ki

M2 then we find the corresponding eigenvectors to the eigenvalues to be:

12
I % U R 5 )

Substituting the value of A; ; from (27), we have:

and thus,

—k10 — k12 + ka1 & / (k1o + k12 + kp1) 2 — dkyoka
2k1p '

We can now write our complementary solution as:

ge(t) = AreMt ( Tll ) + Aye?! ( le ) . (29)

The general solution to (14) is then of the form g(t) = g, + g, hence,

q(t) = (;8) = kITOO (é) + AgeMt (T) + Agel! (?) (30)

I
c(t) = ﬁ + AymeMt 4+ Ayt (31)

T2 =

giving,

and,
~ kplo

= + AreMt 4 Ajet, (32)
k1ok21

p(t)

Given the initial condition ( ;(0) ) = ( 8 ) , and employing Equations (31) and (32) we have:

I

+ A1+ A =0, (33)
k1o
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ko1,
120 1 A+ A, = (34)
kioko1
With some algebraic manipulation we find the arbitrary constants:
Iy (ki —kn
M= (k21(T1 - T) )
and,
Iy (ko1 —kipm
Ay = -0 (2L H20 )
2 ko (k21(71 - T) 0
Our final solution is then given as:
_(e®) ) _ g 1 Iy ((kpo—kn \ Mt T Iy (ka—kpm ) At [ T2
"= (m)) =i (e ) ri (BE) M () a (BRE) e (7). @

3.2.3. Remarks

As provided in Table 1 the parameter values for kg, k12 and kp1 were obtained from [28]. We also
consider the case where k1, = 0 as a means of comparison; this case indicates that the transfer rate of
the drug from the central to the peripheral compartment is zero.

Consider the dynamics presented in Figure 2 for the homogeneous case; we find that the transition
from k1p > 0 to k12 = 0 does not change the nature of the equilibrium points. In both cases we find
that Ay < A; < 0, indicating that we have a node which is defined to be asymptotically stable. This has
been checked for the range of parameter values given in Table 1, for Subjects 1-4. This indicates that
when the transfer rate of the drug from the central to peripheral compartment is positive, or when
there is no transfer, the system maintains the same dynamics.

P p
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(a) k10 = 0.0094, k12 = 0.0405, k21 = 0.0291

(b) kyg = 0.0094, k15 = 0.0, ko = 0.0291

Figure 2. Phase portrait representing c(¢) and p(t). The arrows illustrates the trajectories of the system.

Figure 3 shows that for the transition from ki > 0 to k1p = 0, in the non-homogeneous case,
our dynamics once again remain unchanged. We have a nodal sink—defined to be asymptotically
stable—at a point where c and p > 0, such that the concentration in both compartments is positive.
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In the second instance (kj; = 0) we obtain a point where p = 0, i.e., only the concentration in the
central compartment is not zero. Thus, we further note that our results have shown that the case where
k19 > kip = O results in a lower steady-state drug concentration.

We also note—as indicated in Figure 4a—that the steady state concentration is directly
proportional to the infusion rate Iy. Hence, a higher value of Iy will result in a higher steady-state
concentration. In Figure 4b we note that a higher elimination rate (ko) will result in a lower steady-state

concentration.

p p
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(a) k1o = 0.0094, k12 = 0.0405, k21 = 0.0291 and Io =1 (b) k10 = 0.0094, k12 = O, k21 = 0.0291 and Io =1

Figure 3. Phase portrait representing c(t) and p(t). The arrows illustrates the trajectories of the system.
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(@) k1o = 0.0094, k1p = 0.0405, ky; = 0.0291 and Iy = 3. (b) k19 = 0.0694, k1o = 0.0405, k; = 0.0291 and Iy = 3.
Figure 4. Phase portrait (a) shows the steady state concentration is directly proportional to the infusion
rate (Ip). Thus, a higher I will result in a higher steady-state concentration, and (b) shows a higher
elimination rate (k1o) will result in a lower steady-state concentration.
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In terms of an investigation of the impact of Iy we note that the drug is given by I.V. infusion at a
constant zero-order rate to allow accurate control of the drug concentration and to maintain the level
of the drug in the body as constant. This allows us to predict the PK action. For physically meaningful
results we can only consider constant values of the dose; at different constant values (Iy) we obtain a
higher infusion rate which results in a higher steady state concentration. We find however, that an
increase in Iy does not have any effect on the dynamics of the system.

3.3. Nonstandard Finite Difference Scheme

3.3.1. Case 1

Before we discuss the implementation of the NSFD scheme we briefly review the SFD schemes of
the system of equations given by (13) which are given as:

Cnt+1 — Cn

p = ko1pn — k12cn — k1ocn (38)
Pnﬂhi_pn = ki2cn — ko1pn. (39)
Via the SFD method the system may be written in explicit form as:
Cnt1 = Cn + h(kopn — ki2cn — kiocn) (40)
Pn1 = Pn+h(kizcn —ko1pn). (41)

We now turn to the focus of this section, which is the implementation of the concepts of the NSFD
scheme to the linear PK model (13) under discussion [14]. Employing the method discussed in Section
2 we obtain:

Cnt1 — PCn

p = ko1pn — ki2cn — k1ocn (42)
Prtr — $Pn ki2cn — ko1 pn. (43)
¢
where,
e/\]h _ e/\z]’l /\16/\2]’1 _ )\26/\111
= A=A and ¢ = M—A 7

and Ay and A; are given as per Equation (17).

3.3.2. Case 2:

As before, we present the SFD schemes of the system of equations given by (14) before discussing
the relevant NSFD scheme. These are given as:

W = ko1pn — k12cn — kiocn + Ip (44)
w = kipcn — ko1 pn. (45)

This system may be written in explicit form as:

Cnp1 = Cn +h(ko1pn — k1ocn — kiocn + Ip) (46)
Pni1 = Pu +h(kiacn —ka1pn). (47)

We now turn to the NSFD implementation as a means of solution. In order to do so we start by
considering the system of equations given by (14) which, under the requirement:

kioka1 # 0, (48)
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gives the general solutions:

C(t) = ﬁ <(k10k21 — AZ)CO =+ k21p0 + IO(/\Z — k]iok21 — k12)> e/\l(t*to)_F
1— A2 10

(49)

! ((M — kioka1)co + ka1 po + lo(krokz = Az + k12)> halt=to) ﬂ,

/\1 B /\2 klO k]o

A+ k k Io(Ay — kygkoy — k
p(t) = 21t f0+ o ((k10k21 — Aa)eo + o + 9lA2 = Kiokan 12)> Mt |

ka1(A1 = A2) k10 50)

A2 + k1o + k12
ko1 (A1 — Az)

7

(()\1 — k1ok21)co + ka1 po + lo(krokz1 = Az + k12)> eMa(t—to) 4 k12lo

klO k10k21

where A1y is given in Equation (27).

The NSFD scheme of Equation (14) is obtained by making the following transformation in
Equations (49) and (50):
ty — t = hk,

t =t =h(k+1),

ug — Uy,
(51)
u(t) — ugyq,
wo — Wy,
w(t) = Wiy,
giving the following results:
1 Io(Ay — kipkay — k
1T, ((klokZl — Ao)ex + karpi + 0(A2 ;Sozl 12))
(52)
1 To(k1okoy — Ax +k I
My & ((A1 — kiokat g + karpi + 0(k1oka1 — A2 + 12)) ehoh o 10
M= A k1o k10
A+ ko +k Io(Ay — k1pka1 — k
Pt = Ty ((k10k21 — A2)ex + ka1 px + oAz — Fiokzy 12)> eMhy
ka1 (A1 — Az) k10 -

Mt ko + k1o
ko1 (A1 — A2)

<()\1 — kioko1)cx + ka1px + lo(krokz1 = Az + k12)> el 4 Jiolo.

k1o kioka1”

4. Discussion

Due to its simplicity, the compartment model often serves as a “first model” that requires further
refinement in order to describe the physiologic and drug distribution processes in the body accurately.
While this may be the case, non-compartment models have gained popularity in the literature due to
their ability to easily relate experimental data to mathematical models via parameter fitting. Foste [31]
points out that upon comparing non-compartment with compartment models, it is not a question
of declaring one method better than the other. It is a question of (1) what information is desired
from the data; and (2) what is the most appropriate method to obtain this information. Known
limitations of non-compartment models include the fact that they do not allow for meta-analysis
and the deeper insight that the physiological-based PK models allow for [32]. Another important
limitation of non-compartment PK analysis is that it lacks the ability to predict PK profiles when there
are alterations in a dosing regimen, which compartment PK methods are capable of [33]. Furthermore,
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compartmental approaches allow for some level of “physiological” interpretation of what the body
does to the drug (i.e., consistency with physiologically reasonable pathways of drug elimination can
be maintained). Shargel et al. [8] note that, in comparison to non-compartment models, compartment
models are particularly useful when little information is known about the tissues of the compartment(s).
In this study non-compartment models are not of interest, not due to their limitations but because
non-compartment analysis is based on algebraic equations, whereas compartment models are based
on linear or nonlinear differential equations. We instead investigate the use of a method which is
designed for the effective solution of differential equations, and as such turn our attention away from
non-compartment models.

In this study two-compartment models (the I.V. bolus injection and I.V. infusion models) are
considered for simulations. The methods compared are the SFD method, and the in-built function
0DE45 in MATLAB, with the focus of the study being the NSFD method. All the simulations were
performed by using MATLAB. The absolute error is presented using the formula:

EAbsolute = |XAnalytical solution — XNumerical solutiorl"

The first column, in each table presented, is the number of nodes chosen, the second column is the
corresponding step size, the third column is the absolute error between the exact solution and the SFD
scheme, the fourth column is the absolute error between the exact solution and 0DE45 in MATLAB,
and the last column gives the absolute error between the exact solution and the NSFD scheme.

Once again, we remind the reader of the values provided in Table 1 for the parameters: kig, k12
and ky; [28]. These were derived from a two-compartment open model analysis of serum of sisomicin
after I.V. administration.

4.1. Case 1: Simulation Results

The results for this case clearly indicate the degree to which the NSFD method outperforms the
SFD method, and in fact the in-built function as well—see Figure 5. For each step size employed
the absolute error calculated is in fact zero, as per see Tables 2 and 3, given that the NSFD method
produces “exact” solutions. More importantly, we see from Figures 6 and 7 that for large step sizes the
NSFD method performs exceptionally well, matching the analytical solution for the entire time profile,
while the SFD method is not able to do so.

The SFD method deviates from the exact solution the moment the solution changes
gradient—see Figure 7. This is a known problem for methods of this nature; we find that as expected
the NSFD method does not suffer from this weakness.
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Figure 5. The concentration of the drug for Case 1 where i1 = 0.53333 in the (a) central compartment,
and (b) peripheral compartment.
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Table 2. The absolute error results for the system of equations given by (13) for ¢(t) with parameter
values klO = 0.0094, k12 = 0.0405, and k21 = 0.0291.

Absolute Error for c(t)
N h Error in SFD  Errorin ODE45 Error in NSFD
2 10.00000  0.144913386 0.000000010 0.000000000
4 5.00000 0.053199386 0.000000010 0.000000000
8 2.50000 0.024396686 0.000000010 0.000000000
16 1.25000 0.011669111 0.000000022 0.000000000
32 0.62500 0.005719559 0.000000028 0.000000000
64 0.31250 0.002831162 0.000000028 0.000000000
128 0.15625 0.001408639 0.000000028 0.000000000
256 0.07812 0.000702591 0.000000028 0.000000000
512 0.03906 0.000350865 0.000000028 0.000000000
1024  0.01953 0.000175326 0.000000029 0.000000000

Table 3. The absolute error results for the system of equations given by (13) for p with parameter
values k19 = 0.0094, k1, = 0.0405, and ky; = 0.0291.

09

Concentration of the drug the central compartment
=
o

01

Absolute Error for p(t)
N h Error in SFD  Error in ODE45  Error in NSFD
2 10.00000  0.126270717 0.000000009 0.000000000
4 5.00000 0.046283217 0.000000009 0.000000000
8 2.50000 0.021180830 0.000000009 0.000000000
16 1.25000 0.010127446 0.000000019 0.000000000
32 0.62500 0.004961080 0.000000025 0.000000000
64 0.31250 0.002455508 0.000000025 0.000000000
128 0.15625 0.001221609 0.000000025 0.000000000
256 0.07812 0.000609284 0.000000025 0.000000000
512 0.03906 0.000304265 0.000000025 0.000000000
1024  0.01953 0.000152038 0.000000026 0.000000000
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Figure 6. The concentration of the drug for Case 1 where 1 = 5.3333 in the (a) central compartment,

and (b) peripheral compartment for a large time interval.
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Figure 7. The concentration of the drug for Case 2 where i = 10 in the (a) central compartment, and (b)
peripheral compartment. At the steady state, the rate of drug infusion (Ip) is equal to the elimination
rate (kpg).

4.2. Case 2: Simulation Results

Once more we find that for each step size employed the NSFD method outperforms those methods
it is compared to—see Tables 4 and 5. In this case in particular, the structuring of the NSFD scheme
is shown to be quite complex. The NSFD scheme in this case was obtained via an initial structuring
of the exact solution of the problem and making the substitution provided in Equation (51). We note
from Figure 8 that the schemes reach the steady state as required. More importantly we observe the
oscillations which occur for increasing step sizes h. It must be noted that these step sizes are realistic
given that t € [0,2000]; as such in a range of [0, 1] the value of i = 10 represents At = 0.005, whereas
h = 26.667 is represented by At = 0.013. We can easily observe here the degree to which the NSFD
method is able to outperform the other two numerical methods employed. The SFD scheme does not
match the real dynamics of the system for higher step sizes; we observe oscillations of the SFD method
for large h. As the step size increases there is complete blowup of the SFD scheme and the error in
ODE45 increases.

80

@
2]

s
S

Concentration of the drug the central compartment

20 ] - Analytical
ODE45
FDM

©  NSFD g o NSFD

Analytical
ODE45 |

Concentration of the drug the peripheral compartment

™
=]

FDM

0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time Time

(a) (b)

Figure 8. The concentration of the drug for Case 2 where I = 26.667 in the (a) central compartment,
and (b) peripheral compartment.
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In terms of an investigation of the impact of Iy we note that the drug is given by I.V. infusion
at a constant zero-order rate to allow accurate control of the drug concentration and to maintain the
level of the drug in the body as constant. This allows us predict PK action. For physically meaningful
results we can only consider constant values of the dose; at different constant values (Iy) we obtain a
higher infusion rate which results in a higher steady state concentration.

Table 4. The absolute error results for the system of equations given by (14) for c(t) with parameter
values k19 = 0.0094, k1, = 0.0405, kp; = 0.0291 and Iy = 1.

Absolute Error for c(t)
N h Error in SFD  Error in ODE45  Error in NSFD
2 10.00000 1.98326261 0.00000008 0.00000000
4 5.00000 0.73839463 0.00000010 0.00000000
8 2.50000 0.34211236 0.00000012 0.00000000
16 1.25000 0.16473051 0.00000018 0.00000000
32 0.62500 0.08083009 0.00000021 0.00000000
64 0.31250 0.04005593 0.00000019 0.00000000
128 0.15625 0.01993844 0.00000022 0.00000000
256 0.07812 0.00994725 0.00000023 0.00000000
512 0.03906 0.00496814 0.00000022 0.00000000
1024  0.01953 0.00248270 0.00000023 0.00000000

Table 5. The absolute error results for the system of equations given by (14) for p(t) with parameter
values k10 = 0.0094, k12 = 0.0405, k21 = 0.0291 and 10 =1.

Absolute Error for p(t)

N h Errorin SFD  Error in ODE45  Error in NSFD
2 10.00000 1.57898904 0.00000007 0.00000000
4 5.00000 0.56648904 0.00000009 0.00000000
8 2.50000 0.25172781 0.00000011 0.00000000
16 1.25000 0.12005326 0.00000016 0.00000000
32 0.62500 0.05860324 0.00000018 0.00000000
64 0.31250 0.02895478 0.00000017 0.00000000
128 0.15625 0.01439233 0.00000020 0.00000000
256 0.07812 0.00717515 0.00000021 0.00000000
512 0.03906 0.00358234 0.00000019 0.00000000
1024  0.01953 0.00178986 0.00000020 0.00000000

5. Conclusions

In this article we structured and applied a NSFD numerical scheme to two systems of equations
which are both PK models. The first model is an I.V. bolus injection two-compartment model while
the second model is an L.V. infusion two-compartment model. The systems are homogeneous and
non-homogeneous systems of differential equations, respectively. We present some absolute errors
associated with this method upon comparison to the relevant analytical solution, the SFD method and
the in-built function 0DE45 in MATLAB. The NSFD results indicates superior performance over the
SFD method and the in-built MATLAB function, confirming both its stability and robustness.

We conclude that the developed nonstandard schemes preserve the significant properties of their
continuous analogues and consequently give reliable numerical results. It was found that the NSFD
schemes were stable for large step sizes and display qualitatively accurate results, allowing one to
assess and predict the long time behaviour of the drug in the system. Given that the NSFD method
produces “exact” numerical schemes, we may conclude that they are well-suited for the solution of
pharmacokinetic models.
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The flexibility afforded by the NSFD scheme, in terms of its construction, means that the scheme
secures consistency with the continuous pharmacokinetic models arising from compartmental or
physiological models with respect to the different dynamical characteristics of the systems [17]. As a
consequence, we were able to investigate the dynamics of the models and the impact of the parameter
value choices employed. We observe asymptotically stable dynamics in each case and note the impact
of parameter value choices on the equilibrium states obtained.

It now remains to extend this method to more complex systems of equations, such as non-linear
and/or multi-compartment PK models.
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