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Abstract: Mechanotransduction between cells and the extracellular matrix regulates major
cellular functions in physiological and pathological situations. The effect of mechanical cues
on biochemical signaling triggered by cell–matrix and cell–cell interactions on model biomimetic
surfaces has been extensively investigated by a combination of fabrication, biophysical, and biological
methods. To simulate the in vivo physiological microenvironment in vitro, three dimensional (3D)
microstructures with tailored bio-functionality have been fabricated on substrates of various materials.
However, less attention has been paid to the design of 3D biomaterial systems with geometric
variances, such as the possession of precise micro-features and/or bio-sensing elements for probing
the mechanical responses of cells to the external microenvironment. Such precisely engineered 3D
model experimental platforms pave the way for studying the mechanotransduction of multicellular
aggregates under controlled geometric and mechanical parameters. Concurrently with the progress
in 3D biomaterial fabrication, cell traction force microscopy (CTFM) developed in the field of cell
biophysics has emerged as a highly sensitive technique for probing the mechanical stresses exerted
by cells onto the opposing deformable surface. In the current work, we first review the recent
advances in the fabrication of 3D micropatterned biomaterials which enable the seamless integration
with experimental cell mechanics in a controlled 3D microenvironment. Then, we discuss the
role of collective cell–cell interactions in the mechanotransduction of engineered tissue equivalents
determined by such integrative biomaterial systems under simulated physiological conditions.

Keywords: mechanotransduction; soft lithography; cell-matrix interactions; cell–cell interactions;
cell traction force microscopy; 3D tissue mechanics

1. Introduction

During tissue regeneration, the geometrical and mechanical cues of the surrounding
microenvironment have been shown to regulate cellular responses, including migration, proliferation,
differentiation, and apoptosis, etc. [1,2]. As such, tissue engineering traditionally refers to the
development of various types of biomaterial scaffolds with specific bulk properties, such as
porosity, microarchitecture, and compliance for extensive applications in cell therapy and tissue
regeneration [3]. Although biomaterial scaffolding acts as a three-dimensional (3D) support for
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cell growth, it does not provide a highly engineered microenvironment with precise control in
the location and morphology of various types of cells. Such spatial control is important for
reestablishing the intricate organizations in the functional subunits of a typical organ. To overcome
the limitations of biomaterial scaffolds, two-dimensional (2D) micropatterning of cells on various
substrates has been exploited, with several techniques emerging, including microcontact printing [4],
microfluidic patterning [5], photolithography [6,7], and plasma polymerization [8]. To date, surface
features with spatial resolution of approximately 1 um can be fabricated by these techniques [9].
Increasingly, the 3D fabrication of precise microscale features which is not achievable with synthetic
based approaches (e.g., hydrogel synthesis) is critical not only for controlling cell placement, but
also for presenting spatially-controlled biological signals for the development of functional tissue
constructs in vitro or in vivo [10]. In order to develop 3D micropatterned biomaterial scaffolds, several
technical requirements in material selection, including mechanical properties, biocompatibility, and
processability, must be thoroughly addressed for specific applications [11]. Recently, the advancement
in 3D fabrication techniques has opened the possibility of attaining accurate spatial control of multiple
cell types in engineered tissue equivalents. More importantly, such enabling technology facilitates
the integration of cellular mechanical probes with a model microenvironment for studying intricate
phenomena in mechanobiology [12]. Therefore, a timely review on the recent development of 3D cell
patterning techniques in relation to the emerging investigations of 3D cellular mechanotransduction
will highlight the importance of a generally ignored issue of mechanobiology for the design of tissue
engineering products.

2. Cell Mechanotransduction

Mechanotransduction, which generally occurs at the cell–extracellular matrix (ECM) interface
and cell–cell contacts, is the transmission of mechanical forces to biochemical signals and vice versa
for the regulation of cellular physiology. Mechanical force fields in the 2D or 3D space containing cells
and ECM, either in the form of externally applied forces or cellular traction forces produced by the
cytoskeleton, have been intensely studied due to their important roles in maintaining homeostasis
in tissues in vivo. Although the involvement of cell traction force (CTF) on cellular signaling and
physiological function has been revealed, the precise mechanism of mechanotransduction in 3D
systems remains to be elucidated [13]. In the physiological microenvironment, both cells and
subcellular organelles can sense mechanical stresses from various sources, such as shear stress of
flowing blood, mechanical stress from the surrounding ECM, and contractile forces from adjacent
cells [13]. There are significant differences between external forces and cell-generated forces, which
can be characterized from the differences in magnitude, direction, and distribution. However, certain
indications on the existence of tight coupling between external applied forces and cell-generated forces
have been highlighted [14,15]. For instance, biomacromolecules, such as carbohydrate-rich glycocalyx,
which are found on the apical surface of vascular endothelial cells, have been shown to transmit
fluid shear stress under blood flow to the cortical cytoskeleton [16]. In the mechanotransduction of
the cardiovascular system, shear stress induced by flowing blood has been known to deform the
endothelial cells at the inner wall of blood vessels and to trigger a cascade of cell signaling for the
regulation of vascular physiology (Figure 1a). The endothelium mechanobiology, which leads to the
generation of CTF (red arrows on Figure 1b indicate the direction of contractile forces), is actually
governed by the highly synchronized interactions between external mechanical forces, cell–ECM
adhesion, cytoskeletal protein binding, blood vessel stretching, cell–cell junction formation, and basal
membrane mechanics, etc. (Figure 1b). Therefore, the mechanotransduction of cell layers will be
thoroughly discussed herein by focusing on the feedback mechanisms of cell signaling with adjacent
cells or ECM.
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Figure 1. Schematic illustrations of (a) endothelial cells that form the interior surface of blood vessels 
subjected to stresses from the flowing blood; (b) The cell–cell junctions and cell–substrate tractions 
exerted by endothelial cells; (c) Positive feedback in cell–extracellular matrix (ECM) 
mechanotransduction. SMCs: smooth muscle cells. 

In the first step of cell–ECM interaction, the binding between integrin and ECM protein triggers 
the assembly of focal adhesions (FAs) which in turn link the integrins to the actin filaments of the 
cytoskeleton with the help of adaptor proteins (e.g., talin, alpha actinin, vinculin) [17]. Moreover, FAs 
have been known to stabilize the adhesion sites by synergistic interactions of numerous signaling 
proteins (e.g., FAK, Ras, src) [18]. The biochemical processes involved in the generation of contractile 
force in cells after adhesion and spreading on the ECM or substrate are triggered by actomyosin 
interactions and actin polymerization [19,20]. These cell-generated forces, as mentioned above, are 
commonly known as CTF which are transmitted forward to the ECM through integrin, and then feed 
back to biochemical signals from ECM proteins to cytoskeletal proteins [21]. A series of molecular 
biology studies have revealed that CTF is associated with major cellular functions through their 
involvement in various signaling pathways. In smooth muscle cells (SMCs), CTF generation is mainly 
regulated by the Rho-kinase/ROCK pathway, which directly affects mitogen-induced DNA synthesis 
[22] and FA assembly [23]. As such, the presence of CTF plays a key role in modulating cell 
differentiation, migration, and apoptosis, and in maintaining cell homeostasis in the local 
microenvironment [24]. An emerging question on the intricate mechanisms of CTF regulations 

Figure 1. Schematic illustrations of (a) endothelial cells that form the interior surface of blood
vessels subjected to stresses from the flowing blood; (b) The cell–cell junctions and cell–substrate
tractions exerted by endothelial cells; (c) Positive feedback in cell–extracellular matrix (ECM)
mechanotransduction. SMCs: smooth muscle cells.

In the first step of cell–ECM interaction, the binding between integrin and ECM protein triggers
the assembly of focal adhesions (FAs) which in turn link the integrins to the actin filaments of the
cytoskeleton with the help of adaptor proteins (e.g., talin, alpha actinin, vinculin) [17]. Moreover, FAs
have been known to stabilize the adhesion sites by synergistic interactions of numerous signaling
proteins (e.g., FAK, Ras, src) [18]. The biochemical processes involved in the generation of contractile
force in cells after adhesion and spreading on the ECM or substrate are triggered by actomyosin
interactions and actin polymerization [19,20]. These cell-generated forces, as mentioned above, are
commonly known as CTF which are transmitted forward to the ECM through integrin, and then feed
back to biochemical signals from ECM proteins to cytoskeletal proteins [21]. A series of molecular
biology studies have revealed that CTF is associated with major cellular functions through their
involvement in various signaling pathways. In smooth muscle cells (SMCs), CTF generation is
mainly regulated by the Rho-kinase/ROCK pathway, which directly affects mitogen-induced DNA
synthesis [22] and FA assembly [23]. As such, the presence of CTF plays a key role in modulating
cell differentiation, migration, and apoptosis, and in maintaining cell homeostasis in the local
microenvironment [24]. An emerging question on the intricate mechanisms of CTF regulations leading
to various cellular responses needs to be better addressed. For instance, it has been demonstrated that
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the mechanotransduction response of cells towards principal substrate characteristics, such as stiffness
and nanotopography, is linked to the talin-mediated mechanical regulation of the molecular clutch,
integrin clustering, and FA dynamics [25,26].

Most anchorage-dependent cells, except endothelial cells and epithelial cells, are functional only
in a 3D microenvironment in vivo. Thus, artificial 3D ECM networks have been developed as model
systems for cell culture and bio-functional studies. In general, collagen in the form of a 3D network
or a 2D gel has been widely used in various semi-quantitative assays of cell adhesion, biological
functions, and chemotaxis. For instance, the phosphorylation level of focal adhesion kinase (FAK) in
fibroblasts, which is associated with cell spreading, is reduced in 3D collagen gel matrix compared
to that on 2D collagen gel, while the formation of FAs of fibroblasts in the 3D collagen gel matrix are
triggered by the clustering of α5β1 integrins instead of αvβ3 integrins found on the 2D collagen gel [27].
Comparing 3D to 2D collagen cultures of SMCs, an upregulation of p21 and transforming growth
factor beta 1 (TGFβ1) expression, an upregulation of extracellular signal–regulated kinases (ERK)
phosphorylation, and a downregulation of FAK phosphorylation have been found, which supports
the role of geometrical factors of the microenvironment on cell proliferation and FA formation [28,29].
Similarly, an increase of matrix stiffness in 3D collagen network has been shown to promote the
invasive phenotypes of mammalian epithelial cells, such as Rho-mediated contractility [30]. Also,
primary dermal fibroblasts have switched from lamellipodia-based migration to lobopodia-based
migration in response to the shift of the mechanics of 3D gel matrix from nonlinear elasticity to linear
elasticity [31]. All results as mentioned above strongly suggest that the physical and mechanical
properties of the ECM or biomaterial directly moderate the intricate mechanisms of cell adhesion and
migration. Such influences have elicited the interplay between the mechanotransduction of adherent
cells and molecular architecture of the biomaterial scaffold or ECM network.

The mechanotransduction of a single cell on 2D biomaterial has been extensively studied during
the past two decades. CTF generated by the cytoskeletal remodeling of adherent cells is exerted
to the ECM or material interfaces of the surrounding microenvironment through the anchoring of
FAs. At the same time, the CTF of individual cells are influenced by both the surrounding ECM
and neighboring cells. Under in vivo microenvironment, a cell migrates with the CTF generation
on its surrounding ECM by synchronizing the protrusion and contraction at its leading edge and
trailing edge, respectively. On the other hand, the collective mechanotransduction of multicellular
aggregates in a 3D biomaterial, which has been studied to a lesser extent, likely influences major
cellular physiology, including morphogenesis, wound healing, and embryogenesis. A recent study has
reported the successful measurement of a CTF map exerted by an advancing epithelial cell sheet on a
hydrogel matrix [32]. Moreover, CTF in relatively small cell colonies composed of 1–27 cells on 2D
silicone gel has been found to be localized at the periphery of cell aggregate and is positively correlated
with the colony size [33]. Interestingly, another group has demonstrated that CTF is generated from
cells locating further behind the front edge of an advancing cell sheet instead of cells at the migrating
front boundary during collective migration [34]. In comparison to the mechanotransduction of single
cells, the maximal traction forces and stresses near the edge of the cell monolayer are significantly
higher [35]. Furthermore, the higher responsiveness of a cell sheet towards a stiffness gradient on
a planar substrate in comparison with a single cell suggests that cell–cell interaction enhances the
collective cell migration of a cell sheet [36]. Recently, a key endocytic protein known as RAB5A
has been shown to trigger collective migration of a cell population in originally stagnant epithelial
monolayers [37].

In general, the mechanical properties of native tissues vary significantly according to the functional
requirements of specific tissues or organs, and act as indicative parameters of the progression in certain
disease, e.g., muscular dystrophy [38]. As the mechanotransduction of cells is related to cytoskeleton
remodeling, ECM mechanics, and ECM protein composition, extensive studies have been focused on
the fabrication of substrates with variable stiffness, adhesive ligands, and micropatterns in order to
elicit the physiochemical factors for governing cell mechanics and function [39]. Cells exert CTF on the
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surrounding microenvironment, and at the same time moderate their cellular responses towards the
mechanical feedback signals obtained from the surrounding ECM (Figure 1c). In detail, the interaction
between individual cells and the ECM through interconnected pathways of receptor-mediated signal
transductions, CTF generation, and external matrix mechanics dictate the expression of specific genes
and phenotypes. At the same time, the elucidation of collective mechanics in cohesive cell layers as
well as its feedforward-feedback responses with surrounding microenvironments are required for
determining the working principle in tissue morphogenesis and regeneration. With the help of CTF
measurements, the cell signaling pathways involved in many physiological functions and pathological
processes of single cells have been revealed in more detail [15]. In addition to the mechanotransduction
of individual cells, CTF measurement of cell populations will make the in vitro biophysical study
of morphogenesis possible. It is believed that a thorough understanding of the intricate interplay
between cell mechanics and cell–ECM interactions will facilitate the development of biofunctional and
mechanoresponsive biomaterials for tissue regeneration and clinical diagnostics.

Mechanical stresses from the physiological microenvironment, including substrate, flowing fluid,
ECM, and neighboring cells, directly influence the collective responses of cell layers, e.g., the regulation
of the vasoactivity of blood vessels. A typical mechanosensing event in epithelial and endothelial
tissues is triggered by the formation of cell–cell junctions, which contain adherens junctions, gap
junctions, and tight junctions. For instance, adherens junction formation has been shown to induce
actin polymerization in the cytoskeleton of adjacent cells through the interactions of various signaling
proteins around the cytoplasmic domains of adherens junctions [40–42]. Moreover, cell–cell interaction
has led to the inhibition of cell proliferation and migration which is known as “contact inhibition”.
In the 2D culture of epithelial cells, cells which are sparsely distributed on the substrate proliferate
well, while the growth of a densely packed cell monolayer is impaired by the formation of cell–cell
contacts [43,44]. The phenomenon of contact inhibition of cell proliferation in epithelial cells also exists
in different types of cells [45,46]. Quantitative characterizations of contact inhibition dynamics in
confluent cell monolayers with different cell densities have shown that the interfacial contact formation
between adjacent cells is necessary but not sufficient for causing growth inhibition [47]. It has also
been suggested that mechanical compression may provide an inhibitory signal for cell division [48].

In addition to the inhibition of cell proliferation, cell-cell junction formation between neighboring
cells provides a cooperative effect to transmit appreciable normal stress, which guides the direction
of cell monolayer migration along the course of minimal intercellular shear stress [49]. As epithelial
cells require stable cell–cell adhesions and mesenchymal cells rely on transient and dynamic cell–cell
contacts, the strategies of collective cell migration in various cell types are different based on their
particular physiological functions [50]. A recent study has shown that the chase-run phenomenon
between placode cells and neural crest cells was involved in both chemotaxis and N-cadherin signaling
transduction, which in turn led to coordinated migration of different types of tissues [51]. With the
hypothesized phenomena of mechanical coupling between neighboring cells, cell–cell interactions
can be sufficient to guide the direction of collective cell migration, without the presence of a physical
cue [52–54]. On the other hand, understanding the principles and mechanisms involved in collective
cell migration remains a tremendous challenge, because the mechanical stresses of cell layers are
difficult to probe by conventional experimental techniques. CTF, which is a known mechanical property,
has been adopted as a model biophysical parameter for analyzing the intricate mechanotransduction
of cell monolayers [55–57].

3. 3D Fabrications of Polymeric Biomaterials

In general, the most commonly used synthetic polymers for 3D fabrication of biomaterial scaffold
include polyglycolic acid (PGA) [58], poly-caprolactone (PCL) [59], polydimethylsiloxane (PDMS) [60],
and polyethylene glycol (PEG)-based hydrogels [61]. For example, PGA and its copolymers are widely
used in the fabrication of various biomaterial scaffolds for tissue engineering applications because
they are biodegradable and non-toxic [62]. However, the native surface of PGA does not provide
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the biological cues for direct cell attachment and regeneration. Thus, the modification of PGA with
biologically active ligands is essential for cell culture applications, e.g., the addition of β-tricalcium
phosphate (β-TCP) in porous 3D PGA scaffolds has been required for treating bone defects [63].
Moreover, polylactic-co-glycolic acid (PLG) copolymers have been used to design biomaterial scaffolds
incorporated with controlled release capability of essential biomacromolecules, such as vascular
endothelial growth factor, in vivo [62]. The PLG system mentioned above has facilitated blood vessel
development and enhanced local vascularization during tissue regeneration [64]. Besides, microporous
membrane composed of poly-D, Ł-lactide-co-glycolide (PLGA) has been applied for the 3D stacked
culture of hepatic tissues [65].

In spite of the intense development of microporous polymeric scaffolds, there has been a
lack of 3D biomaterial systems with precise microscale features for simultaneous cell culture and
biomechanical measurement. As such, Shen et al. have developed a high-aspect ratio microchannel by
UV embossing of an UV polymerizable biodegradable macromer in a liquid formulation composed
of poly-e-caprolactone-r-Ł-lactide-r-glycolide diacrylate [66]. In detail, the master silicon (Si) mold
is prepared from a lithography system which uniquely combines deep reactive ion etching (DRIE)
with passivation treatments (Figure 2). After obtaining the daughter PDMS mold, an UV resin liquid
formulation and a polyester film are successively loaded onto the PDMS mold. Lastly, the resin is
polymerized under UV illumination and separated from the PDMS mold and polyester film [67,68].
The depth of the micropatterned biodegradable scaffold synthesized by this method can reach up to
70 µm. Furthermore, the layer-by-layer (LBL) process has been successfully applied to build multilayers
of confluent SMCs on the micropatterned biodegradable scaffold as mentioned above, and to trigger
the expression of the contractile phenotype of SMCs [69]. In addition to the formation of cell patterns,
effective mass transfer of dissolved gas and essential nutrients to cells bound on the biodegradable
scaffold are critical for maintaining cell viability and functionality. To address the limitation of mass
transfer, Sarkar et al. [59] have developed a porous micropatterned PCL by combining soft lithography,
melt molding, and PLGA micro/nanoparticles leaching. The group has further demonstrated that the
diffusion rate of culture media into the PLGA-leached PCL scaffolds mentioned above was enhanced
by six times in comparison with that through the non-porous PCL scaffolds. Later on, a biodegradable
microstructured polycaprolactone construct functionalized with an adhesive layer of polyethylene
glycol-diacrylate (PEG-DA) gel was incorporated into a 3D composite structure with a layer of vascular
smooth cells with precisely controlled cell orientation and geometry [70]. Until now, most emerging
techniques, as mentioned above, mainly focus on the precise 3D fabrication of microscale patterns in
biomaterial scaffolds for facilitating the formation of tissue equivalents, instead of probing intricate
cellular behavior in a controlled 3D microenvironment.
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Interestingly, Deutsch et al. [60] have developed a new fabrication process for microgrooved
topographical cues on a PDMS scaffold by combining photolithography and soft lithography. Briefly,
the silicon wafer is spin-coated with a photoresist layer and exposed to UV light through a contact
mask. The micropatterned PDMS scaffolds are created by casting and curing of siloxane oligomers
and siloxane cross-linkers on the wafer surface. The fibronectin-coated PDMS scaffolds fabricated by
this method have been shown to direct the spatial organization of cells and extracellular matrix [71].
Based on its ideal biocompatibility, polyacrylamide hydrogel has been used as a model system for
studying the biophysics of cell migration, e.g., chemotaxis [34]. In another study, PEG-based hydrogel
microstructures were fabricated on glass substrates by using photolithography-based patterning [61,72].
In detail, a glass substrate was first functionalized with 3-(trichlorosilyl)propyl methacrylate, then
spin-coated with a PEG derivative and a photoinitiator, and finally exposed to UV light through a
photomask for PEG crosslinking. Moreover, the PEG-based hydrogel was successfully fabricated
into a cylindrical or cubic shape for the encapsulation of cells, detection of drug–drug interaction,
and formation of tumor spheres [73–75]. Hahn et al. [76] have further developed confocal-based
laser scanning lithography for 3D surface patterning (feature size ~5 µm) of PEG-based hydrogel
substrates. The micropatterned PEG-based hydrogels embedded within independently fabricated
PDMS housings are applied as a microfluidic device to study cell viability and metabolic activity, which
contributes to the emerging applications for in vitro diagnostics and regenerative medicine [77]. At the
same time, the PEG-based hydrogels can be further developed into a porous 3D structure to control
spatial organization and enhance cell binding affinity for tissue morphogenesis and angiogenesis
promotion [78,79]. In addition to lithographic patterning, other bottom-up approaches, such as
electrospinning, nanoimprinting, anodization, and phase separation, have been applied to fabricate
3D patterns on biomaterials [80].

Naturally-derived polymers, such as proteins and polysaccharides, are ideal materials for the
fabrication of biomimetic 3D scaffolds with superior biocompatibility compared to synthetic polymers.
Collagen is one of the most important natural polymers widely found in most extracellular matrix
(ECM) surrounding tissues in vivo as it serves as an adhesive ligand for major cell types [81]. Thus,
phase change ink-jet printing and indirect 3D printing techniques have been applied to fabricate
collagen scaffolds with micropatterns, such as internal channels and capillary networks [82,83].
For instance, indirect 3D printing of collagen involves three steps. Firstly, a negative mold is
created by a solid freeform fabrication technique which produces freeform solid objects directly
from computer-aided design without part-specific tooling or human intervention [84,85]. Secondly,
a collagen solution is casted into the mold and solidified at low temperature. Lastly, the patterned
collagen scaffold is recovered by the dissolution of the mold with ethanol, followed by critical point
drying with liquid carbon dioxide. Another preferred method for fabricating collagen-based scaffolds
with uniform pore structure is homogeneous freeze drying under a controlled freezing rate [86]. Cell
attachment and viability on the freeze-dried 3D collagen scaffold are shown to be influenced by specific
surface area and pore size of the resulted scaffold [87].

Besides protein, chitosan, which is formed from the deacetylation of chitin, is an important
naturally-derived polysaccharide for fabricating biomaterial scaffolds in various applications of tissue
engineering, such as hepatocyte regeneration [88,89]. In a pioneering study, a rapid prototyping
robotic dispensing (RPBOD) system has been developed to fabricate 3D scaffolds of chitosan and
chitosan-hydroxyapatite (HA) with reproducible macropore architecture by injecting chitosan and
chitosan–HA solution (in acetic acid) into a mixture of sodium hydroxide solution and pure ethanol
(in ratio of 7:3) [90]. Alternatively, a hydrogel with molecularly engineered filaments has been formed
from the self-assembly of oligopeptides to mimic the ordered microporous structure of native ECM
for 3D cell culture [91,92]. Recently, one self-assembly oligopeptide (SAP) designed with specific
motifs for enhancing cell adhesion, cell differentiation, and bone marrow homing has been successfully
developed into nanofibers for the functional maintenance of mouse adult neural stem cells in a
3D microenvironment. Also, SAP gels with high peptide concentration have been generated from a
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standard solid phase synthesis method for hosting cells inside their matrices. To date, the SAP gels have
been further engineered with tunable physical properties such as nano-scale architecture and biological
functionality for various applications in tissue engineering, such as vascular graft [93,94]. In spite of
the recent advances in the 3D fabrication of natural materials, the quantitative correlation between
scaffold properties and cellular responses for effective tissue regeneration remains to be elucidated. In
general, a 3D biomaterial scaffold should mimic the physical microenvironment and biochemical cues
of native ECM as closely as possible. Therefore, a better understanding of cell–biomaterial interaction
and bidirectional mechanotransduction within the 3D microenvironment will simultaneously aid
the design of superior biomaterial scaffolds for tissue regeneration and the development of a model
experimental platform for the study of cell mechanotransduction.

4. Recent Progress in Cellular Biomechanics

It is now known that the bulk elasticity (ranging from rigid to soft material) and surface
topography of a biomaterial directly modulates the contact mechanics of cells, while microfabrication
technologies, such as soft lithography, provide the spatial control of cell populations on the biomaterial
scaffold. Various types of cells, such as fibroblasts, SMCs, and hepatocytes, respond differently to
substrates with a range of elasticity through intricate interplay between ligand–receptor binding,
mechanotransduction, and cytoskeleton remodeling [95]. For instance, cell spreading and locomotion
speed of normal rat kidney epithelial cells has been demonstrated to reduce and increase, respectively,
on softer polyacrylamide gel substrates [96]. Moreover, 3T3 fibroblasts have demonstrated preferential
migration, known as durotaxis, over an elasticity gradient from a soft region to a stiff region on
a polyacrylamide gel substrate, but not vice versa on the same substrate [97]. Interestingly, a
recent discovery has proven that the migration of multiple cell aggregates is responsive to certain
perturbations of cell–cell adhesion, such as the downregulation of adherens junctions [98]. Recently,
topographical cues such as micropillars [99] and nanoparticulates [100] have also been shown to
effectively influence the contact mechanics and biological functions of adherent cells.

In general, the communication between cells and the apposing ECM or biomaterial scaffold
leading to cell growth and motility is driven by intricate mechanotransduction through the active
reorganization of the cytoskeletal network in the cytoplasm [101,102]. First of all, cell migration speed
has been demonstrated to follow a biphasic dependence on the density of immobilized adhesive
ligands, as predicted by a seminal mathematical model [103], and later on validated in experimental
measurement [104]. At the same time, the increase of ECM stiffness has been shown to enhance cell
motility as cells exert higher contractile forces towards stiffer substrate during cell body attachment,
detachment, and displacement [105]. The geometry of the 2D biomaterial sub-region functionalized
with adhesive islands can be precisely engineered with the use of microcontact printing techniques
which are instrumental for studying the combined effects of geometrical constraint and biological
recognition on cellular physiology. Several studies have shown that cell adhesion is not only triggered
by the binding between membrane-bound integrin and adhesive ligands, but also related to the
subsequent events, such as biochemical signal transduction and mechanical deformation of intracellular
organelles in the adherent cells [106]. It has been revealed that both the formation of FAs and the
emergence of actin stress fibers of adherent cells are dependent on ECM stiffness. Interestingly,
the optimal value of substrate stiffness for supporting maximal migration is correlated with the
concentration of ECM ligands covalently attached to the substrate [104]. Recently, a group has even
demonstrated that nanotopographical features deposited on a planar glass substrate are sufficient to
promote the maturation of neural networks [107].

Classical model systems for studying the mechanotransduction of cells at the cell–substrate
interfaces have been made possible with the development of experimental biophysics since 1980.
In the first report, the elastic distortion and wrinkling of a silicone substrate induced by the
adherent cells through cytoskeleton remodeling during cell locomotion have been observed by optical
microscopy [108], and can be further quantified through the variation of substrate elasticity [109,110].
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Thereafter, Balaban et al. have combined the transparent micropatterned elastomer and FA
characterization through the expression of green-fluorescent protein (GFP)-labeled vinculin in adherent
cells for elucidating the relationship between the assembly dynamics of FAs and the alteration of
CTF [111]. The method mentioned above mainly hinges on the use of a non-wrinkling substrate with
micropatterns composed of dots or lines for the determination of cell-induced deformation of the
material’s surface.

In a seminal study, Tan et al. developed a microfabricated array of elastomeric microposts, each
independently acting as a deformable structure to probe the mechanical transduction between the
adherent cells and apposing substrates [112]. With the use of a micropost as the mechanical probe, the
map of highly localized deformation caused by the CTF across the entire substrate can be determined
from beam theory [113]. By changing the height of the micropost, a series of micropost arrays reported
with a range of substrate rigidity further demonstrates the influence of microscale geometry and
elasticity on cell morphology, FA organization, and global cell contractility [114]. By combining
micropost array technology with ultrahigh-resolution cell imaging, the precision map of CTF with
a sensitivity of 500 pN and the nanoscale resolution of individual force-bearing FAs have been
simultaneously measured [115]. Moreover, the micropost array has been developed to probe the
real-time mechanotransduction of entire cells through the integration with a cell stretching device,
which provides a way of tuning the external force exerted on live cells [116,117]. Since microposts have
been commonly fabricated on elastomeric polymers such as PDMS, the functionalization of the PDMS
surface with ECM proteins is essential to create a more physiological relevant microenvironment for
cell adhesion. In addition to PDMS, polymeric hydrogels have been used in the fabrication of micropost
arrays [118]. In detail, the hydrogel monomers, such as hydroxyethyl methacrylate, were mixed with
a photoinitiator, followed by replica molding and UV exposure in order to partially polymerize
the precursors in solutions. Secondly, photo-crosslinking of the solutions, as mentioned above,
with ethylene glycol dimethacrylate leads to the formation of a stabilized hydrogel micropost array.
Moreover, the stability and surface clustering of a range of high-aspect-ratio hydrogel microarrays
under capillary forces have been studied by controlling the geometry and elastic moduli of individual
microposts [119].

Another popular substratum for studying cell–substrate mechanotransduction is
polyacrylamide-based hydrogel (Figure 3), a microporous material which has been proven to
be an ideal experimental system for various cell types due to its tunable chemical and mechanical
properties [120,121]. Firstly, polyacrylamide-based hydrogel can be easily tuned from an extremely
soft to stiff material with a distinct elastic modulus by adjusting the concentration ratio of acrylamide
and bis-acrylamide before the initiation of polymerization. Secondly, the polyacrylamide-based
hydrogel can be loaded with fluorescently labeled microbeads which serve as positional markers
for the detection of local deformation in selected regions of interest [122]. More importantly,
polyacrylamide-based hydrogel can be linearly deformed in response to the applied biological
forces and can be fully recovered to its original state upon the removal of force. Thirdly, the low
thickness and transparent nature of polyacrylamide-based hydrogel ensures the detection of small
displacements of the fluorescent beads with conventional fluorescence microscopy. Furthermore,
the polyacrylamide-based gels are naturally non-adhesive for mammalian cells unless specific ECM
molecules (e.g., type I collagen) are covalently coupled onto the surface.

In addition to the micropost array and polymeric hydrogel, the microelectromechanical systems
(MEMS) with on-line force transducers have determined the contractile force of adherent cells from the
measured deflection and the spring constant in the enclosed microbeams [123]. In one typical MEMS
design, the cell contraction force was measured from the deflections of micron-sized pads connected to
a cantilever [124]. A substrate composed of an array of closely packed cantilevers has been designed
with different tip geometry and spatial distribution for probing the local mechanical forces at the cell
adhesion contact [125]. At the same time, the control of the geometric pattern of a cell population on
planar MEMS can be achieved by using microcontact printing, as mentioned earlier.
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Figure 3. The schematic illustration for the making of PDMS microchannels with a polyacrylamide
gel (PAG) coating for cell traction force microscopy measurement (Top views). The micropatterned
PDMS is coated with PAG embedded with a thin layer of fluorescent microbeads. A UV-activated
heterobifunctional cross linker, sulfo-SANPAH, is applied for ECM coupling. Cells are then seeded
onto the activated surface for further study with cell traction force microscopy. After obtaining a pair
of fluorescent images of the same frame before and after trypsinization, the deformation of the elastic
substrate is determined and used for the CTF computation.

It is known that cell spreading and migration within 3D microenvironment is highly dependent
on the topological properties [126] and mechanical stiffness [127,128] of the surrounding ECM or
biomaterial scaffold. The stiffness of a 3D collagen gel matrix has been engineered with different
degrees of crosslinking under the same collagen concentration in solution for probing the effect of
gel matrix stiffness on cellular behavior. The result indicates that the increase of gel matrix stiffness
enhanced the spreading of endothelial cells [129]. When cells are partially or completely embedded
within a 3D matrix, the cellular responses are quite different from those observed in a 2D culture
dish, e.g., FAs become smaller, more diffusively distributed, and changed in FAK composition in the
cell cytoplasm [130,131]. Moreover, FA-associated proteins regulate the migration speed of live cells
embedded in a 3D matrix through their distinctive roles in driving protrusion activity and matrix
deformation, which are unimportant in 2D cell migration [132,133]. In contrast to individual cells, the
spatial organization of FAs within multicellular aggregates cultured inside a 3D matrix remains to be
fully elucidated.

5. Cell Traction Force Measurement

Mechanotransduction is an emerging research area which requires the knowledge from several
disciplines. A variety of methods have been developed to measure the CTF of both individual cells
and collective cell populations during the past few years [118], including cell-populated collagen gel
(CPCG) [119], thin silicone membrane [108], force sensor array [123], and improved micropost force
sensor [112]. The reported force and spatial resolution of major force sensing techniques mentioned
above have been summarized in Table 1 [134]. Currently, the most reliable and comprehensive method
primarily developed for CTF measurement is the cell traction force microscopy (CTFM) assay, which
was developed by Dembo and Wang in 1999 [135].
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Table 1. Force Sensitivity of Cellular Forces Measured with Selective Cell Mechanics Techniques

TECHNIQUE FORCE SENSITIVITY

Optical Tweezers 1–100 pN
Atomic Force Microscope 10–105 pN

Magnetic Tweezers 10–103 pN
Gel Wrinkling Method 10–100 nN
Micropost Deformation 1–100 nN

Cell Traction Force Microscope 10–106 pN

In CTFM, the fluorescent microbeads embedded in the substrate serve as positional markers
to record and track the deformation caused by CTFs (Figure 3). By taking a pair of ‘force loaded’
and ‘null force’ images in the same region of interest, the deformation of the elastic substrate is
determined and used for the CTF computation. By dividing images into overlapped windows with a
constant distance, a pair of small windows respectively from ‘force loaded’ and ‘null force’ images
are obtained and applied to calculate the displacements. There are two other versions of CTFM
techniques that have been developed by Butler et al. [19] and Yang et al. [136]. Both methods rely
on the setting window, and conduct the correlation computation by using Fourier transform. On the
other hand, the bead displacement calculation used in the Dembo and Wang [135] method is not
fixed to the paired windows as mentioned above. Butler et al. have developed explicit formulas
for transforming the traction and displacement fields of microbeads to cell mechanotransduction
parameters, such as the contraction moments and strain energy at cell-substrate interfaces [19]. While
other approaches based on pixel windows ignore the local rotational displacements of microbeads,
the method developed by Yang et al. incorporates a pattern recognition technique to track microbead
movements for estimating the displacement field of the elastic substrate [136]. Most importantly,
all CTFM associated methods need to overcome the challenge of the accurate measurement of the small
displacements of fluorescent microbeads. In addition, all methods of data analysis mentioned above
are limited to the positional mapping on a 2D substrate. The CTFM method can achieve a broader
application if the CTF characterizations can be extended to 3D matrices.

Recently, more efforts have been devoted to the development of novel experimental and numerical
methods for probing 3D CTFs, which have similar elastic moduli and physiological features to in vivo
situations. By combining laser scanning confocal microscopy with digital volume (3D) correlation,
3D full field traction can be computed by the cross-correlation function and displacement-gradient
technique [126,137–139]. In this method, the 3D CTFs of single cells are mapped over the 2D surface
between cell and polyacrylamide gel, and the dynamic CTFs during cell migration and locomotion
are calculated. Similarly, Hur et al. have developed 3D CTFM techniques to probe the cell–matrix
interaction of live bovine aortic endothelial cells (BAECs) on a polyacrylamide deformable substrate
in real time [140]. Moreover, Delanoë-Ayari et al. have presented the temporal map of CTFs during
the crawling of Dictyostelium cells on a soft hydrogel surface [141]. The differences among the
two methods mentioned above are the maximum limit of bead displacement in the computation
algorithms [142]. In comparison to the traditional linear deformation framework used in traditional
CTFM, a large deformation formulation for characterizing the cellular displacement field in conjunction
with the high resolution digital volume correction technique has been recently developed [143].

For 3D CTF measurements, i.e., for cells completely immersed within ECM, collagen rather than
synthetic hydrogel is used as a model system. The challenges of using a naturally-derived 3D scaffold
hinge on the difficulty in the control of its mechanical properties and in the limitation of its fabrication
process [93]. Legant et al. have successfully encapsulated GFP (EGFP)-expressing cells in well-defined
PEG hydrogel matrices, tracked the displacement of embedded fluorescent beads, and calculated
the CTFs exerted by the entrapped live cells [144]. They have applied linear elastic theory and the
finite element method to analyze the bead displacement map generated from confocal microscopy of
hydrogels. Their results indicate that the stiffer the hydrogels is, the stronger CTF the cells exert on
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the surrounding 3D ECM. Strong inward forces have been revealed to locate predominantly near the
long extensions of the encapsulated cell, while the shear tractions are the main type of CTF produced
by the cells encapsulated in 3D hydrogel [144]. By applying a 3D type I collagen network for cell
encapsulation, Gjorevski et al. [145] and Koch et al. [146] have obtained the 3D CTF mapping of single
cells throughout the surrounding hydrogel matrix. One challenge of this method is the interpretation
of the traction field from the cell types, like fibroblasts and certain tumor cells which can degrade
surrounding collagen matrix and subsequently change the mechanical properties of the surrounding
hydrogel during the CTFM assay [131].

Various external mechanical stimulations acting on cells from the surrounding microenvironment
take the form of shape, topology, and rigidity, which trigger the cycles of mechanosensing,
mechanotransduction, and mechanoresponse [147]. The exact mechanisms of mechanochemical
signaling from extracellular mechanical forces to intracellular molecular recognitions remain unclear.
To date, fluorescence resonance energy transfer (FRET)-based single-molecule spectroscopy of
mechanosensory molecular beacons has been validated with the high sensitivity required for probing
forces in the piconewton scale [148]. Such a technique opens up the new possibility for tracking
the propagation of molecular forces within cells during mechanotransduction. By incorporating
FRET into CTFM, valuable information connecting the cascade of mechanical stimuli propagations
to the identification of mechanosensitive proteins can be gathered conveniently. One of the possible
exploitations of the study of cell mechanics is to elucidate the developmental processes of mesenchymal
stem cells in response to external matrices of different underlying rigidities. For instance, the
differentiation into various cell lineages ranging from neurogenic cells on a softer matrix, myogenic
cells that resemble muscle tissues on a stiffer matrix, to the osteogenic cells on the most rigid matrix,
are identified on various crosslinked-collagen matrices [100].

By combining soft lithography with CTFM techniques, recent work focusing on confluent cell
monolayers cultured on a micropatterned polymeric substrate has been carried out to elucidate the
cell–cell interactions and intracellular mechanics, such as the collective CTF distribution of SMC
layers during the emergence of contractile phenotypes under a controlled 3D microenvironment
(Figure 4) [149]. In the vascular physiology of the endothelium, the effect of confluency of an endothelial
cell monolayer on the tensions at adherens junctions and the cytoplasm under both static and shear flow
conditions has been revealed [150]. A few groups have also shown that the spatial distribution of CTFs
exerted by cohesive cell colonies is significantly concentrated at the periphery of the colony [33,151].
A similar homogeneous zone of lower CTF or von Mises stress was observed in the center of a
circumferentially aligned SMC sheet, as shown in our recent study (Figure 4). In other words, collective
CTF is strongly influenced by the shape of the adhesive zone prescribed on the micropatterned
substrate. For better understanding of collective cell activities, novel CTFM has been developed to
show the dynamic traction domains and the compressions among cell clusters [152]. To quantify the
cell-generated mechanical stress in situ within living tissues, an emerging technique based on 3D
functionalized fluorocarbon microdroplets has been developed for studying the mechanical properties
of aggregates of mammary epithelial cells [153]. Moreover, the shape deformation of the microdroplets
(with similar size to individual cells) which are microinjected into the tissue of mouse embryo can be
used to calculate the anisotropic stresses generated by epithelial cell colonies via fluorescent imaging
and computerized analysis.
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Although 3D CTFM has attracted much attention, the techniques are still immature and not
applicable to various experimental systems. Several challenges, including the fabrication and
understanding of the 3D matrix, the influences of nanotopography, the techniques of high resolution 3D
imaging, and the necessity for complex computational algorithms, need to be overcome for promoting
the general adaptations of this potentially powerful technique [154]. In addition, various methods
for probing the collective cell traction field are affected by the intricate mechano-sensing mechanisms
of cells within a 3D microenvironment. Considering that multiple-cell sheets instead of single cells
participate in most physiological processes, there is an essential need to develop measurement methods
based on biomaterial innovations for 3D CTF that result from cell populations.

6. Conclusions

In order to study cell/tissue mechanotransduction under physiological conditions, a transition
from 2D to 3D biomaterial systems with prescribed microscale features is necessary. 3D micropatterning
tools for biomaterial fabrication can improve our knowledge about the influence of microenvironments,
like the composition, topography, stiffness, etc., on cellular functions, physiological regulations,
and pathophysiological progressions. While the general principles of the design for an appropriate
3D scaffold have been formulated, the better understanding of the mechanosensory responses of
cells within 3D microenvironments will in turn facilitate better scaffold design. Since cells undergo
complex mechanotransduction when they attach to and spread on a substrate surface, new advances
in the development of integrative biomaterial systems for probing the CTFs of single cells as well
as cell layers have been recently achieved. Given CTF as an ideal model to analyze the complex
mechanotransduction of multiple cells, 3D CTFM and derived techniques for the measurement of
collective CTF will become increasingly important.
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