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Abstract: During the regulatory requested process validation of pharmaceutical manufacturing
processes, companies aim to identify, control, and continuously monitor process variation and its
impact on critical quality attributes (CQAs) of the final product. It is difficult to directly connect the
impact of single process parameters (PPs) to final product CQAs, especially in biopharmaceutical
process development and production, where multiple unit operations are stacked together and
interact with each other. Therefore, we want to present the application of Monte Carlo (MC)
simulation using an integrated process model (IPM) that enables estimation of process capability
even in early stages of process validation. Once the IPM is established, its capability in risk
and criticality assessment is furthermore demonstrated. IPMs can be used to enable holistic
production control strategies that take interactions of process parameters of multiple unit operations
into account. Moreover, IPMs can be trained with development data, refined with qualification
runs, and maintained with routine manufacturing data which underlines the lifecycle concept.
These applications will be shown by means of a process characterization study recently conducted at
a world-leading contract manufacturing organization (CMO). The new IPM methodology therefore
allows anticipation of out of specification (OOS) events, identify critical process parameters, and take
risk-based decisions on counteractions that increase process robustness and decrease the likelihood
of OOS events.

Keywords: process validation; process characterization study; holistic process model; predict out of
specification events; Monte Carlo simulation; biopharmaceutical manufacturing

1. Introduction

The main goal of pharmaceutical manufacturing is to constantly deliver high product quality,
which is reflected in regulatory guidelines [1–3]. Process validation is a major initiative to demonstrate
the capability of meeting this goal and is separated in three stages (stage 1 to 3). Stage 1 aims
at establishing a process design in which process variation in critical quality attributes (CQAs) is
understood and connected to critical process parameters. This is usually done within a process
characterization study using design of experiment (DoE) strategies. Resulting critical process
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parameters that have an effect on product quality require sufficient control strategies. Stage 2 consists
of process performance qualification (PPQ) runs to confirm the design of the process and ensure it can
consistently deliver high product quality. Stage 3, continued process verification (CPV), is an ongoing
evaluation and monitoring to confirm the process remains in a state of control or to identify if new
interdependencies between process parameters (PPs) and CQAs arise. Those three stages can be seen
interlinked to each other as a lifecycle, where potential changes and associated risk in PPQ or routine
manufacturing must be iteratively evaluated together with knowledge gained from initial process
design [4]. Insufficient risk estimation of the entire process at stage 1 of process design (e.g., in terms
of estimation of out of specification events) can lead to inconsistent or unpredicted performance at
later stages.

Risk evaluation of individual unit operation of a pharmaceutical processes is commonly conducted
by following steps in accordance with ICH Q8 guideline [2]:

• Risk assessment using knowledge of process experts, which leads to a candidate set of potential
critical PPs for each unit operation.

• Experimental investigation of the impact of potentially critical PPs onto CQAs. This is usually
performed in DoE approaches and statistical regression modeling is used to describe the
relationship between significantly impacting critical PPs and CQAs mathematically.

• Comparison of the output of statistical model predictions within normal operating ranges or
a design space to pre-defined acceptance limits for each unit operation.

• The risk of not meeting acceptance limits is mitigated by applying an appropriate control strategy,
such as a reduction of the normal operating range.

One difficulty, especially in biopharmaceutical manufacturing where multiple unit operations are
stacked together and critical PPs interact, is an appropriate evaluation of risk related to impurities.
Risk analysis is impeded since propagation of impurities is rarely assessed holistically but rather
evaluated on each unit operation separately [5]. Impurity propagation through multiple unit operations
is difficult to study with reasonable representative experimental effort, especially at early stages of
process design where only a limited number of manufacturing runs is available. However, simulations
and modeling are necessary and useful to assess the chance of out of specification events. Having such
a predictive tool in place to develop robust processes by incorporating knowledge acquired during
process development and characterization experiments, unexplained variance in product quality
possibly leading to recalls, complaints, and patient risk can be reduced. Therefore, it is desirable to
formulate holistic process and production control strategies that prevent out of specification (OOS)
events which could have already been anticipated within the design phase [6]. However, to the
best of our knowledge, it has not been shown so far how a holistic risk evaluation spanning over
multiple unit operation can be performed at process validation stage 1 and used to demonstrate overall
process capability.

MC simulation is a tool to incorporate random variability into the modeled system and connect
single modeling-units together. A random sampling distribution for the model parameters (inputs)
needs be defined a priori, which does not need to be necessarily normally distributed. Within each
cycle of the MC simulation, a different random set of inputs is drawn leading to discrete model results
(outputs). Since a large number of MC cycles are performed, it is possible to aggregate the discrete
model outputs to a predictive distribution of those outputs. Using this distributional information, it is
possible to calculate probabilities of events (e.g., OOS). MC simulations have shown great potential in
pharmaceutical industry for drug discovery and simulation of clinical trials [7] and is also routinely
utilized for error propagation [8]. However, it has, to our knowledge, not been applied to impurity
propagation of a batch-wise pharmaceutical processes.

Herein, we describe the development of an integrated process model (IPM) that is capable of
capturing development and design data from multiple unit operations and is able to predict the
risk of OOS probabilities through Monte Carlo simulation even at the early design stage of process
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validation. Moreover, we identify how variance and changes in set point of process parameters
impacts drug substance quality. The model can be enriched at later stages also with data from PPQ,
routine manufacturing, or additional development. Thereby, a continuous process data management
is enabled and risk-based decision making during change and deviation management in continuous
manufacturing can be based on the full spectrum of development, design, and manufacturing data.

At this stage, the following derived acceptance criteria for the IPM can be formulated:

• Prove process robustness of an existing design space: Prove that under normal manufacturing
conditions it is unlikely to miss drug substance specification for defined CQAs

• Test process robustness under accelerated variance of process parameters and increased
impurity burden

• Establish a platform that leverages process knowledge from PV stage 1 for further usage within
PPQ and CPV (Stage 2 and 3 of process validation)

With this contribution we present the development of an IPM, validate the IPM using
large scale manufacturing data, and demonstrate the capability of the IPM in estimating OOS
probabilities under normal and accelerated conditions. This case study was recently conducted
at a leading biopharmaceutical CMO in contract development of a novel long acting human growth
hormone product.

2. Materials and Methods

Here we want to summarize the required inputs for the IPM as well as their assumptions that
must be met in order to ensure reliable prediction of the IPM (for details see referred sections):

• Description of the process, order of unit operations, and variance of PPs under normal operating
conditions (see Section 2.1). It is assumed that estimation of variance of PPs is representative for
routine manufacturing.

• Optional: If initial unit operation of the process is not modeled by the IPM the starting distribution
of each CQA needs to be estimated at the starting unit operation of the IPM. It is assumed that the
estimation of starting distribution is representative for the real CQA distribution under routine
manufacturing (see Section 2.2).

• Statistical regression models that describe significant relationships between PPs and CQAs for
each unit operation (see Section 2.3.1). It is assumed that scientifically sound analytical methods
(high accuracy, precision, robustness, selectivity, etc.) have been used to record the data that led
to formation of those regression models. Moreover, it is assumed that no critical effect has been
overlooked, which can be tested using power analysis approaches [9]. This ensures that residual
variance in the regression models can be attributed to normal analytical- and process variance.

• Optional: Statistical spiking models of each unit operation describing the dependency between
varied impurity load and specific impurity clearance (see Section 2.3.2). Identical assumptions as
for the regression models must be met.

2.1. Description of Biopharmaceutical Manufacturing Process

This industrial biopharmaceutical process produces a pharmaceutically active recombinant
protein and is divided into 7 unit operations. After fermentation using Escherichia coli as host cells
and recombinant expression of the product, a cell lysis step is performed prior to a precipitation step
and clarification. After these primary recovery steps, three preparative chromatographic columns
are performed to clear the product from impurities. A final ultrafiltration/diafiltration is performed
to adjust the product concentration in drug substance. Two process-related impurities as well as
2 product-related impurities were defined as the major CQAs and herein are modeled within the
IPM. Since the analytical quantification of those CQAs was only possible in the load of the first
chromatographic step, this step was set as input to the IPM. A summary of the relevant unit operations
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for modeling, their varied PPs within DoEs, the relative standard deviation of those PPs between large
scale (LS) runs, and the monitored CQAs is given in Table 1.

Table 1. Available data sets, process parameters, and monitored critical quality attributes (CQAs)
for each unit operation included in the integrated process model (IPM). CC is abbreviation for
chromatography column, PCI stands for process-related impurities and PRI product-related impurities.

UO Available Data Sets PPs Varied in DoEs Rel. Std. of PPs
between LS [%] 1

Std/NOR
[%] 2

Monitored
CQAs

CC 1

pH [–] 1.61 46

PCI 1, PCI 2,
PRI 1, PRI 2

Column loading density [g/L] 12.05 50
9 manufacturing runs Wash Strength [mM] 5.00 62

13 DoE runs with definitive
screening design Elution strength [mM] 5.00 44

End pooling [CV] 1.36 40

CC 2

9 manufacturing runs pH [–] 0.79 30
11 DoE runs using full

factorial design Column loading density [g/L] 4.84 20

1 spiking run with increased
PRI 1 concentration in load

Gradient slope [% of Buffer] 5.00 -
1 spiking run with increased
PCI 1 concentration in load

CC 3

pH [–] 0.92 35
9 manufacturing runs Column loading density [g/L] 12.78 30

9 DoE runs using definitive
screening design Gradient slope [% of Buffer] 5.00 -

Wash Strength [mM] 5.00 50
1 Relative standard deviation to the set-point of the process parameters; 2 Ratio of one standard deviation to the
normal operating range.

2.2. Scope of IPM and Sampling Distribution of PPs

Due to the limited amount of quantitative analytical data of the CQAs before chromatography
column 1, the starting distribution of each CQA at the first chromatography step was assumed to be
normally distributed with mean and standard deviation estimated from measured CQA distribution
of LS runs. From this starting point, the following unit operations chromatography column 1, 2 and 3
were modeled. The pool of chromatography column 3 was regarded as very similar to drug substance
since no further clearance formation was expected at the ultrafiltration/diafiltration step.

For the MC workflow, we have to choose a realistic distribution of the large scale variation in
process parameters in order to incorporate process-related variability. Results of the MC simulation
are dependent on the sampling strategy for the process parameters at each simulation. Often
pseudo-random numbers are replaced by quasi-random numbers or Latin hypercube sampling [10,11]
for better overview of possible outcomes. However, for realistic risk assessment, we want our
sampling to be representative for the process, therefore classical pseudo-random numbers were used
for sampling. Existing variance of process parameters has been estimated from current large scale runs
as listed in Table 1. We assumed a multivariate normal distribution for all process parameters centered
at their mean (target of operation) and variance from large scale runs without any covariance between
the process parameters. This is a suitable simplification since process parameters are controlled
independently from each other. In general, this is not a prerequisite for the IPM and might be
adapted for other processes, where additional information of potential correlation between the process
parameters exists.

2.3. Impurity Clearance Models

Since it was aim of the IPM to model the final distribution of each of the four major CQAs
(i.e., the specific concentration of each impurity) and the product in the drug substance, their reduction
from load of chromatography column 1 until drug substance needs to be described mathematically.
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In order to estimate the specific CQA concentration after a unit operation (pool) using the specific load
concentration of this CQA, specific clearances (SCs) were used (Equation (1)):

Specific Clearance = SC =
cCQA,load

cCQA,pool
(1)

where cCQA,load and cCQA,pool is the specific CQA concentration, defined as the amount of impurity
per amount of product, for load and pool, respectively.

For modeling the product a similar approach was chosen using step yields (SY) instead of SC
(Equation (2)):

StepYield = SY =
ppool

pload
(2)

where ppool and pload are the amounts of product in pool and load, respectively.
Two major impacting sources specific clearances have been considered here: (i) Impact of potential

critical process parameters, which have been purposefully selected in a risk assessment and (ii) specific
amount of impurity load per column volume. Those types of models are described in more detail in
the following two Sections 2.3.1 and 2.3.2, respectively. In case it was not possible to find any PPs
that significantly impact on the clearance, the mean clearance from LS was taken as a constant model
(see Section 2.3.1 for details). We summarize all found models in Table 2.

Table 2. Summary of the presence of models that describe the relationship of a CQA specific clearance
factor as a function of PPs (indicated by “DoE”) or the impurity loading density of the respective CQA
(“Spiking”) and the respective p-value of the regression. In cases where no significant function of
PPs on a CQA clearance could be found, mean large scale clearance was assumed indicated by “LS
clearance” in the table. CC is abbreviation for chromatography column, PCI stands for process-related
impurities and PRI product-related impurities.

CQA/Unit Operation CC 1 CC 2 CC 3

PRI 1
DoE LS clearance + Spiking DoE

(linear, p = 0.09) (p = 0.00) (quadratic, p = 0.01)

PRI 2
DoE

LS clearance LS clearance(linear, p = 0.01)

PCI 1
DoE LS clearance + Spiking DoE

(quadratic, p = 0.00) (p = 0.04) (quadratic, p = 0.00)

PCI 2
LS clearance + Spiking

LS clearance
LS clearance + Spiking

(linear, p = 0.00) (linear, p = 0.00)

Yield
DoE

LS clearance
DoE

(linear, p = 0.00) (quadratic, p = 0.00)

2.3.1. Clearance and Yield as a Function of Process Parameters (DoE Models)

As a general good practice in PV stage 1, after a purposeful selection of potential impacting process
parameters, their impact on the SCs and the SY has been tested within DoEs. For reasons of simplicity,
we will only show the modeling approach for SC in the following two sections and not for step yields,
since both approaches are identical when exchanging SC with step yield. Experimental designs were
chosen (see Table 1 for number of DoE runs and design) and linear models were established according
to the form (Equation (3)):

SC = PP ∗ βPP + β0 + ε (3)

where SC is a (n × 1) vector of the measured specific clearances, PP is a (n × p) matrix of the
process parameter settings of each DoE run, βPP are the regression coefficients, and β0 is the intercept.
The process of selecting a subset of significant process parameters was accomplished by means of
stepwise regression using multiple linear regression (MLR) package in inCyght (inCyght 2017.03,
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Exputec GmbH, Vienna, Austria). In this stepwise procedure, parameters showing a partial p value
below 0.05 were allowed to enter the model starting with those parameters having the lowest partial
p value. Partial p values of parameters can change as other parameters are included in a multivariate
model. Therefore, after each time including a new parameter in the model, it is checked if p values
of the existing parameters have increased and those parameters showing an p value larger than 0.1
will be excluded from the model. This including/excluding procedure was applied iteratively to
achieve the optimal model, starting with the most significant parameter and was repeated as long as
the model structure did not change any more. Thereby, β̂PP and β̂0 could be estimated. The herein
obtained models and their respective statistical quality measures are summarized in Table S1 of the
Supplementary materials.

A new prediction for SC (ŜC) for randomly selected set of process parameters of the ith MC
simulation can be obtained by (Equation (4)):

ŜC(PP(i)) = PP(i) ∗ β̂PP + β̂0 (4)

The prediction error of the mean model response was assumed to be normally distributed with:
N
(

ŜC(PP(i)),σ2
ŜC(PP(i))

)
. Where σŜC(PP(i))

was calculated using (Equation (5)):

σŜC(PP(i))
= sSC ∗

√
1
n
+ hi (5)

with the leverage of the new data point: hi = diag(PP(i)(PP′PP)−1PP(i) ′), the residual standard error:

sSC =

√
∑ (SCi−ŜCi)2

n−p−1 if p are the number of parameters and n the number of observations. A random

sample rand(N
(

ŜC(PP(i)),σ2
ŜC(PP(i))

)
), using MATLAB (MATLAB, The MathWorks Inc., R2015b,

Natick, MA, USA) function randn, was taken from this prediction error distribution for each Monte
Carlo simulation i and added to the mean prediction, obtaining the specific clearance impacted by PPs
for each unit operation (Equation (6)):

S̃C(PP(i)) = rand(N
(

ŜC(PP(i)),σ2
ŜC(PP(i))

)
) (6)

For responses where no further spiking models have been available, the specific CQA
concentration of the pool of the uth unit operation was calculated to (Equation (7)):

cCQA,pool,u
(i) =

cCQA,load,u
(i)

S̃C(PP(i))
=

cCQA,pool,u−1
(i)

S̃C(PP(i))
(7)

Note that here the concatenation of the unit operations occurs since the specific CQA concentration
of the pool of unit operation u− 1 is set equal to the load of unit operation u.

If no significant effects of any PP on an impurity clearance of a certain unit operation could be
detected, a constant impurity clearance was assumed within the entire design space. This was modeled
by the mean clearance of the LS runs and variance of the LS runs. In those cases, for each unit operation
the specific clearance of the ith MC simulation reduces to (Equation (8)):

S̃C(PP(i)) = rand(N
(

SCLS,σ2
SCLS

)
) (8)

where SCLS and σ2
SCLS is the mean SC and the variance from LS runs, respectively.

2.3.2. Increased Clearance Due to Varied Spiking of Impurities

During process development and design, increased impurity levels were spiked on
chromatographic preparative columns in order to show elevated clearance capacity. In more detail,
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during those spiking studies, it was shown that the impurity clearance increases with increasing
impurity loading density (ILD =

loaded impurity amount
column volume ) up to the tested level. Additionally, the same

relationship of increased impurity clearance at increased impurity loading densities was found for
large scale runs, where the impurity loading varies for each run due to variation in fermentation
and previous purification unit operations. Since the ILDs were not included within DoE approaches
as an independent DoE factor, we followed a two-step approach to incorporate altered clearance at
varying ILD.

In the first step, linear regression on SC as a function of ILD was applied to identify significant
correlations. Having such a regression model in place, for a specific ILD in the ith MC simulation an
estimate for the SC could be obtained (S̃C(ILD(i)))) (Equation (9)):

S̃C
(

ILD(i)
)
= rand

(
N
(

ŜC
(

ILD(i)
)

,σ2
ŜC(ILD(i))

))
(9)

where ŜC(ILD(i)) is the mean predicted SC from the linear regression model at the specific ILD(i) and
σ2

ŜC(ILD(i))
is the variance of the mean prediction, which can be obtained analogous to Equation (5).

An example of such a spiking model is shown in Figure 1, where an increased loading density
of process-related impurity 2 shows a significant (p = 7 × 10−8) increase in specific clearance of
process-related impurity 2. Significant (p-value < 0.05 as well as R2 (explained variance) − Q2 (from
leave one out cross validation) difference < 0.3) spiking models were selected for each response/unit
operation and are summarized in Table 2 and Table S2 of the Supplementary Materials.
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(LS) runs (red). Yellow error bars indicate the mean model prediction error. Normalization has been
performed by division of the maximal value for each axis.

Hereafter in the second step, if significant spiking models were available, they were combined
with the existing ones as a function of PPs as described in Section 2.3.1. Therefore, for each unit
operation, we added the expected clearance increase due to increased ILD to the specific clearance of
the ith Monte Carlo simulation impacted by PPs (Equation (10)):

S̃C
(i)

= S̃C(PP(i)) ∗ S̃C(ILD(i))

ŜC(ILD)
(10)
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where ŜC(ILD) is the SC under mean ILD from DoE runs. The ILD of the simulation i and the unit
operation u can be calculated according to (Equation (11)):

ILD(i)
u =

c(i)load,u ∗ p(i)load,u

CV
=

c(i)pool,u−1 ∗ p(i)pool,u−1

CV
(11)

where c(i)load,u is the specific concentration of the CQA at the ith simulation and the uth unit operation

and p(i)load,u is the product amount modeled by step yield of simulation i and unit operation u, CV is the
column volume. Again, the load concentrations and amounts can be expressed by the respective pool
concentrations of the previous unit operation (u − 1).

Since the impurity loading density was not included within DoE approaches on column steps
as an independent DoE factor, we assume that varied impurities do not show interactive effects with
other DoE factors (mainly process parameters) within normal operating variance. In order to estimate
the risk that the simulation performance is biased by the spiking models and the risk of the above
stated assumptions, the IPM was simulated without applying any spiking model. Those results are
shown in Figures S1–S4 of the Supplementary materials, where we show that only for product-related
impurity 1, process-related impurity 1, and process-related impurity 2, the out of specification chance
increases by 0.1%, 0.7%, and 4.2%, respectively. Therefore, the above mentioned assumptions about
spiking models and the connection to DoE models can be seen as a minor influence to the overall IPM
prediction and valid simplification. Moreover, this can be regarded as a valid simplification since the
assumed normal manufacturing variance which is used during IPM simulation of process parameters
is well within the normal operating range (NOR, see standard deviation to NOR ratio in Table 1 is
often below 30%) and therefore around 99% of the simulated batches are run within NOR. However,
we want to note that one could even refine the IPM by including specific impurity concentrations in
the load of chromatographic columns as an additional factor in DoE experiments to study that effect in
combination with all other DoE factors.

3. Results

3.1. Monte Carlo Approach for Integrated Process Modeling

The main idea behind the integrated process is to concatenate impurity clearance models of each
unit operation together to predict the CQA distribution at each intermediate and at drug substance.
To account for error propagation during this concatenation, we performed a Monte Carlo approach in
four steps:

1. 1000 simulations were performed, each having a different set of PPs (PP(i)) for the three modeled
unit operations (chromatography column 1/2/3) and different initial specific CQA concentrations
(c(i)CQA,init) at the load of chromatography column 1, sampled from distributions which were
estimated from LS runs. Also the variance in PPs was estimated from LS runs and is indicated
by a schematic distribution on the x-axis in Figure 2A,B. Additional increase in simulations
did not increase model accuracy and 1000 simulations are a common standard for Monte Carlo
simulations [7]. A more detailed description of this step and a list of used process parameters are
provided in Section 2.2.

2. For each unit operation, we modeled the specific clearance (SC) of each CQA as a function of the
critical PPs and the ILD by multiple linear regression. Each model is associated with a prediction
error, which is indicated by the blue shaded area around the found regression line Figure 2A,B.
The ILD can be derived from cCQA,load of each unit operation, which equals cCQA,init for the first
modeled unit operation and cCQA,pool,u−1 for all subsequent modeled unit operations (u).

3. Since cCQA,pool,u can be calculated from SC and cCQA,load,u, on the whole, cCQA,pool,u can be seen
as a function of PPu as well as cCQA,init or cCQA,pool,u−1, as indicated in the formula of Figure 2A,B,
respectively. Thereby the model outputs from multiple unit operations can be stacked together,
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which is indicated by black arrows in Figure 2A, more thorough description of which models
could be found on which CQA and unit operation is depicted in Section 2.3.

4. Since we performed 1000 simulations, each having different settings in process parameters,
we obtained a distribution for the specific CQA concentration in the pool and finally in drug
substance, indicated on the y-axis of Figure 2A,B and by the distribution in Figure 2C.
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From visual inspection, the predicted distributions for each CQA nicely overlap with the 
observed distributions at each chromatography step. This is also reflected in good agreement of 
simulated and measured OOS probabilities at drug substance level, which are displayed in the title 
of each subfigure, except for process-related impurity 2. Also, the skewness of the measured CQA 
distribution is well described by the model (e.g., positive skewness of the product-related impurity 1 
distribution at chromatography column 2 in Figure 3). Herein, we regard the model as valid for 
further investigations such as varying set-point conditions or accelerated variance of PPs.  

For process-related impurity 2, the variance of the predicted specific CQA concentrations is larger 
than the observed variance, especially at chromatography column 3 level, as shown in Figure 6. 
However, the mean prediction at chromatography column 3 level is very close to the observed runs. 
The simulated OOS events of the IPM are 9.1% whereas only 0% when calculating from LS data. This 
gap in predicted versus observed OOS events might be caused by an different mean response of the 
scale down model at set-point conditions, which was used to conduct the experiments, an overlooked 
effect of a PP onto this CQA, an overlooked spiking model, or the gap is introduced by the selection of 
the current large scale runs which show a too low OOS chance. For the first two issues, power analysis 
for the insignificant models terms needs to identify if additional experiments need to be conducted to 
make sure that no critical effect has been overlooked [9]. Whereas, the latter possibility indicates a risk 
that was uncovered by the IPM and has luckily not been observed during LS runs. Herein, counter 
actions might be taken such as an increase of specific purification capacity in primary recovery.  

Figure 2. Schematic description of the integrated process model using a Monte Carlo approach:
1000 simulations are performed, each having a different set of process parameters (indicated as
distribution on the x-axis of (A,B)) and initial specific CQA concentration (cCQA,init). Multiple linear
regression models describe the relationship between the cCQA of the pool of unit operation u (B) and
the PP of this unit operation as well as the pool concentration of the previous unit operation u − 1 (A).
Thereby, models from multiple unit operations (A,B) are connected to predict the CQA distribution
in the drug substance (C). Since 1000 simulations are performed, the CQA values form a distribution
after each unit operation. The higher the model uncertainty, indicated by blue shaded area around
the regression line, the wider the resulting CQA distribution. This ultimately propagates until drug
substance, where the chance of out of specification events can be assessed.

3.2. Validation of the IPM Using Observed CQA Distribution in Drug Substance

For model validation, the distribution of the predicted specific CQA concentrations at the pools
of each unit operation and drug substance were compared to the measured CQA distribution of LS
runs. The OOS chance for the IPM was calculated by simply counting the number of simulations that
are above the upper specification limit and dividing by the number of simulations. For the calculation
of the OOS chance using the 9 large scale runs, a normal distribution was fitted to the data.

Figures 3–6 show overlays of simulated and observed CQA distribution after each
chromatography step for product-related impurity 1 and 2, as well as process-related impurity 1 and 2,
respectively. For reasons of data security, all values have been normalized by the maximum observed
or simulated CQA value. For the calculation of the observed distributions, all 9 LS runs have been
used and have been plotted. CQA distribution after chromatography column 3 (yellow colored bar in
Figures 3–6) can be regarded as drug substance since no further purification has been shown to occur
at the ultrafiltration/diafiltration step.
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From visual inspection, the predicted distributions for each CQA nicely overlap with the observed
distributions at each chromatography step. This is also reflected in good agreement of simulated
and measured OOS probabilities at drug substance level, which are displayed in the title of each
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subfigure, except for process-related impurity 2. Also, the skewness of the measured CQA distribution
is well described by the model (e.g., positive skewness of the product-related impurity 1 distribution at
chromatography column 2 in Figure 3). Herein, we regard the model as valid for further investigations
such as varying set-point conditions or accelerated variance of PPs.

For process-related impurity 2, the variance of the predicted specific CQA concentrations is
larger than the observed variance, especially at chromatography column 3 level, as shown in Figure 6.
However, the mean prediction at chromatography column 3 level is very close to the observed runs.
The simulated OOS events of the IPM are 9.1% whereas only 0% when calculating from LS data.
This gap in predicted versus observed OOS events might be caused by an different mean response
of the scale down model at set-point conditions, which was used to conduct the experiments, an
overlooked effect of a PP onto this CQA, an overlooked spiking model, or the gap is introduced by
the selection of the current large scale runs which show a too low OOS chance. For the first two
issues, power analysis for the insignificant models terms needs to identify if additional experiments
need to be conducted to make sure that no critical effect has been overlooked [9]. Whereas, the latter
possibility indicates a risk that was uncovered by the IPM and has luckily not been observed during
LS runs. Herein, counter actions might be taken such as an increase of specific purification capacity in
primary recovery.

For product-related impurity 2, the OOS chances for the IPM and the observed data are equally
around 7%, as shown in Figure 4. Since for this CQA two statistical models as a function of PPs at
chromatography column 1 and chromatography column 3 could be established (Table 2), parameter
sensitivity analysis using the IPM can reveal optimization potential to increase process robustness for
this CQA.

3.3. Impact of Accelerated Variation in Process Parameters on Drug Substance

Parameter sensitivity analysis (PSA) was performed to assess how a change in set-point or
variance of controlled PPs influences OOS events at drug substance. PSA was conducted as follows:
Each PP was varied individually regarding its mean and variance and resulting change in OOS
events was measured. If interaction effects of parameters have been detected within DoE models,
those parameters can be varied simultaneously to study this effect. However, this was not the case
for any model established in this study. Moreover, since the model was built only on a segment
of all unit operations, we are interested in how an altered performance of the fermentation and
primary recovery—leading to an increased impurity burden at the load of chromatography column
1—will impact on drug substance. Therefore, the specific impurity concentration at the loading of
chromatography column 1 was also varied in a parameter sensitivity analysis.

Results of an example of such an analysis are shown for product-related impurity 2 (Figure 7),
where in panel A the change of OOS events as a function of change in percent of set-point settings
of all process parameters is displayed. As can be seen from this subfigure, only a change in pH and
wash strength of chromatography column 1 leads to a drastic change in OOS events. This is expected
since both factors are part of the DoE model (see Table S1 of Supplementary materials). In more
detail, both factors have a favorable direction in terms of reduction of OOS events (lowered pH and
increased wash strength). For example, a reduction of the pH value by 10% of the set-point leads to
a reduction of OOS events from 7% to around 3%. Interestingly, a change in variance of those two
process parameters by ±50% does not impact the OOS events (Figure 7B). This sounds contradictory
at first glance, however, since a variance increase to a certain extent will also drive a lot of simulations
to the more favorable side (lowered pH and increased wash strength), the overall OOS chance remains
similar to the initial estimate. This also emphasizes the well-known fact that optimization should be
addressed via a change in the set-point rather than via reduction of variance, which is, in general, even
harder to accomplish. A change in initial product-related impurity 2 burden after primary recovery
propagates as well into drug substance, which can be explained by the fact that no spiking model could
be established for this CQA at any unit operation, as shown in Figure 7C. In detail, a 10% reduction of
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the specific product-related impurity 2 concentration after primary recovery lowers the OOS events
by another 3%. Therefore, it would be favorable to lower the pH of chromatography column 1 and
reduce the impurity burden already after primary recovery using prior knowledge or build models
that capture the interaction of fermentation and primary recovery parameters on this CQA. Thereby,
OOS events could be lowered for product-related impurity 2 down to 1% or less. In order not to
increase the OOS probability for another CQA by changing those two process parameters, one would
need to also consider their impact on the residual CQAs. This is not shown here since we only wanted
to introduce the methodology for a potential application of the IPM and due to reasons of simplicity.
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Figure 7. Estimated OOS event for product-related impurity 2 at drug substance as a function of
change in set-point (A) and variance (B) of all PPs as well as a function of increased specific impurity
concentration after primary recovery (C). Deviations in set-point of pH and salt concentration in wash
of chromatography column 1 impact severely on OOS chance, which is not the case when variance
in PPs increases by up to 50%. A change of specific product-related impurity 2 concentration at the
primary recovery level will also increase OOS chances.

4. Conclusions

Here we have shown how, by using an IPM, it was possible to demonstrate that sufficient process
knowledge is available from process development to describe impurity clearance of process-related
impurities 1 and 2, as well as product-related impurities 1 and 2. The distributions of simulated and
observed CQAs are in good agreement to each other and make it possible to quantify the risk of not
meeting product specifications under normal operating conditions, something which is often not
possible due to limited large scale runs.

For product-related impurity 1 and process-related impurity 1, both the predicted OOS chance
by the IPM as well as the observed OOS chance are numerically close to 0%. Herein, the process
design can be validated in respect to those CQAs. In a first application of the IPM within a parameter
sensitivity approach, it was possible to identify potential changes in process parameter set-points
that will potentially decrease the chance of OOS events for product-related impurity 2 from 7% to
1%. For process-related impurity 2, the mean prediction of clearance within the IPM is similar to
that obtained from LS measurements, however, the model predicts a 9.1% chance to be above drug
substance specification, whereas current large scale data estimate 0% OOS chance. Since no statistical
model could be established that might be used for optimization, process changes might be introduced.
Here, IPM can be used within a model life-cycle approach as an enabler in change management. In case
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parts or entire unit operations are exchanged or included into an existing process design, the IPM can
predict the mutual performance of this change in the context of existing clearance capacity. This can be
achieved by replacement with statistical models of respective unit operations. Thereby, the overall
performance of the changed process design can be assessed in terms of OOS events.

Furthermore, it should be emphasized that this model, in accordance with current opinion, is
not finished in the traditional sense, but is expected to incorporate any future experiments and GMP
runs for model refinement and application in further PV stages. Thereby, it is expected that new or
insufficiently studied dependencies between PPs and CQAs can be incorporated as identified.

Supplementary Materials: The following are available online at www.mdpi.com/2306-5354/4/4/86/s1,
Figure S1: Comparison of simulated (top) product-related impurity 1 distribution and observed (bottom)
product-related impurity 1 from LS after each column step, Figure S2: Comparison of simulated (top)
product-related impurity 2 distribution and observed (bottom) product-related impurity 2 from LS after each
column step, Figure S3: Comparison of simulated (top) process-related impurity 2 distribution and observed
(bottom) process-related impurity 2 from LS after each column step, Figure S4: Comparison of simulated (top)
process-related impurity 1 distribution and observed (bottom) process-related impurity 1 from LS after each
column step, Table S1: Overview of found models based on DoE data, Table S2: Overview of models showing a
correlation between specific CQA clearances and CQA load density.
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