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Abstract: Productivity improvements of mammalian cell culture in the production of recombinant
proteins have been made by optimizing cell lines, media, and process operation. This led to enhanced
titers and process robustness without increasing the cost of the upstream processing (USP); however,
a downstream bottleneck remains. In terms of process control improvement, the process analytical
technology (PAT) initiative, initiated by the American Food and Drug Administration (FDA), aims to
measure, analyze, monitor, and ultimately control all important attributes of a bioprocess. Especially,
spectroscopic methods such as Raman or near-infrared spectroscopy enable one to meet these
analytical requirements, preferably in-situ. In combination with chemometric techniques like partial
least square (PLS) or principal component analysis (PCA), it is possible to generate soft sensors,
which estimate process variables based on process and measurement models for the enhanced
control of bioprocesses. Macroscopic kinetic models can be used to simulate cell metabolism.
These models are able to enhance the process understanding by predicting the dynamic of cells
during cultivation. In this article, in-situ turbidity (transmission, 880 nm) and ex-situ Raman
spectroscopy (785 nm) measurements are combined with an offline macroscopic Monod kinetic
model in order to predict substrate concentrations. Experimental data of Chinese hamster ovary
cultivations in bioreactors show a sufficiently linear correlation (R? > 0.97) between turbidity and
total cell concentration. PLS regression of Raman spectra generates a prediction model, which was
validated via offline viable cell concentration measurement (RMSE < 13.82, R? > 0.92). Based on these
measurements, the macroscopic Monod model can be used to determine different process attributes,
e.g., glucose concentration. In consequence, it is possible to approximately calculate (R* > 0.96)
glucose concentration based on online cell concentration measurements using turbidity or Raman
spectroscopy. Future approaches will use these online substrate concentration measurements with
turbidity and Raman measurements, in combination with the kinetic model, in order to control the
bioprocess in terms of feeding strategies, by employing an open platform communication (OPC)
network—either in fed-batch or perfusion mode, integrated into a continuous operation of upstream
and downstream.

Keywords: process analytical technology; macroscopic modeling; biologics manufacturing; upstream;
downstream; turbidity; Raman; Chinese hamster ovary; process control

1. Introduction

1.1. Process Analytical Technology

The steadily increasing demand for process robustness and understanding has led to
the introduction of the process analytical technology (PAT) initiative in the biotechnological,
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biopharmaceutical, and food industry by the Food and Drug Administration (FDA) in 2004 [1-3].
The PAT initiative aims to measure, analyze, monitor, and ultimately control all important
attributes of a bioprocess in order to maintain or improve product quality [1,4—6]. These attributes
comprise process parameters (e.g., pH, pO,, gas flow) and variables (e.g., biomass/viability,
substrate/metabolite /product concentration). The overall goal is to control critical process parameters
that influence the cellular growth rate p, production rates g; of the product, host cell proteins, and
metabolites (qproduct qHCP, lac Gamm), as well as product quality (e.g., structure, post-translational
modifications, and efficacy) [7,8]. Hence, the real-time monitoring of bioreactors is crucial for an
efficient, well controlled, robust bioprocess. Depending on the location of the analysis, bioreactor
monitoring techniques distinguish between in-situ, which can be invasive, non-invasive, or placed
in a sampling loop, or ex-situ [9]. In-situ or ex-situ spectroscopic methods are employed for the
quantitative or qualitative description of process variables, due to their fast, sensitive, and reliable
characteristics [9].

Exemplary methods are shown in Table 1. Spectroscopic methods aim to measure the cellular
condition, as well as substrate, product, and metabolite concentration online. The common online
determination of these variables using dedicated measurement devices (online glucose analyzer,
cell imager) is either laborious, susceptible to maintenance efforts, or has the tendency to be used
specifically for only one application. Spectroscopic probes eliminate those drawbacks by multiplexing,
and process independent economic use and simple integration [4,10-12]. However, the analysis and
interpretation of spectral data can be complex, and the correlation between responses and factors may
not always be obvious [13].

Table 1. Exemplary overview of methods that are able to measure process variables of mammalian cell
culture quantitatively or qualitatively, according to [4,13]. UV /Vis, ultraviolet and visible spectroscopy;
NIR, near-infrared spectroscopy; MIR mid-infrared spectroscopy; VCD, viable cell density.

Method Component Quantitative or Qualitative
UV /Vis Cell density Quantitative
Fluorescence VCD, titer, tyrosine, tryptophan Quantitative
Raman Glc, Lac, Gln, Glu, Amm, VCD Quantitative

NIR Glc, Lac, Biomass, Gln, AMM, titer, viscosity Quantitative and qualitative
MIR Glc, EtOH, organic acids Quantitative

Despite this, the analysis of complex spectral data, e.g., Raman, NIR, MIR, and fluorescence, can be
conducted using multivariate chemometric techniques. Chemometrics comprises mathematical and
statistical methods in order to design or select optimal measurement procedures and to obtain maximal
information by analyzing chemical data [14]. Techniques such as Principal Component Analysis
(PCA), Principal Components Regression (PCR), and Partial Least Squares Regression (PLS) are used in
order to describe the correlation between responses and factors, especially in spectral data [4,9,14,15].
The application of these methods is mainly due to the non-selectivity of the spectroscopic measurements
and the high collinearity of the variables [9].

The high resolution data acquisition of target variables such as biomass or substrates is crucial for
process control and gaining deeper process understanding, due to the correlation between process
parameters, the process state, and target attributes. The online, offline, and soft sensor/model
determination of these variables can be seen in Figure 1. Process variables such as stirrer rate, air flow,
or base addition are measured, monitored, and controlled using dedicated control units (i.e., DCU,
digital control unit) or OPC (open platform communication) platforms. Variables, which are in-situ not
directly accessible (e.g., biomass, substrate concentration), can be monitored employing spectroscopic
techniques, for example.
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Figure 1. Main correlations between process, state, and target variables according to [22]. In this experimental set-up green, red, and blue variables can be
measured/controlled online, offline, or via a soft sensor /kinetic model, respectively (left). The target variable biomass can be measured indirectly via turbidity (linear
correlation) or Raman spectroscopy (PLS). The substrate consumption, e.g., glucose, can be calculated due to the relationship between cell and substrate concentration
in a macroscopic model based on Monod equations (right).
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Commercially available in-situ turbidity sensors, which measure the optical density (OD) of
suspensions, can be implemented for the determination of total cell concentrations of mammalian cell
cultures [2,16]. Inline turbidity measurement techniques distinguish between transmission, absorption,
reflection, or light scattering [2,17]. The most significant advantages of turbidity probes are their
measurement resolution, simple use, and implementation. However, depending on the cellular
viability, the optical density can considerably differ from the viable cell concentration.

Nevertheless, turbidity probes are able to directly collect online data regarding total cell
concentration and can be used for process control if the cellular viability is not decreasing
(i.e., viable cell concentration does not significantly differ from total cell concentration). This makes
turbidity sensors a viable monitoring and controlling technique for bioprocesses [16,18] (especially for
continuous bioprocessing, e.g., perfusion turbidostat).

Therefore, techniques that provide insight into the cellular viability are favorable and should
be monitored in real-time according to the ICH Q8-R2 guidance [16,19]. Raman spectroscopy, in
combination with chemometric analysis methods, can, for example, be used for the determination of
the total or viable cell concentration, as well as for the substrate and metabolite concentration [4,20].

The combination of turbidity and/or Raman spectroscopy with a macroscopic model such as
the soft sensor enables the estimation and/or prediction of process variables, which are not directly
measureable [21].

1.2. Macroscopic Models

Macroscopic models that predict the dynamic state of a mammalian cell culture help to gather
vast information about the cellular condition, including correlations between growth and substrate
uptake, as well as metabolite and product accumulation [23-29]. According to [23], the relationship
between input (e.g., substrate concentration) and output (e.g., cell concentration) variables can be
macroscopically modeled by using methods such as statistics (e.g., PCA), empirical observations
(e.g., yield coefficients), and metabolic networks (e.g., metabolic flux analysis). The kinetic model can
be established by neural networks and logistic or Monod-type approaches. Initiating with experimental
and literature data, the correlation between input and output variables using empirical observations
(i.e., yield coefficients), as well as the establishment of the kinetic using a Monod-type approach,
seems to be the most straightforward method for implementation. Metabolic networks, however,
represent a more detailed image of the cell [30]. However, the construction of such models is more
time consuming than empirical observations, if reaction and flux rates of metabolic pathways are
experimentally determined using metabolomics and not adapted from literature [31].

1.3. Main Metabolism of Mammalian Cells

In terms of the metabolism of mammalian cells, Figure 2 shows a schematic overview of the main
catabolic metabolism, which is divided into three stages [32-35]:

1.  Nutrients such as polysaccharides, as well as proteins and lipids, are broken down into
their components.

2. Components, derived in stage one, are converted into their common compounds, pyruvate,
and acetyl-CoA.

3. Finally, acetyl-CoA is integrated into the citric acid cycle, which is accompanied by
oxidative phosphorylation.
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Figure 2. Schematic overview of the main catabolic metabolism divided into three stages, adapted
from [32].

The main glucose metabolism that initiates with glycolysis alongside the pentose phosphate cycle
(synthesis of ribose 5-phosphate, a precursor of nucleotides) is depicted in Figure 3. Previous research
has shown that energy production from glucose alone is not sufficient [36]. Glucose cannot, however,
be added in arbitrary quantities, as excess glucose leads to substrate inhibition. This means alternative
energy sources, for example the 20 proteinogenic amino acids, are required to manage increased energy
requirements [37]. Due to the efficient absorption of glutamine, it is added to most cultivation media
as an alternative energy source. Glutamine plays a central role in the metabolism, since it serves as
a starting material in numerous reactions and syntheses. These include, for example, peptide and
protein synthesis, as well as the formation of amino sugars and nucleic acid synthesis [38].
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Figure 3. Production of lactate and pyruvate in glycolysis. HK, Hexokinase; G6PI, Glucose-
6-phosphate isomerase; PFK, Phosphofructokinase; ALD, Aldolase; TPI, Triosephosphate
isomerase; GAPDH, Glyceraldehyde-3-phosphate dehydrogenase; PGK, Phosphoglycerate
kinase; PGM, Phosphoglycerate mutase; ENO, Enolase; PK, Pyruvate kinase; LDH, Lactate
dehydrogenase; G6PDH, Glucose-6-phosphate dehydrogenase; GL, 6-Phosphogluconolactonase;
PGDH, Phosphogluconate dehydrogenase; DHAP, Dihydroxyacetone phosphate; G3P, Glyceraldehyde
3-phosphate; 1,3BPG, 1,3-Bisphosphoglycerate; 3PG, 3-Phosphoglycerate; 2PG, 2-Phosphoglycerate;
PEP, Phosphoenolpyruvate; 6PGL, 6-Phosphogluconolactone; 6PG, 6-Phosphogluconate.
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Besides the main energy sources, the resulting metabolites also play an important role in
cultivation. The main by-products of glucose and glutamine metabolism are lactate and ammonium,
which have a strong influence on the life span of cells and the production of the antibody [39-41].

In addition to pyruvate, the crucial metabolite lactate is being produced in glycolysis during
the exponential growth phase. The consumption of lactate is observed during the stationary phase
upon depletion of glutamine and is desirable, since it seems to correlate to improved optimal process
performance [42]. However, the reduction of pH, as well as the inhibition of cell growth and production
of IgG, constitutes side-effects, resulting in the increase of lactate [37]. Nevertheless, variation of pH
can be reduced by an appropriate controller during a bioprocess. However, the addition of ions
leads to an increased osmotic pressure, which in turn has negative effects on cell culture. At most,
non-controlled cultivations in shaking flasks may be exposed to pH variation. For these reasons,
the lactate content should be kept as low as possible.

The also critical by-product ammonium (NH4") is mainly produced via the metabolism of
glutamine [38,39,43]. The degradation of glutamine to «-ketoglutarate in glutaminolysis can take
place via two metabolic pathways: on the one hand, via the transamination reaction, and on the other
hand, via the complete oxidation of glutamine catalyzed by the glutamine dehydrogenase (GDH).
The amount of ammonium has a stronger impact on the culture than the lactate. However, it is
difficult to determine an exact threshold for the ammonium concentration, since different critical
values, between 2 and 10 mM, are given in the literature [39,40,44]. Glutamine is first converted into
glutamate in glutaminolysis with ammonium splitting off in order to be introduced into the TCA as
a-ketoglutarate, during which further ammonium is split off. Up to this point, 1 mol of glutamine has
been converted into 2 mol of ammonium (see Figure 4).
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Figure 4. Citrate cycle, which represents the entry point into the energy metabolism, adapted from [37].

As ammonium dissociates, ammonia is present as an uncharged molecule, which can diffuse
freely through the cell membrane. As soon as a proton is released into the culture medium, the pH
value in the medium decreases. In the cell, on the other hand, the pH value is increased by the uptake of
a proton to form ammonium, which results in a pH gradient between the intracellular and extracellular
space. In order to compensate for this gradient, the cell has to re-establish the pH-value under energy
consumption by means of ion pumps. As a result, the basic energy requirement for maintaining
the organism increases significantly and can therefore no longer be used for the proliferation or
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production of the antibody [36]. As a consequence, ammonium has a negative effect on cell growth
and viability [38—40,43].

The concentration of inhibiting metabolites, such as lactate and ammonium, has to be monitored
and preferably controlled for the above-mentioned reasons.

In this approach, in-situ turbidity and ex-situ Raman spectroscopy measurements are combined
with an offline macroscopic Monod kinetic model in order to estimate substrate and metabolite
concentrations (i.e., glucose and its metabolite lactate) as proof of principle. Macroscopic models lead
to a more detailed process understanding and, in combination with experimental data, these models
can be employed for the online prediction of substrates or metabolites. The connection between online
cell concentration measurement and reliable online substrate or metabolite prediction will be one
important step towards the online monitoring and controlling of bioprocesses.

2. Materials and Methods

Chinese hamster ovary cells (CHO DG44) were used in bioreactor (Biostat® B, Sartorius Stedim
Biotech GmbH, Géttingen, Germany) cultivations for the production of a monoclonal antibody in a
serum-free medium. The cultivation conditions were 36.8 °C, 5.0% carbon dioxide, 433 rpm, pH 7.1
and 60.0% dissolved oxygen (pO;). The in-situ turbidity probe (transmission, 880 nm, HiTec Zang
GmbH, Herzogenrath, Germany) was connected to a LabManager® (HiTec Zang GmbH). Raman
spectroscopy was performed using an ex-situ Raman probe (Diode laser, 785 nm, Ocean Optics B.V,
Ostfildern, Germany) in order to correlate the spectral data and the viable cell concentration using the
NIPALS algorithm derived from the software The Unscrambler® (CAMO Software AS., Oslo, Norway).

Offline viable and total cell concentration were repeatedly determined by using a Neubauer
chamber (BRAND GMBH + CO KG, Wertheim, Germany), microscope (Motic BA 310,
Motic Deutschland GmbH, Wetzlar, Germany), and trypan blue solution (0.4%, Sigma-Aldrich,
St. Louis, MO, USA) as dye for the detection of dead cells. Glucose and lactate were repeatedly
measured using a LaboTRACE compact (TRACE Analytics GmbH, Braunschweig, Germany).
The monoclonal antibody was quantified by Protein A chromatography (PA ID Sensor Cartridge,
Applied Biosystems, Bedford, MA, USA). Dulbecco’s PBS buffer (Sigma-Aldrich, St. Louis, MO, USA)
was used as loading buffer at pH 7.4 and as elution buffer at pH 2.6. The absorbance was monitored at
280 nm.

The macroscopic kinetic model was developed in Aspen Custom Modeler V8.4 (Aspen Technology,
Inc., Bedford, MA, USA). Since the cell cultures were performed in fed-batch mode with daily bolus
feed additions, the model equations were extended by feeding terms. Consequently, the bioreactor
volume was considered as well.

3. Results

3.1. Online Cell Concentration Measurement

The basic principle of the correlation between process, state, and target variables is shown in
Figure 1. This relationship, alongside the results from online turbidity and Raman measurements,
as well as macroscopic modeling, is shown and discussed in detail in the following. The in-situ
measurement of the turbidity of the cell culture suspension is one of the most applied techniques
for biomass monitoring, due to the simplicity of this method [2]. Here, an online transmission
probe using a wavelength of 880 nm was implemented in order to record the total cell concentration
of two CHO DG44 bioreactor cultivations. The correlation between the turbidity measurements
(formazine attenuation units, FAU) and total cell concentration (E5 cells/mL) is shown as an example
for one bioreactor cultivation in Figure 5. The linear relation was found to be in good agreement for
two bioreactor cultivations (R? > 0.97 + 0.02).
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Figure 5. Correlation between offline determination of total cell concentration (E5 cells/mL) and
online turbidity measurements (880 nm, FAU). Error bars represent the double determination of cell
concentration, as well as the error of the probe (0.75%). The coefficient of determination for this linear

relation is >0.99.

Compared to the determination of the total cell concentration using turbidity probes,
Raman spectroscopy combined with chemometric techniques can be used to predict substrate
concentration, i.e., glutamine or glutamic acid, or viable and total cell concentration [2]. Using this
approach, ex-situ Raman spectroscopy and PLS were used in order estimate the viable cell
concentration offline. The PLS model was established using the NIPALS algorithm alongside
cross-validation. Four factors are needed in order to explain 94% of the response variance. The resulting
response prediction generates a sufficient model error (RMSE < 13.82, R? > 0.92) for estimating the
experimental viable cell concentration.

The correlation between the predicted viable cell concentration that results from the NIPALS
algorithm and the experimental viable cell concentration is shown in Figure 6. Considering the nature
of ex-situ spectral data acquisition (e.g., possible long hold up, variations of process variables in
sampling loop), this prediction method seems to be quite sufficient for determining the viable cell
concentration in the bioreactor.
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Figure 6. Correlation between offline viable cell concentration (E5 cells/mL) determination and PLS
(NIPALS)-based viable cell concentration (E5 cells/mL). Error bars represent the double determination
of cell concentration, as well as the model error (RMSE < 13.82). The coefficient of determination for

this linear relation is >0.95.
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Both techniques generate reproducible data and predictions. The acquisition of turbidity is more
easily available and is simpler to integrate and interpret than Raman spectroscopy coupled to PLS.
However, turbidity probes are only able to determine the total cell concentration based on the optical
density of the culture suspension instead of the viable concentration and are affected by air bubbles
and noncellular particles [2]. Regarding the productivity of secondary metabolites or recombinant
proteins like monoclonal antibodies in the stationary phase of a (fed-)batch culture, the cellular state of
the culture, and therefore its viability, is of utmost importance [45]. Hence, techniques that are able to
determine the viable cell concentration are in favor. This prediction can efficiently be accomplished by
Raman spectroscopy or, for example, near-infrared and impedance measurements [2]. The discrepancy
between the results of Raman spectroscopy and turbidity can be seen in Figure 7.
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Figure 7. Viable and total cell concentration based on Raman spectroscopy coupled to PLS and turbidity,

respectively, compared to experimental viable cell concentration. Error bars represent the double

determination of cell concentration and viability, as well as the model error of PLS (RMSE < 13.82).

The difference between the results of turbidity (total cell concentration) and Raman (viable cell
concentration) measurements is expected. As can be seen in Figures 7 and 8, the turbidity is in good
correlation to the viable cell concentration due to the high viability of the cell culture. However,
after approximately 234 h culture time, the turbidity probe measurements do not correlate to the
viable cell concentration any more. Here, the PLS model is able to predict the decreasing viable cell
concentration. The slowly rising cell concentration based on turbidity after 234 h is mainly due to
cell accumulation in the probe gap. After the probe positioning in the bioreactor was adjusted, this
increase did not occur again.
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Figure 8. Correlation between offline viable cell concentration (E5 cells/mL) determination and online
turbidity measurements (880 nm, FAU) prior to and after 234 h bioreactor cultivation. Error bars
represent the double determination of cell concentration, as well as the deviation of the probe (0.75%).
The coefficient of determination for this linear relation is >0.98 for t < 234 h.
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In conclusion, turbidity data can efficiently be used as process variable for process control if the
cellular viability does not significantly differ (>10%, see Figure 7, >234 h) between viable and total cell
concentration. Besides, according to the more complex interpretation of Raman spectra, this technique
is able to predict the cellular state more reliable. Methods are available that can acquire spectra
and integrate them into PLS models, resulting in the online determination of viable cell, substrate,
and metabolite concentrations [46,47]. For this, PLS models have to be robust and validated using
validation data sets. By increasing the range of these validation data sets it is possible to reduce the
model error significantly [48].

3.2. Macroscopic Kinetic Modeling

Macroscopic kinetic models are being used in order to simulate the cellular state and productivity
in-silico [23,24,29,49]. In this approach, a Monod type model is used for the offline prediction of
glucose concentration. This methodology will be enhanced in future experimental set-ups to predict the
substrate concentration online and implement a control strategy utilizing an OPC network. The model
consists of Monod-type equations that describe the time-dependent state of the viable cell [Xy],
glucose [GLC], glutamine [GLN], lactate [LAC], ammonium [AMM], and monoclonal antibody [mAb]
concentration. Model parameters such as Monod constants (Kgic, Kgin, Kiac, Kiamm), Hmax, and yield
coefficients (Yx /gler Yx/gler Yx/gle) are calculated based on bioreactor cultivations or are adopted
from literature. The Equations (1) to (9) are given in the following and are mostly adopted from
Xing et al. [49]. The employed model parameters are given in the following Table 2.
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The cellular state, together with the product and glucose concentration, can be predicted
sufficiently, as seen in Figure 9. The coefficient of determination for each prediction is greater than
0.92. In order to improve the prediction quality, the Markov Chain Monte Carlo method can be used
for the prediction of parameters that are difficult to obtain such as mgj, Kgj, or Kgic [49]. However,
even parameters that can be derived from experimental data [23], such as pmax or yield coefficients
(e.8., Yx/gler Yx/gIn), €xhibit a significant influence on model variables, especially [X,] and [GLC].
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The model parameter pmax, for example, varied according to the minimal and maximum values
reported for mammalian cells, as well as 5% and +10% of the experimentally determined value in
order to examine its influence on the course of the viable cell and glucose concentration (Figure 10).

Table 2. Model parameters used in the macroscopic Monod model for the simulation of CHO
cultivations based on literature (Lit.) or experimental data (exp). Literature data were determined using
fed-batch CHO cell culture and the markov chain monte carlo method for parameter estimation [49] or
by the differential evolution technique [50].

Parameter Description Value Unit Source
Hmax Maximum growth rate 0.039 h-! exp
kq Maximum death rate 0.004 h! exp
KglC Monod constant glucose 1.00 mM [50]
Kgin Monod constant glutamine 0.047 mM [49]
Kiac Monod constant lactate for inhibition 43.00 mM [49]
Kiamm Monod constant ammonium for inhibition 6.51 mM [49]
Kpiac Monod constant lactate for death 45.8 mM [49]
Kpamm Monod constant ammonium for death 6.51 mM [49]
Yx/glc Yield coefficient cell conc./glucose 0.357 E9 cells mmol ! exp
Yx/gln Yield coefficient cell conc./glutamine 0.974 E9 cells mmol ! [49]
Yiac/gle Yield coefficient lactate/glucose 0.70 mmol mmol~! exp
Yamm/gln Yield coefficient ammonium /glutamine 0.67 mmol mmol 1 [49]
Tamm Ammonium removal rate 6.3 E-12 mmol cell 1-h 1 [49]
mg Glucose maintenance coefficient 69.2 E-12 mmol cell"1-h1 [49]
ap Coefficient for mgy, 32 E-12 mmol cell~1-h~1 [49]
ap Coefficient for mg, 2.1 mM [49]
QmAb Specific production rate 1.51 E-12g.cLh7! exp

As can be seen in Equations (1)-(9) and Figure 10, the maximum growth rate pumax may be the
key parameter of this macroscopic model. An increase of the maximum growth rate has significant
impact on growth and maximum cell concentration, and consequently on substrate concentration.
Accompanied by the increased cell concentration, the glucose concentration decreases more rapidly
(constant feed strategy assumed). This relation is due to the dependency of the substrate concentration
on the cell concentration (Equation (4)), which therefore affects the temporal growth rate (Equation (1))
and hence the maximum growth rate pmax (Equation (2)). This effect is not surprising, but clearly shows
the importance of an exact parameter determination methodology for highly sensitive parameters.
Here, pmax exhibited the most significant influence on the course of model variables. For example,
online measurements such as turbidity can efficiently be used for the determination of pmax, due to
their very high sample resolution. The improved data sets result in a significantly improved data
consistency and in a more precise model parameter prediction.
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Figure 9. Correlation between experimental and predicted values for the viable cell, product,
and glucose concentration. The error bars represent the standard deviation of various bioreactor
cultivations. The coefficient of determination is >0.92.
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Figure 10. Influence of pmax on the viable cell and glucose concentration. wmax values represent

data reported for mammalian cells (min, max), as well as 5% and +£10% of the experimental

determined value.

3.3. Combination of Experimental Data and Predictive Modeling

The prediction of the experimental viable cell and substrate concentration using a macroscopic
kinetic model shows a sufficient agreement. In order to integrate this Monod type model into the
process environment, online turbidity data, which represents the cell concentration, were connected to
the model for the prediction of glucose concentration (Equation (4)). In future approaches, this shall
lead to a simple method for the approximate determination of growth limiting substrates, such as
glucose. The comparison between offline measurements and model-based prediction of the glucose

concentration can be seen in the following Figure 11.
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Figure 11. Comparison between offline measurements (exp) and model-based prediction of the glucose
concentration. The deviation represents the offline double determination of the glucose concentration.
The coefficient of determination for this relation is >0.96.

As it can be seen in Figure 11, the model based determination of the glucose concentration
sufficiently (R> > 0.96) predicts the offline measured values, especially in the pre-feed phase
(<67 h) of the cultivation. The prediction of the glucose concentration in the feed phase is
significantly more challenging, since physiological effects of the feed media on the cellular state
(e.g., substrate limitation/inhibition, change from cell growth to production, influence of feed media
components) are not described by this model at this time. Furthermore, any process disturbances
result in a non-ideality of the cellular state or substrate concentration and are difficult to predict using
macroscopic models. In addition, the viable cell concentration determination based on turbidity
measurements is dependent on a viable cell state (Viability >90%). The discrepancy between
experimentally determined viable cell concentration and turbidity-based calculation (Figure 8) results
in an additional deviation of the estimated glucose concentration from the available glucose in culture.
Besides the need for a reliable estimation or even prediction of the substrate concentration, metabolites
have to be predicted, because lactate or ammonium are responsible for inhibiting cell proliferation
(see Figures 3 and 4). The comparison between offline measurements and model-based prediction of
the lactate concentration can be seen in the following Figure 12.

1.0
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s _
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= ]
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03 n
02
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0.0
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Figure 12. Comparison between offline measurements (exp) and model-based prediction of the lactate
concentration. The deviation represents the offline double determination of the lactate concentration.
The coefficient of determination for this relation is >0.90.
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Nevertheless, turbidity measurements combined with a macroscopic kinetic model can be used
for an online estimation of substrate concentration and, in future approaches, will be validated and
extended to metabolites (e.g., ammonium), since they play a significant role in cell dynamics and
protein production as described above (see Figures 3 and 4).

4. Conclusions

The presented approach of online turbidity and Raman spectroscopy depicts their advantages
and disadvantages regarding their implementation in bioprocesses. Turbidity measurements seem
to be more suited to a fast and simple technique for interpreting cellular state monitoring, despite
the limitations on total cell concentration. Therefore, spectroscopy methods that display the cellular
viability, such as Raman coupled to chemometric analysis (e.g., PLS), are in favor. However, the
interpretation of the acquired spectra can be complex and are not always obvious. The correlation
of total and viable cell concentration using online turbidity (R? > 0.99) and Raman spectroscopy
(R? > 0.95), respectively, is sufficient and capable of approximately predicting the glucose (R? > 0.96)
and lactate concentration (R? > 0.90) by employing a macroscopic Monod-type model.

In order to measure, analyze, monitor, and ultimately control all important attributes of a
bioprocess, reliable measurement techniques are essential. In future approaches, the prediction
of the glucose concentration will be further validated and implemented into a control strategy using
turbidity or Raman spectroscopy, as well as an OPC platform. This strategy will merge online
measurements, macroscopic models, and finally advanced process control for robust and reliable batch
or continuous operation.

Those steps are also crucial for any innovation and optimization of the manufacturing technology
of biologics such as, e.g., the transfer form batch to continuous processes. In a continuous operation,
process robustness is even more crucial in order to prevent failures or instabilities, as the annual
costs would be significantly higher than in a comparable batch operation. First studies on continuous
biomanufacturing prove better reproducibility [51]. Appropriate process control strategies based on
sound PAT tools, in combination with process modeling technologies, as shown here, will keep critical
product quality attributes reliably within specification by controlling operation parameters within
their design space.

Improved reliability in process operation will enable manufacturing optimization projects and
even innovation in industrialization towards more economic manufacturing of innovative medicines
for the patients’ sake [52-57].
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