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Abstract: Label-free confocal photothermal (CPT) microscopy was utilized for the first time to
investigate malignancy in mouse skin cells. Laser diodes (LDs) with 405 nm or 488 nm wavelengths
were used as pumps, and a 638 nm LD was used as a probe for the CPT microscope. A Grey Level
Cooccurrence Matrix (GLCM) for texture analysis was applied to the CPT images. Nine GLCM
parameters were calculated with definite definitions for the intracellular super-resolved CPT images,
and the parameters Entropy, Contrast, and Variance were found to be most suited among the nine
parameters to discriminate clearly between healthy cells and malignant cells when a 405 nm pump
was used. Prominence, Variance, and Shade were most suited when a pump wavelength of 488 nm
was used.
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1. Introduction

Malignant melanoma (MM) is one of the most common cancers worldwide. It has a favorable
prognosis only if the affected area is removed at an early stage. MM reportedly causes the large majority
of skin cancer deaths despite the fact that it accounts for <2% of skin cancer cases [1]. The incidence
of MM has been increasing for >30 years [2] and one of its most ominous characteristics is its high
propensity to produce distant metastases, because it can get disseminated throughout the body through
lymphatic and hematogenous spread. For this reason, early detection and treatment of MM are crucial
life-saving measures [3]. Although dermoscopy is a powerful diagnostic technique [4] and the ABCDE
(abbreviation for asymmetrical shape, border, color, diameter, and evolution) rule provides a guide
to the identification of involved areas [5], pathological examination is even now the gold standard
for MM diagnosis. However, diagnosis remains subjective and highly reliant on the skill level of the
pathologist. Interobserver reproducibility of MM diagnosis varies even among experts.
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Fractal analysis has been developed as a strategy to improve diagnostic reliability. This method
is based on the calculation of the fractal dimension (FD) of the structure of MM cells and their
distribution [6–11]. Although this is a very attractive idea, the method has three drawbacks. First,
the technique is based on self-similarity, namely, having its reduced image in itself recursively; therefore,
if no self-similarity is present in the structure, the arbitrarily defined FD is difficult to connect to the
structural features being discussed in the paper. Second, the FD is based on the calculation of the line
length or area of the covered region, and changes in its value are then visualized by changing the
analyzed domain. This procedure limits the ratio between the minimal size of evaluation and the total
size, resulting in limited spatial resolution and spatially dependent information. Finally, marker-free
phenotyping of tumor cells by fractal analysis of reflection interference contrast microscopy (RICM)
images results in a very small difference in FD values between the different types of MM cells [12].
For example, two types of MM cells in one study had FD values of 1.353 ± 0.004 and 1.312 ± 0.005,
which corresponds to only a 3.08% difference in the average value of the two groups [12]. Even though
these authors claimed that the standard deviations (SDs) were as small as 0.005 and 0.004, the FDs
in Figure 5 of their paper showed nearly 80% overlap, while their RICM images showed very clear
visual differences in the apparent structural features between the two types (Figure 5A of the paper).
This means that, even when the image patterns are quite different between two images, similar FDs
can be obtained, indicating that the method is difficult to apply to clinical diagnosis. This disadvantage
forms the basis of our motivation to find a more reliable and useful diagnostic application of textural
structure to skin cancer cells in the present paper.

Melanin carries information about the metabolism and location of melanocytes and melanogenesis;
therefore, the melanin distribution could act as a marker for MM [13,14]. The two dominant types of
melanin (eumelanin and pheomelanin) absorb a large cross section of visible light without substantial
fluorescence emission [15], resulting in the difficulty in the imaging of MM distribution. However,
the non-fluorescent property of melanin enables even more sensitive imaging of MM by employing
photothermal (PT) microscopy (PTM), which is the main subject of the present paper.

PTM, which is based on the detection of changes to probe light intensity by thermal lensing
due to local heating of the sample by absorption of the laser light, has demonstrated potential for
biological imaging and clinical application. The key advantages of PTM are its high sensitivity and
lack of a requirement for staining [16–21]. It facilitates the real-time, high-resolution imaging of
nanometer-sized absorbers buried among light scatterers with a high signal-to-noise ratio [19,22,23].
However, the PT signal intensity in normal PTM has two extremes in the axial direction [24], which
introduces distortions resulting in limited axial resolution of three-dimensional PT images. Confocal
PTM (CPTM), which has a detection scheme similar to that of confocal microscopy, can help to
ameliorate this drawback and improve the axial resolution [24]. Our group has used CPTM to study
super-resolution microscopic images of neurons in mouse brains [25,26] and mouse skin MM [27].

In our previous paper [28], we developed a CPTM system and applied it to examine the features
of melanin aggregates of both nevus and MM cells in thick (10–15 µm) specimens of a melanoma
model mouse. The ret gene is a receptor tyrosine kinase type oncogene, and rfp is a fusion of 5′-half of
ret gene and a finger structure probably capable to bind DNAs. RET-transgenic mice of the 304/B6
(RET-Tg) line develop benign melanocytic tumors and MM in a stepwise manner, and they are widely
used for the study of melanoma genesis [29–31]. Obtained 3D images were analyzed to characterize
the features of the melanin aggregates such as the density, size, and the surface FD. Even though the
differences of those features between the two cell types were clearly demonstrated, we were not able
to evaluate very accurately its diagnostic capability because of the limited image quality due to slow
stage with which photodegradation during one frame imaging. The photo-damage was inevitable to
get images with intensity enough to high S/N but it induced signal intensity reduction in the later
stage of the one-frame imaging process.

In this study, we made an improvement upon the CPTM technique and applied it for noninvasive
label-free imaging of MM in the mouse model previously used for the purpose of future application
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to humans. The scanning method was changed from piezo-driven stage to galvanometer, hence the
wider swept area from 20 × 20 µm2 to 72 × 72 µm2 and the shorter scanning period from 3 ms to 20 µs.
This enabled to solve the problem in the previous study which hampered us to get enough quality
images. The performance of the analytical system was tested with a sample of 20 nm gold nanoparticles.
Using the PT imaging data, we then analyzed the structural properties of MM and nevus cells to be
compared using the GLCM method [32–38]. We calculated nine different parameters: angular second
moment (ASM), Contrast, Correlation, Entropy, inverse difference moment (IDM), Homogeneity,
Prominence, Shade, and Variance. These textural parameters were determined by analyzing relevant
regions of interest on 12 two-dimensional PT images obtained at two different positions in three
tissue sections containing nevus and MM cells. The details of this analysis are described in the
following experimental section. Our method provides an objective evaluation independent of the
experience, skill, and knowledge of individual medical doctors, and prognostication at each occasion
of the pathological diagnosis. Thus, GLCM calculation provides a quantitative indicator that may
become a “standard” in the future by the accumulation of cases in real clinical settings from various
individuals with a variety of experiences. We first applied difference criterion (DIF) analysis and
receiver operating characteristic (ROC) curve analysis. The analyses provided the results that Entropy,
Contrast, and Variance were most suited for the discrimination between MM and nevus when 405 nm
excitation was used, and Prominence, Variance, and Shade were most at 488 nm excitation. Second,
we defined a new index, a “clearness discrimination parameter” (DISC), for the discrimination between
nevus and MM cells. This index suggested that Entropy and Homogeneity in the case of the 405 nm
pump, and Entropy and Prominence in the case of the 488 nm pump were the two most suited among
the nine parameters for discrimination between nevus and MM cells in a mouse. This research received
no external funding.

2. Materials and Methods

2.1. Mice

Nevus and MM samples, which were diagnosed in advance by the specially trained pathologist,
in transgenic mice (RET-Tg) carrying constitutively activated RFP/RET, a hybrid oncogene between
RFP and c-RET [31], were prepared and used for analysis. The Animal Care and Use Committee
(approval no. 270108 in Juntendo University) and the Recombination DNA Advisory Committee
(approval no. 13-7626-55 in Juntendo University) approved this study.

2.2. Experimental Setup and Image-Taking Procedure

Figure 1 shows the scheme of the experimental setup. Two sets of pump wavelengths are used
in the experiment. A 405 nm laser diode (LD) (NDV4316; Nichia, Tokushima, Japan) and a 488 nm
LD (L488P60; Thorlabs, Newton, NJ, USA) were used for the pump laser. A 638 nm LD (ML520G55;
Mitsubishi, Tokyo, Japan) was used for the probe. The pump laser was modulated at 100 kHz using
signal generators, and one of the two LDs was introduced to a beam collimator. After combination of
the pump and probe beams using a dichroic mirror, the probe was split by a polarized beam splitter for
balance detection and then directed to a galvano mirror (VM500PLUS; GSI Group, Bedford, MA, USA).
A 4F optical system was located near the sample and objective lens (MPLFNF 40× with numerical
aperture of 0.75; Olympus, Tokyo, Japan). Two-dimensional images of the samples were obtained by
scanning laser beams with the galvano mirror in the X–Y plane. The irradiation powers of the pump
and probe lasers were 300 µW (405 nm), 1.5 mW (488 nm), and 3 mW, respectively. One of the two
pump lasers was used at one time. An auto-balanced detector (New Focus Nirvana; Newport Inc.,
Irvine, CA, USA) composed of two sets of a photodiode and a lock-in amplifier (7270 Signal Recovery;
Ametek, Berwyn, PA, USA) was used to remove the noise from the probe. The frame size of the image
was 600 × 600 pixels, which corresponds to a 72 × 72 µm2 area. The lock-in amplifier sensitivity was
1 mV, and the time constant was 20 µs per point. For the GLCM analysis, a four-section tiled area
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(18 × 18 µm2 out of 36 × 36 µm2) in the X–Y plane was imaged for each 72 × 72 µm2 image. We have
analyzed 48 images of 18 × 18 µm2 area in total for both nevus and MM samples.

At the image obtaining process, we selected the areas to be investigated based on the following
strategic criteria. Because the intensity of the PT signal varies with different areas, we selected those in
which the obtained PT signals were strong enough to provide a high signal-to-noise ratio. In practice,
we selected areas in which strong pigmentation was recognized.

The aim of the present study is to provide a non-specialist of the pathology of melanoma with a
tool to distinguish between MM and nevus. The agreement of the classification of them in the present
research was consistent with the classification performed by another specialist.
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Figure 1. Scheme of the experimental setup. LD: laser diode, PMSMF: polarization maintaining,
single-mode fiber, PM: parabolic mirror, GTP: Glan-Thompson polarizer, DM: dichroic mirror, PBS:
polarizing beam splitter, OL: objective lens, CL: condenser lens, DF: dielectric multi-layer filter, BD:
balanced detector, PZT stage: piezo driven stage.

3. Results

The images of cell samples of about 1 µm on 1 mm thick microscope slides are shown in Figures 2–4.
Figure 2 shows a photograph of cutaneous tissues taken from mice with MM. Microscopic regions of
72 × 72 µm2 in the PT images were selected from the images for analysis as shown in Figures 3 and 4.
The two bright field images in Figure 3 are obtained with charge coupled device (CCD) (DCC1645C,
Thorlabs, NJ, USA) for the nevus sample (top left) and the MM (bottom left) with a 40× objective lens.
The wavelength and power of excitation of the LD was 405 nm and 0.3 mW, respectively. Top and
bottom right are the PT images using a 405 nm pump (600 × 600 pixels, 120 nm/pixel) of nevus and
MM cells, respectively. Red squares in the bright field images show the 72 × 72 µm2 areas in the PT
images. Four equal size (18 × 18 µm2) areas segmented from the red square (36 × 36 µm2) portion in
the PT images were used for GLCM analysis. In Figure 4, top left and top right are the bright field
CCD images of nevus samples and MM samples, respectively, obtained with a 40× objective lens and
with 488 nm excitation under the same condition as the ones in Figure 3. The top and bottom right
images are the corresponding PT images (600 × 600 pixels, 120 nm/pixel) of nevus and MM samples,
respectively. Red squares in the bright field images show the 72 × 72 µm2 areas of the PT images.
Four equal size (18 × 18 µm2) areas were segmented out of the four red square areas in the PT images
and used for GLCM analysis. Twelve areas from the PT images were evaluated and 48 calculation
regions were selected for both 405 nm and 488 nm excitation.
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Figure 2. (A) Photo of the prepared specimens; (B) Charge coupled device (CCD) image of a nevus
(10× objective lens). The red square area corresponds to the range of the photothermal (PT) image
of Figure 3B.
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Figure 4. (A): CCD image and PT image of a nevus sample (40× objective lens)); (C): MM (40×
objective lens) with 488 nm pump. (B,D): four equal size (18 × 18 µm2) areas segmented from the four
red square areas in the PT images are used for GLCM analysis.

The textural structure of the images of the mouse skin samples containing both nevus and MM
cells taken with the PT imaging method were analyzed by GLCM. The nine parameters were calculated
as shown below. The areas of imaging data within the red lines in Figure 3 at 405 nm excitation were
analyzed by the GLCM method, and the 8-bit level gray level intensity distribution of the PT signal
is shown in Figure 5. Twelve images of 72 × 72 µm2 to multiple samples of excitation at 488 nm
for both nevus and MM samples were also obtained. The areas of imaging data within the red lines
in Figure 4 (left) at 488 nm excitation were analyzed by this method, and the 8-bit level gray level
intensity distribution of the PT signal is shown in Figure 6. Four sets of 18 × 18 µm2 areas (shown
in Figures 3 and 4) with higher intensity out of the 12 images were chosen and analyzed using the
GLCM analysis. There were total of 48 images with an area of 18 × 18 µm2 from both nevus and
MM. This provided sufficient data at two sets of pump wavelengths to ensure statistical reliability.
As shown in the bright field images, the sample areas are selected out of various parts of skin. For this
technique to become a standard method, many more samples from a larger number of patients are
required. However, as discussed below, we discovered that a few of the nine GLCM parameters clearly
showed the ability to discriminate between nevus and MM, and can hopefully be used as criteria for
pathological diagnosis.
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sample (40× objective). The four images correspond to segmented areas separated by the four red
squares in Figure 3D.

Figure 6. (A): Eight-bit gray level PT image of a nevus sample (40× objective). The four images
correspond to the four segmented areas represented by the four red squares in Figure 4B; (B): MM
sample (40× objective). The four images correspond to the four segmented areas represented by the
four red squares in Figure 4D.

Hereafter, the formalism of GLCM is described [39,40] by showing nine parameters out of the
most frequently used indexes.

In all of the following formulas, P (i, j) stands for the (i, j)th entry or value in a normalized GLCM.

ASM =
G−1

∑
i=0

G−1

∑
j=0
{P(i, j)}2 (1)

Contrast =
G−1

∑
|i−j|=0

|i− j|2{
G

∑
i=1

G

∑
j=1

P(i, j)} (2)

Correlation =
G−1

∑
i=0

G−1

∑
j=0

[
{i× j} × P(i, j)−

{
µx × µy

}
σx × σy

] (3)

Entropy = −
G−1

∑
i=0

G−1

∑
j=0

P(i, j)× log(P(i, j)) (4)
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Homogeneity =
G−1

∑
i=0

G−1

∑
j=0

1
1+|i− j|P(i, j) (5)

IDM =
G−1

∑
i=0

G−1

∑
j=0

1

1 + (i− j)2 P(i, j) (6)

Prominence =
G−1

∑
i=0

G−1

∑
j=0

(i + j− µx − µy)
4P(i, j) (7)

Cluster Shade =
G−1

∑
i=0

G−1

∑
j=0

(i + j− µx − µy)
3P(i, j) (8)

Variance =
G−1

∑
i=0

G−1

∑
j=0

(i− µ)2P(i, j) (9)

µx =
G−1

∑
i=0

i
G−1

∑
j=0

P(i, j) (10)

µy =
G−1

∑
j=0

j
G−1

∑
i=0

P(i, j) (11)

where µx = µy = µ for a symmetric matrix.
Figures 7 and 8 depict bar charts of the nine averaged calculated distance parameters d = 1–10

(corresponding to the shift distance 120–1200 nm of the image in GLCM calculations) [39,40] and their
standard deviations (SDs). In the graph, the bar is the SD of corresponding parameters calculated for
the four sets of the image data shown in Figures 5 and 6.
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Figure 7. Histograms of nine calculated GLCM parameters (angular second moment (ASM), Contrast,
Correlation, Entropy, Homogeneity, inverse difference moment (IDM), Prominence, Shade, Variance)
for nevus (red bar), and MM samples (green bar) in 405 nm excitation. p-values of the t-test for all
the parameters at d = 10 are, 6.72 × 10−11, 1.16 × 10−10, 2.71 × 10−6, 2.93 × 10−27, 2.36 × 10−14,
3.69 × 10−13, 0.374616, 0.071748, and 2.86 × 10−7 in the order of the panels, respectively.
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Figure 8. Histograms of nine calculated GLCM parameters (ASM, Contrast, Correlation, Entropy,
Homogeneity, IDM, Prominence, Shade, Variance) for nevus (red bar), and MM samples (green
bar) in 488 nm excitation. p-values of t-test for all the parameters at d = 10 are, 0.007765, 0.040389,
0.308247, 0.001409, 0.067924, 0.069963, 3.37 × 10−8, 1.65 × 10−6, and 2.61 × 10−8 in the order of the
panels, respectively.

The features shown in Figures 7 and 8 are summarized as follows.
The GLCM analysis of the PT images obtained at 405 nm excitation showed that the extent of

the difference of nevus–MM distribution depends on the value d, and as it increases from 1 to 10,
some parameters (namely Contrast, Entropy, Homogeneity and IDM) are considerably increased,
whereas others (Correlation and Variance) showed very little change. As a whole, d = 10 provided
the best separation, and among the nine parameters, Contrast, Entropy and Variance showed large
differences between the means of nevus and MM cells, and they were almost equal to the sum of their
SD values (ratios are between 0.9 and 0.95).

GLCM analysis of the PT images obtained by 488 nm excitation was also performed. Among the
nine parameters, Prominence, Shade, and Variance were well separated between the nevus and MM
cells compared with the other parameters. In these cases, the ratio of the difference between the two
cell types to the sum of the values of SDs at d = 10 were 0.737, 0.635, and 0.557, respectively. The ratios
in the other parameters were smaller than 0.31. To obtain suitable parameters for the identification
of MM, we analyzed the data with a commonly used diagnostic method, including the parameters
sensitivity, specificity, positive predictive value, and negative predictive value.

For the diagnosis, we used Figures 7 and 8 for each GLCM parameter for d = 10. We obtained
the Gaussian curves fit to the data with the peaks and the widths being the mean and the SD values
respectively in the histograms for d = 10 in Figures 7 and 8 for each GLCM parameter; these data are
shown in Figures 9 and 10.

The differences in the parameters between malignant and benign can be discriminated even
though it may not provide good enough discrimination for some parameters. We call this diagnosis
the GLCM-DIAG method. The results of the discrimination parameters are listed for sensitivity (Sn),
specificity (Sp), accuracy (AC), positive likelihood ratio (LR+), negative likelihood ratio (LR−), positive
predictive value (PPV) and negative predictive value (NPV) in Supplementary Tables S1 and S2
using the data shown in Figures 9 and 10 in the cases of 405 nm and 488 nm excitation, respectively.
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These figures show that the relative positions and widths of the two excitation wavelengths are quite
different from each other. This is discussed later.
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As shown in Supplementary Table S1, Variance, Entropy, and Contrast had large AC and LR+
values and a small LR− value, indicating that these three GLCM parameters are more reliable than
the other GLCM parameters at 405 nm excitation. In the case of 488 nm excitation, as tabulated
in Supplementary Table S2, Prominence, Shade, and Variance had large AC and LR+ values and
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a small LR− value, indicating that these three GLCM parameters are more reliable than the other
GLCM parameters.

The distribution profiles calculated for the nine GLCM parameters at both 405 nm and 488 nm
excitation are shown in Figures 9 and 10.

To obtain suitable parameters for the identification of MM, we defined the difference criterion
(DIF) as follows:

DIF =|(PM− PN)|/[(DM + DN)/2] (12)

where PM and PN are the parameter values of the MM and nevus cells, respectively, and DM and DB
are the SDs of PM and PN for the four sets of imaging data. The rank orders of the magnitude and
absolute values of DIF for the nine parameters are shown in Supplementary Tables S3–S6, respectively.
Entropy, Variance, and Contrast were still ranked within the top three positions when d is near 10 in
the 10 different d-value sets. Therefore, these three parameters (Entropy, Variance, and Contrast) are
likely to be suited for the discrimination between nevus and MM cells.

From the above orders of the DIF values in Supplementary Tables S3 and S5, it can be concluded
that Entropy, Contrast, and Variance are most suited for the discrimination between MM and nevus
cells in 405 nm excitation. For Entropy and Contrast, the distance parameter d = 10 gives the highest
DIF of 1.879 and 1.847, respectively, and for Variance, d = 2 produced the largest value, although it
was not substantially larger than those of other values of d. The probabilities of correct identification
of nevus cells were 39.49%, 39.21%, and 39.49% for Entropy (d = 10), Contrast (d = 10), and Variance
(d = 10), respectively, while the probabilities of correct identification of MM cells were 39.49%, 39.21%,
and 39.49% for Entropy (d = 10), Contrast (d = 10), and Variance (d = 10), respectively. These values are
much more accurate than those obtained by fractal analysis [6–11].

From the orders of DIF values in Supplementary Tables S4 and S6, it can be concluded that
Prominence, Variance, and Shade are most suited for the discrimination between MM and nevus cells
in 488 nm excitation. For Shade and Variance, the distance parameter d = 10 gave the highest DIF values
of 1.121 and 1.273, respectively, while for Prominence, d = 9 produced the highest value, although the
difference between DIF at other values of d was very small. The probabilities of correct identification of
nevus cells are 38.9%, 33.3%, and 33.6% for Prominence (d = 10), Shade (d = 10), and Variance (d = 10),
respectively. The probabilities of correct identification of MM cells are 38.9%, 33.3%, and 33.6% for
Prominence (d = 10), Shade (d = 10), and Variance (d = 10), respectively. These values are much better
than those obtained by fractal analysis [6–11].

These findings indicate that the GLCM parameter method, especially GLCM-DIF analysis, is a
simple and useful method for the identification of suitable parameters for differentiation between
different stages of cancers and detection of various types of disease that alter cell structure.

We then performed receiver operating characteristic (ROC) curve analysis based on those Gaussian
curves. A ROC curve is commonly used to evaluate the diagnostic ability of a test. When a threshold
parameter used in the system classifying examinees into two groups, positive and negative for some
features, this curve is plotted as the sensitivity against the false positive ratio. As shown in Figures 7
and 8, d = 10 provides the best performance for all nine GLCM parameters in both cases pumped at
405 nm and pumped at 488 nm. We plotted ROC curves for the nine parameters (Figure 11A,B) based
on the Gaussian curves (Figures 9 and 10). The area under the curve (AUC) is an indicator of the
diagnostic ability; >0.9, 0.7~0.9, and <0.7 correspond to high accuracy, moderate accuracy and poor
accuracy, respectively. As shown in Figure 11A, Entropy, Contrast and Variance show high AUCs,
namely 0.909, 0.905 and 0.897, respectively. These values indicate that those parameters provide highly
accurate methods to distinguish nevus and MM cells. In the case of 488 nm excitation, the AUCs of
Prominence, Variance and Shade are 0.812, 0.808 and 0.768, respectively, indicating worse performance
than 405 nm excitation. Those results, both at 405 nm and 488 nm excitation, agreed with those of the
DIF analysis.
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Figure 11. (A) Receiver operating characteristic (ROC) curves and area under the curve (AUC) for the
nine parameters at 405 nm excitation. For consistency, directions of threshold-parameters scanning
were set from nevus to MM. Nevus cells were considered as positive and MM cells as negative; (B)
ROC curves and AUC for the nine parameters at 488 nm excitation.

4. Discussion

In the previous analysis, DIF was calculated using the average of the parameters obtained from
the four images which contain 48 raw images. The calculated values of DIF for the nine GLCM
parameters are shown in Table S6. To further utilize the parameters obtained by the GLCM analysis,
we assessed them by taking the dispersion of the distribution of the parameters into account. The mean
and distribution (=dispersion) were fitted with a Gaussian distribution as shown in Figures 9 and 10 for
all nine parameters. These figures show that the values of the parameters are widely distributed and
depict that the degree of overlap between the nevus and MM cells are different among the parameters.
Using the distribution function, the probability of benign (defined by B = Benign/(Benign + Malignant))
was then calculated and plotted against the parameter values for the distance d = 10. The results are
shown in Figures 12 and 13.

We tried to evaluate the appropriateness of assigning either nevus or MM to cells using another
simple discrimination level for each. For this, we adopted a “clearness discrimination parameter”
(DISC value), that is defined by the following equation for each parameter using the probability of
benign (B) shown in Figures 12 and 13:

DISC = {(parameter at 65% of B) − (parameter at 35% of B)}/
{(parameter at 65% of B)/2 + (parameter at 35% of B)/2}

(13)

Here, “35% of B” means the value of the corresponding parameter at 35% of its maximum
intensity. Usually, 90% and 10% are used for the level of discrimination or for steepness evaluation for
the distribution curve; for some of the parameters, however, the B value did not reach 10% for any
parameter in the present analysis. The smaller the DISC value, the more accurate the discrimination.
The calculated results are shown in Tables 1 and 2 in ascending order of DISC value at 405 nm and 488
nm excitation, respectively. In 405 nm excitation, the DISCs for nevus and MM, Entropy, Homogeneity,
and Variance, were conspicuously small, which was expected to be effective for that discrimination
(Table 1). Additionally, in the GLCM calculation result at 488 nm excitation, the DISCs for nevus
and MM, Entropy, Prominence, and Correlation, were the three smallest (Table 2). Thus, there were
differences in effective parameters depending on excitation wavelength. This can be well explained
in terms of the sensitivity of the signal intensity to the components in the cells, namely melanin and
porphyrin, due to the differences in the absorption cross section between them.
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Table 1. The clearness discrimination parameter (DISC) value for the nine GLCM parameters (405 nm
excitation).

Parameter 65% 35% DISC

Entropy 8.34 8.52 0.021
Homogeneity 0.121 0.108 0.112

Variance 913 1040 0.13
IDM 0.0598 0.0508 0.162

Contrast 142 1700 0.182
Correlation 3.04 2.52 0.188

ASM 3.98 3.06 0.264
Prominence 5.25 × 108 3.86 × 108 0.306

Shade 256,900 173,000 0.39

Table 2. DISC value for the nine GLCM parameters (488 nm excitation).

Parameter 40% 60% DISC

Entropy 8.64 7.97 0.080
Prominence 2.34 × 107 1.99 × 107 0.159
Correlation 6.47 7.65 0.166

Variance 856 700 0.200
Shade 117,000 888 0.274

Homogeneity 0.107 0.157 0.378
IDM 0.0480 0.0842 0.547

Contrast 968 544 0.560
ASM 2.60 × 10−4 7.20 × 10−4 0.939

The ROC curve is drawn by plotting the true positive ratio (sensitivity) against the false positive
ratio as the threshold parameter goes through the measuring range. We plotted the ROC curves based
on Figures 9 and 10, and the curves took on distinct shapes depending on the SDs and the difference of
the means of the two cell types. (1) The difference of mean values of both cell types were near the SDs,
as seen in the case of ASM, Contrast, Entropy, Homogeneity, IDM and Variance at 405 nm excitation
and Entropy at 488 nm excitation. In this case, the ROC curves rose quite precipitously, gradually
decreased their slopes and got almost horizontal at the end, however, always kept convex upward.
(2) SDs of the parameters for the nevus cells were large enough that the distribution for them spread to
cover the main part of the distribution for MM cells, as seen in the case of Correlation, Prominence
and Shade at 405 nm excitation and Correlation at 488 nm excitation. In this case, the ROC curve rose
precipitously, however, after a short time, decreased its slopes to nearly horizontal, and again got
steep at the end. This is because at first, only nevus cells were considered as positive and MM cells
were not included within threshold, and hence the false positive was kept very low. As the threshold
parameter passed through the main part of MM cells, the cumulating values were mainly due to MM
cells, resulting in the horizontal shape. After the threshold-parameter passed the main part of MM
cells, nevus cells mainly count for the positives. (3) SDs of the parameters for the MM cells were large
enough that the distribution for them spread to cover the main part of the distribution for nevus cells,
as seen in the case of Prominence, Shade and Variance at 488 nm excitation. In this case, the ROC
curves first went horizontally, however, after a short time, rose up very steeply and got to nearly
horizontal at the end. The reason for this behavior is reverse to (2).

As mentioned previously, analyses of ROC and DIF agreed quite well at both 405 nm and
488 nm. However, there were some differences between the analyses results of ROC or DIF and DISC,
especially at 488 nm excitation. The correlation diagrams between AUC and DISC at 405 nm and at
488 nm excitation are shown in Figure 14. The correlation coefficient at 405 nm excitation was −0.844,
indicating a strong correlation, and at 488 nm excitation, it was −0.3735, showing a weak correlation.
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Analyses based on DIF, ROC, and DISC for evaluating the diagnostic ability of GLCM-parameters
showed little difference between 405 nm and 488 nm excitation. The difference between the calculation
results for experiments performed at 405 nm and 488 nm excitation can be explained in more detail
as follows.

The molar extinction coefficients of melanin at 405 nm and 488 nm in the literature are
approximately 2500 and 1500/mol/cm, respectively [41]. In contrast, the molar extinction coefficient
of hemoglobin at 405 nm and 488 nm is about 275,000 and 16,000/mol/cm, respectively. At both
wavelengths, the molar extinction coefficient of hemoglobin is high, but the absolute values are quite
different. The extinction coefficient of hemoglobin at 488 nm is 10 times larger than that of melanin,
while the coefficient of hemoglobin at 405 nm is 100 times larger than that of melanin. The amount
of melanin contained in the cell slice is 10 times greater than that of hemoglobin. Thus, it might be
possible to assess the state or degree of transformation of the skin tissue by monitoring with GLCM
analysis of 488 nm pump images. It may be possible that at 488 nm excitation, Prominence and Entropy
detected the changes of melanin distribution induced by the transformation of cells.

At 405 nm excitation, Homogeneity and Entropy might detect the changes in hemoglobin
distribution induced by cellular transformation.

We defined DISC using 65% and 35% DIF values instead of 10% and 90% values, which are
commonly used. This might diminish the performance of DISC analysis and might provide some
discordance with ROC analysis (Figure 14A,B). We devised the DISC analysis as a simple and versatile
method to evaluate the diagnostic abilities of the GLCM parameters. Applying this to a wider range of
data will hopefully improve the performance of DISC analysis.

In view of the purpose of this study, it can be concluded that melanin observation by 488 nm
excitation is more suitable for the determination of cancerous tumors, so the conclusion is that Entropy
and Prominence at 488 nm excitation are suitable for benign-malignancy determination. By utilizing
405 nm excitation, we may be able to study the effect of cancerous tumors on the hemoglobin-containing
tissues, such as muscle attached to the sample slices. In this case, Homogeneity and Entropy can be
used for benign-malignancy determination. This may correspond to the morphological change in
hemoglobin distribution induced by cellular tumorigenesis. This means that the spatial distribution of
cancerous tumors can be investigated through hemoglobin.

5. Conclusions

Label-free confocal photothermal (CPT) microscopy combined with a texture analysis method
was utilized for the first time to investigate benign-malignancy determination in mouse skin cells.
A Grey Level Cooccurrence Matrix (GLCM) method for texture analysis was applied to the CPT
images of malignant melanoma (MM) to study the differences in intracellular super-resolved structural
properties between MMs and nevus. We first applied DIF analysis and obtained the results that Entropy,
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Contrast, and Variance were most suited for the discrimination between MM and nevus when 405 nm
excitation was used, and Prominence, Variance, and Shade were most suited at 488 nm excitation.
Analysis based on ROC gave the same results. DISC, which we introduced as a new discrimination
parameter, suggested Entropy, Homogeneity, and Variance were best at 405 nm excitation, and Entropy,
Prominence, and Correlation were best at 488 nm excitation. Observation at 405 nm excitation might
detect the morphological change in hemoglobin distribution induced by cellular transformation,
whereas observation at 488 nm excitation caught the change of melanin distribution. The differences
in effective parameters due to differences in excitation wavelength can be well explained in terms of
the sensitivity of the signal intensity to the components in the cells, namely melanoma and porphyrin
(hemoglobin), due to the difference in the absorption cross section between them.
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Table S1: Results of calculated GLCM diagnosis method (405 nm excitation), Table S2: Results of calculated GLCM
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excitation), Table S4: Order of the DIF values among the nine parameters (488 nm excitation), Table S5: Calculated
values of DIF for the nine GLCM parameters (average of 48 data from 48 images), Table S6: Calculated values of
DIF for the nine GLCM parameters (average of data from 48 images).
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