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Abstract: The design and development of biomaterials with multifunctional properties is highly
attractive in the context of bone tissue engineering due to the potential of providing multiple
therapies and, thus, better treatment of diseases. In order to tackle this challenge, copper-doped
silicate mesoporous bioactive glasses (MBGs) were synthesized via a sol-gel route coupled with an
evaporation-induced self-assembly process by using a non-ionic block co-polymer as a structure
directing agent. The structure and textural properties of calcined materials were investigated by X-ray
powder diffraction, scanning-transmission electron microscopy and nitrogen adsorption-desorption
measurements. In vitro bioactivity was assessed by immersion tests in simulated body fluid (SBF).
Preliminary antibacterial tests using Staphylococcus aureus were also carried out. Copper-doped glasses
revealed an ordered arrangement of mesopores (diameter around 5 nm) and exhibited apatite-forming
ability in SBF along with promising antibacterial properties. These results suggest the potential
suitability of copper-doped MBG powder for use as a multifunctional biomaterial to promote bone
regeneration (bioactivity) and prevent/combat microbial infection at the implantation site, thereby
promoting tissue healing.
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1. Introduction

Over the last years, there has been an increasing interest in investigating the biological effects that
can be elicited by ionic dissolution products released by implanted biomaterials. In fact, it is known
that several trace elements are involved in cell metabolic processes and act as enzyme cofactors, thereby
playing key roles in regulating many functions of the body [1]. Hence, the controlled release of dopants
from biomaterials is a valuable approach to modulate the therapeutic response and, ultimately, promote
healing and regeneration in tissue engineering strategies [2,3].

Bacterial infection is one of the major causes hindering tissue healing and leading to implant
failure; in this regard, a special set of metallic cations with antimicrobial properties (e.g., Ag+, Ga3+,
Cu2+) has been suggested for therapeutic purposes. Silver has been well-known to have a bactericidal
activity since ancient times [4]. Silver ions are more effective against Gram-negative bacteria than
Gram-positive species. The antibacterial effect of Ag+ ions is associated to the silver affinity with
disulfide (S–S) and sulfhydryl (–SH) groups available on the proteins of microbial cell walls. As a result
of the binding reaction with silver, normal metabolic processes of bacteria, such as oxidative metabolism
and uptake of nutrients, are disrupted leading to cell death [5].

The antibacterial properties of gallium are due to the competition that Ga3+ ions establish with
Fe3+ ions in many biochemical reactions owing to the similarity of their ionic radii (“Trojan horse”
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effect). Uptake of Ga3+ ions leads to the inhibition of some key biological reactions in bacteria, such as
those involved in DNA and protein synthesis [6].

Copper ions can kill bacteria due to the generation of reactive oxygen species (ROS), lipid
peroxidation, protein oxidation and DNA degradation [7]. Copper ions exhibit good antibacterial
activity against both Gram-positive and Gram-negative bacteria [8] and, very interestingly,
can stimulate the formation of collagen by bone cells, thereby contributing to osteogenesis
and inhibiting osteoporosis [9]. All these attractive features make copper a valuable dopant to
be incorporated in bioactive ceramics and glasses for making multifunctional biomaterials, which
combine osteoconduction/osteoinduction with new therapeutic extra-functionalities.

Copper-doped hydroxyapatite microspheres have been prepared by chemical co-precipitation [10],
high-temperature solid-phase synthesis [11], ion-exchange methods [12] and pneumatic extrusion
printing [13].

Incorporation of copper in bioactive silicate glasses has been reported via melt-quenching
route [14] or sol-gel process [15]. Surface functionalization of sol-gel glasses with copper nanoparticles
was achieved by applying impregnation routes and proper thermal treatments [16]. Resorbable
copper-doped phosphate glass fibers were also fabricated by drawing for potential application in
wound healing and skin tissue engineering [17]. Doping of sol-gel silicate glass compositions with
copper has been recently proposed as an interesting approach for obtaining multifunctional biomaterials
combining tissue regenerative and antibacterial capabilities [18–21]. Specifically, the use of ion-doped
biomedical glasses in the context of antibiotic-free antibacterial applications has been reviewed by
Kaya et al. [22].

This work reports the synthesis of copper-doped glasses via a modified sol-gel method
incorporating supramolecular chemistry, which allows mesoporous bioactive materials to be obtained.

2. Materials and Methods

2.1. Preparation

The process used for the synthesis of copper-doped silicate glasses was a sol-gel-type route
commonly known as the evaporation-induced self-assembly (EISA) method, which is applied to
produce mesoporous materials. The parent binary glass belonged to the 80SiO2-20CaO (mol.%)
system; CuO was introduced to partially substitute CaO in the glass composition, thus obtaining
80SiO2-19CaO-1CuO (1Cu-glass) and 80SiO2-15CaO-5CuO (5Cu-glass) formulations (mol.%).

The glass synthesis procedure was adapted from that reported by Yan et al. [23] for the preparation
of mesoporous silicate glasses, which initially did not contain copper. The non-ionic block copolymer
EO20-PO70-EO20 (Pluronic P123, Mw = 5800 g/mol, Sigma-Aldrich, St. Louis, MO, USA) was
used as a structure-directing agent, while tetraethoxysilane (TEOS), calcium nitrate tetrahydrate
(Ca(NO3)2·4H2O) and copper chloride (CuCl2) (all the reagents were purchased from Sigma-Aldrich,
St. Louis, MO, USA) were used to supply SiO2, CaO and CuO, respectively. Firstly, 4.0 g of Pluronic
P123 were dissolved in 60.0 g of ethanol with 1.0 g of 0.5 M HCl used as a catalyst under constant
stirring at room temperature; then, once Pluronic P123 was completely dissolved, TEOS and salts
were slowly added over 3 h following this order: 6.7 g of TEOS, 1.8 or 1.425 g of Ca(NO3)2·4H2O (for
1Cu-glass and 5Cu-glass, respectively), and 0.054 or 0.27 g of CuCl2 (for 1Cu-glass and 5Cu-glass,
respectively). The sols were then poured into Petri dishes to allow the EISA process to occur at room
temperature. Aged gels were removed from the dishes and calcined in air at 650 ◦C for 5 h (heating
and cooling rate of 2 and 5 ◦C/min); the selection of calcination temperature was also performed
according to the results from thermogravimetric analysis (TGA) on the gels. The calcined materials
were finally ground by ball milling (Pulverisette 0, Fritsch, Idar-Oberstein, Germany) and sieved by
stainless steel sieves with a mesh of 32 µm (Giuliani Technologies, Torino, Italy).
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2.2. Characterization

Calcined materials underwent wide-angle (2θ within 10–60◦) X-ray powder diffraction (XRPD) by
using a X’Pert Pro PW3040/60 diffractometer (PANalytical, Eindhoven, The Netherlands) operating at
40 kV and 30 mA with Bragg-Brentano camera geometry and Cu Kα incident radiation (wavelength
λ = 0.15405 nm) in order to assess the presence of crystalline phases.

Small-angle XRPD (2θ within 0.8–4◦) was also performed in order to assess the presence of an
ordered pore symmetry in the materials.

Textural parameters were assessed by nitrogen adsorption-desorption measurements
performed at −196 ◦C (Quantachrome Autosorb1, Quantachrome, Boynton Beach, FL, USA).
The Brunauer-Emmet-Teller (BET) method [24] and the density functional theory (DFT) isotherm
reconstruction approach [25] were used to determine pore volume, specific surface area (SSA), pore size
distribution and mean pore size.

The porous structure was also examined by means of scanning-transmission electron microscopy
(STEM) (Merlin, Zeiss, Oberkochen, Germany) operating at 30 kV.

In vitro bioactivity was assessed in terms of apatite-forming ability by immersion tests in simulated
body fluid (SBF) for 2 weeks. SBF was prepared according to the protocol recommended by Kokubo
and Takadama [26]. Small cylinders of pressed powders (diameter = 10 mm, height = 5 mm) were
maintained in polyethylene bottles filled with SBF at 37 ◦C in a static incubator; a ratio of sample mass
to solution volume of 1.5 mg/mL was used, as recommended in previous studies [27,28]. At the end of
the experiment, the samples were extracted, rinsed with ethanol to stop reactions, left to dry overnight
at room temperature and analyzed by SEM equipped with energy-dispersive spectroscopy (EDS)
probe (SEM-EDS, Merlin, Zeiss, Oberkochen, Germany) after being sputter-coated with chromium.
The sample surface was also analyzed by X-ray diffraction (XRD) method according to the procedure
described above.

Antibacterial activity was assessed against a standard Staphylococcus aureus strain by performing
the Kirby-Bauer test according to the Performance Standards for Antimicrobial Disk Susceptibility Test
(Approved Standard, 9th Ed., NCCLS, Villanova, PA, USA, 2006).

3. Results and Discussion

TGA was useful to select the calcination temperature (Figure 1). An increase of mass loss up
to 650 ◦C was observed (about 30% of total mass loss); above this temperature, the mass remained
constant, confirming that the surfactant was completely removed from the material. Mass reduction
could be attributed to two major events associated to the removal of ethanol and water from the gel
(70–200 ◦C) and the thermal decomposition of organics (surfactant) and nitrates (300–500 ◦C).
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The wide-angle XRPD patterns of calcined 1Cu-glass and 5Cu-glass are displayed in Figure 2
and confirm the amorphous nature of both materials, as proved by the presence of only broad haloes
in the 2θ range of 15 to 35◦, which is typical of silicate glasses.
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The small-angle XRPD patterns of both glasses (Figure 3) show three diffraction peaks that can be
attributed to the (100), (110) and (200) reflections of a two-dimensional hexagonal p6mm lattice [23].
The d100 values were 6.7 and 6.8 nm 1Cu-glass and 5Cu-glass, corresponding to cell parameters of 7.7
and 7.8 nm (assuming a perfect two-dimensional hexagonal symmetry).
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The mesoporous nature of the materials was further confirmed by STEM investigation
along the [100] direction (Figure 4), which allowed revealing an ordered arrangement of parallel
one-dimensional nanopores (nano-channels). Rough measurements of pore dimeter yielded a value of
around 5.7 nm.
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Figure 4. Scanning-transmission (STEM) image of 5Cu-glass recorded along the [100] direction, showing
a parallel arrangement of nano-sized channels (mesopores).

Nitrogen adsorption–desorption measurements (Figure 5) further confirmed the existence of
uniform nanopores in the mesoscale range. Both glasses exhibited a type-IV isotherm, which is
associated to pores with size between 2 and 50 nm (i.e., mesopores, according to the International
Union for Pure and Applied Chemistry (IUPAC) definition) [29]. The shape of the hysteresis loop could
provide information about the pore shape [30]: in both materials, the loop shape suggests the presence
of cylindrical mesopores with hexagonal symmetry, which is typical of MCM-41 ordered mesoporous
silica [31]. These results are in good agreement with the findings from small-angle XRPD (Figure 3).
Quantification of textural features is summarized in Table 1; the value of pore size (5.1 nm) is close to
that determined more roughly by STEM measurements (5.7 nm).Bioengineering 2020, 7, x FOR PEER REVIEW 6 of 10 
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Figure 5. Nitrogen adsorption-desorption measurements performed on calcined glasses: (a) isotherms
and (b) pore size distributions.

Table 1. Textural characteristics of calcined mesoporous glasses obtained by nitrogen
adsorption-desorption porosimetry.

Sample Pore Volume (cm3/g) SSA (m2/g) Mean Pore Size (nm)

0Cu-glass 0.265 450 5.0

1Cu-glass 0.232 432 5.1

5Cu-glass 0.165 275 5.1

The data shown in Table 1 reveal that the pore volume and SSA of the mesoporous glasses decrease
as the copper content increases. These results suggest that the incorporation of Cu2+ ions may have a
negative effect on the precursor condensation, disrupting the ordered orientation of (SiO4)4− units
during the self-assembling reaction of the glass. Interestingly, although the total amount of modifiers
(calcium and copper) is equal to 20 mol.% in all materials, the “disturbing” effect is higher when
different types of modifiers are simultaneously introduced. This effect was also observed elsewhere
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when other modifiers (e.g., zinc or cerium) were added to the silicate network of mesoporous silicate
glasses [32]. The mechanism behind this effect in mesoporous glasses is still to be elucidated, but a
role could be played by the higher difference of modifier’s ionic radius as compared to silicon, which
is the major forming element of the glass network (ionic radii: 0.210 nm for Si4+, 0.231 nm for Ca2+

and 0.140 nm for Cu2+, hence the absolute differences |∆Si-Cu| = 0.070 nm > |∆Si-Ca| = 0.021 nm).
The copper-depending trend of pore volume and SSA displayed in Table 1 is also consistent

with that recently observed by Luo et al. [33] for Cu-doped nanofibrous mesoporous glass scaffolds.
Unlike pore volume and SSA, the mean pore size is not apparently affected by the increasing content
of copper in the glass composition.

SSA of all mesoporous glasses collected in Table 1 is significantly higher than that assessed for
both melt-derived (less than 1 m2/g) and sol-gel silicate glasses produced without using a structure
directing agent (few tens of m2/g) [34]; this is consistent with previous findings on several mesoporous
glass types and compositions [35,36].

Figure 6a,b reveals the formation of calcium phosphate globular agglomerates on the surface of
both Cu-doped materials after immersion in SBF, thus demonstrating the apatite-forming ability of
these glass compositions in vitro. The newly-formed phase exhibit a “cauliflower” structure formed by
needle-like nano-sized crystals: this is the typical morphological “fingerprint” of the hydroxyapatite-like
phases grown on the surface of bioactive glasses upon soaking in SBF. Semi-quantitative compositional
assessment (EDS) on the agglomerates formed on 1Cu-glass and 5Cu-glass yielded Ca-to-P atomic ratios
of 1.85 and 1.91, respectively. These values are higher than the Ca-to-P atomic ratio of stoichiometric
hydroxyapatite (1.67), but can be justified considering the boundary effects due to the finite volume
involved in compositional assessment by EDS. On the other hand, non-stoichiometric hydroxyapatite
has been reported to commonly form on silicate glasses in SBF [37,38]. XRD analysis (Figure 6c)
confirmed the formation of hydroxyapatite (PDF code: 01-086-0740) on the surface of samples during
immersion in SBF.
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Figure 6. In vitro bioactivity tests: SEM micrographs showing the “cauliflower” calcium-phosphate
agglomerates formed on (a) 1Cu-glass and (b) 5Cu-glass after immersion for 2 weeks in SBF; (c) XRD
analysis on 5Cu-glass (2 weeks in SBF), which reveals the diffraction peaks of hydroxyapatite formed
during the test.
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At present, the biomaterials community assumes that the formation of a hydroxyapatite-like layer
on the surface of a given material soaked in SBF is a proof of its bioactivity and, to some extent, of its
bone bonding ability in vivo [26]. Being bioactive, the Cu-doped mesoporous materials produced in
this work can be included in the versatile class of mesoporous bioactive glasses (MBGs), which have
attracted great interest over the last few years for potential use in tissue engineering applications [39].

Previous studies showed that MBGs with high silica content (>80 mol.%) are highly versatile
carriers for antibiotics but exhibit negligible [19] or no antibacterial effect (equivalent effect to that
of plastic control [40]) in the short term if used alone. Therefore, incorporation of copper was
thought as a valuable strategy to impart inherent antimicrobial extra-functionalities to these silicate
biomaterials. The results of the antibacterial tests performed on 1Cu-glass and 5Cu-glass discs are
shown in Figure 7. As shown in Figure 7a, 1Cu-glass composition is apparently unable to create an
inhibitory halo for bacteria around the sample. On the contrary, an inhibitory halo can be clearly
observed around the 5Cu-glass sample (region of total inhibition around 2 mm around the outer
surface) (Figure 7b). These results suggest that the initial concentration of copper in the MBG
composition is key in dictating the antibacterial behavior, in agreement with previous observations
reported by other authors. However, we should take into account that antibacterial materials can
exert their antiseptic effect via (i) release-killing mode, which is due to the release of antibacterial
ions, and/or (ii) contact-killing mode, if bacteria come in direct contact with the biomaterial. Hence,
the visual inspection of the surface of 1Cu-glass sample is important to clarify whether a contact-killing
antibacterial effect can still be elicited. In this regard, the lack of bacteria on the surface of the sample
brought into contact with the bacteria-inoculated plate during the Kirby-Bauer test can provide an
evidence of contact-mode antibacterial capacity. Figure 7c shows a SEM image of the 1Cu-glass
surface after the Kirby-Bauer test: although this samples showed no inhibition halo, the image
clearly shows that only few clusters of Staphylococcus aureus survived after 24 h of incubation on
this material. Furthermore, it is worth underlining that the antibacterial effect of copper ions was
reported to be more significant against Gram-negative bacteria, such as Escherichia Coli, compared to
Gram-negative strains such as Staphylococcus Aureus [19], which could partially justify the absence of a
clear antibacterial halo around the sample doped with the lower amount of copper. In summary, these
early results demonstrate that both copper-doped MBG compositions exhibit an antimicrobial effect
against Staphylococcus aureus and motivate further investigation on these highly promising bioactive
and antibacterial multifunctional biomaterials.
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(c) SEM micrograph showing the surface of 1Cu-glass after the test (the white arrows highlight the few
clusters of bacteria survived).

4. Conclusions

Copper-doped MBGs were obtained by a wet (sol-gel) route in which a non-ionic surfactant was
incorporated as a mesopore template. After calcination, the glasses exhibited an ordered structure
of mesopores arranged according to hexagonal symmetry. The presence of a mesoporous texture
was the reason behind the apatite-forming property of these glasses despite the high content of silica



Bioengineering 2020, 7, 45 8 of 10

(80 mol.%), as the large SSA (275–450 m2/g) was key to enhance the ion-exchange phenomena between
glass and solution during immersion in SBF. The amount of copper in the MBG composition played
a role in affecting both textural and functional properties: as copper increased, the SSA decreased
but the antibacterial effect against Staphylococcus aureus was more significant. These preliminary
observations show promise for the potential use of copper-doped MBGs in bone tissue engineering
applications and motivate further investigation on these materials.
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