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Abstract: In this work, Andean sacha inchi (Plukenetia volubilis L.) leaves were used to prepare
monodispersed cuprous oxide (Cu2O) nanoparticles under heating. Visual color changes and
UV-visible spectroscopy of colloidal nanoparticles showed λmax at 255 nm, revealing the formation
of copper oxide nanoparticles. Transmission electron microscopy and dynamic light scattering
analysis indicated that the prepared nanoparticles were spherical with an average size of 6–10
nm. The semi-crystalline nature and Cu2O phase of as-prepared nanoparticles were examined by
X-ray diffraction. Fourier-transform infrared spectroscopy confirmed the presence of polyphenols,
alkaloids and sugar in the sacha inchi leaf, allowing the formation of Cu2O nanoparticles from Cu2+.
Additionally, as-synthesized Cu2O nanoparticles exhibited good photocatalytic degradation activity
against methylene blue (>78%, 150 min) with rate constant 0.0219106 min−1. The results suggested
that the adopted method is low-cost, simple, ecofriendly and highly selective for the synthesis of
small Cu2O nanoparticles and may be used as a nanocatalyst in the future in the efficient treatment of
organic pollutants in water.
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1. Introduction

During the last two decades, nanoparticles/nanomaterials (of size less than 100 nm) have been
extensively studied due to their exclusive properties such as high surface-to-volume ratio, flexibility,
quantum size, high yield strength, rigidity, ductility and macro-quantum tunneling effect, and are
currently used in various areas of chemistry, physics, medicine and engineering [1,2]. Copper is one
of the most important elements used worldwide for various purposes. In particular, copper oxide
nanoparticles have received great attention because of their low cost, high yield, mild reaction
conditions and fantastic applications in batteries [3], catalysis [4], optical devices [5], printed
electronics [6], anticancer therapeutics, sensing, antioxidants [7], antimicrobial activities [8], fuel
cells [9], bioimaging [10], dye removal [11], gas sensors [12], etc.

Copper oxide nanoparticles have been synthesized by a variety of chemical and physical methods
including hydrothermal synthesis [13], the wet chemical method [14], solution phase synthesis [15],
sonochemical synthesis [16], the microwave method [17], the laser ablation method [18] and ball
milling [19], in which a large amount of solvents is required for obtaining pure and well-defined
nanoparticles. They create various problems for the ecosystem and the environment [7,20]. Plant-based
metal nanoparticle preparation methods are low-cost, simple and ecofriendly and hold great promise
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in biotechnology applications due to the presence of effective reducing and capping agents such as
carbohydrates, polyphenols, terpenoids, sugars, amino acids, flavanoids, saponins, etc. [20]. Therefore,
they are favored over chemical and physical synthesis methods [21]. Previously reported syntheses
of cuprous oxide/cupric oxide (Cu2O/CuO) nanoparticles have used plant materials to support
large-scale synthesis, including extracts of Azadirachta indica leaf [22], Aegle Marmelo leaf [23], Aloe
barbadensis Miller leaf [24], Acalypha indica leaf [25] Punica granatum peel [26], Terminalia arjuna bark [27],
Stachys lavandulifolia flower [28], Terminalia bellirica [29] and Rubus glaucus fruit [30], etc.

Sacha inchi (SI) (Plukenetia volubilis L.) is a promising crop plant originally from the Amazon basin
of Latin America. Its star-shaped green fruits produce nut-like seeds with a bitter taste and have been
consumed by humans since Incan times due to their high content of fatty acids (ω-3 and ω-6, 35–60%),
protein (27–33%), carbohydrates and antioxidants [31]. Its dried leaves are marketed as a tea and
contain 84.2–93.4% sugar [32]. Phytochemicals such as saponins, terpenoids, polyphenolic compounds
(flavonoids) and other components are also found in SI leaves and are responsible for their antioxidant
and antiproliferative activities [33].

Thus, the utilization of these lost crops in nanotechnology and green chemistry has been continued
by our group: SI leaves for the synthesis of silver nanoparticles [34], SI oil for the synthesis of silver [35]
and gold nanoparticles [36] and SI shell biomass for the synthesis of silver nanoparticles [37] and
removal of Cu2+/Pb2+ [38]. Our research on the SI plant may support an additional source of revenue for
farmers on the western and northern edges of South America, such as Colombia, Ecuador, Venezuela,
Peru, Bolivia, Brazil and Suriname, and in the Lesser Antilles [31].

To our knowledge, there have been no reports of the synthesis of Cu2O nanoparticles using the SI
leaf. Herein, green Cu2O nanoparticles were synthesized by reducing Cu2+ ions with aqueous extract
of SI leaf. This nanoparticle is used in the degradation of methylene blue (MB), one of the most common
organic pollutants in wastewater from the dye industry (Figure 1). It is environmentally undesirable
at a trace level and excessive usage of MB causes serious diseases in human beings [35,36]. Hence,
the development of an ecofriendly method for the removal of MB from wastewater is necessary. In this
work, full spectroscopic and microscopic characterizations were performed to confirm the formation of
Cu2O nanoparticles. Photocatalytic evaluation experiments indicated that Cu2O nanoparticles possess
fast catalytic activity in the degradation of MB.

Bioengineering 2020, 7, x FOR PEER REVIEW 2 of 11 

[7,20]. Plant-based metal nanoparticle preparation methods are low-cost, simple and ecofriendly and 
hold great promise in biotechnology applications due to the presence of effective reducing and 
capping agents such as carbohydrates, polyphenols, terpenoids, sugars, amino acids, flavanoids, 
saponins, etc. [20]. Therefore, they are favored over chemical and physical synthesis methods [21]. 
Previously reported syntheses of cuprous oxide/cupric oxide (Cu2O/CuO) nanoparticles have used 
plant materials to support large-scale synthesis, including extracts of Azadirachta indica leaf [22], 
Aegle Marmelo leaf [23], Aloe barbadensis Miller leaf [24], Acalypha indica leaf [25] Punica 
granatum peel [26], Terminalia arjuna bark [27], Stachys lavandulifolia flower [28], Terminalia 
bellirica [29] and Rubus glaucus fruit [30], etc. 

Sacha inchi (SI) (Plukenetia volubilis L.) is a promising crop plant originally from the Amazon 
basin of Latin America. Its star-shaped green fruits produce nut-like seeds with a bitter taste and 
have been consumed by humans since Incan times due to their high content of fatty acids (ω-3 and 
ω-6, 35–60%), protein (27–33%), carbohydrates and antioxidants [31]. Its dried leaves are marketed 
as a tea and contain 84.2–93.4% sugar [32]. Phytochemicals such as saponins, terpenoids, 
polyphenolic compounds (flavonoids) and other components are also found in SI leaves and are 
responsible for their antioxidant and antiproliferative activities [33]. 

Thus, the utilization of these lost crops in nanotechnology and green chemistry has been 
continued by our group: SI leaves for the synthesis of silver nanoparticles [34], SI oil for the synthesis 
of silver [35] and gold nanoparticles [36] and SI shell biomass for the synthesis of silver nanoparticles 
[37] and removal of Cu2+/Pb2+ [38]. Our research on the SI plant may support an additional source of 
revenue for farmers on the western and northern edges of South America, such as Colombia, 
Ecuador, Venezuela, Peru, Bolivia, Brazil and Suriname, and in the Lesser Antilles [31]. 

To our knowledge, there have been no reports of the synthesis of Cu2O nanoparticles using the 
SI leaf. Herein, green Cu2O nanoparticles were synthesized by reducing Cu2+ ions with aqueous 
extract of SI leaf. This nanoparticle is used in the degradation of methylene blue (MB), one of the 
most common organic pollutants in wastewater from the dye industry (Figure 1). It is 
environmentally undesirable at a trace level and excessive usage of MB causes serious diseases in 
human beings [35,36]. Hence, the development of an ecofriendly method for the removal of MB from 
wastewater is necessary. In this work, full spectroscopic and microscopic characterizations were 
performed to confirm the formation of Cu2O nanoparticles. Photocatalytic evaluation experiments 
indicated that Cu2O nanoparticles possess fast catalytic activity in the degradation of MB. 

 
Figure 1. Schematic presentation of the synthesis and application of Cu2O nanoparticles. 

2. Materials and Methods 

2.1. Materials 

Copper nitrate (Cu(NO3)2·3H2O, 99.0%) and methylene blue (MB, 99.5%) were purchased from 
Spectrum, USA. Sacha inchi (SI) leaves were collected with the help of Mr. Abraham Rodolfo 
Sanchez Piňuela from a farm in Quito, Ecuador. Milli-Q water was used in all experiments. All 
chemicals listed above were of analytical grade and used without any purification. 

2.2. Preparation of Cu2O Nanoparticles 

Figure 1. Schematic presentation of the synthesis and application of Cu2O nanoparticles.

2. Materials and Methods

2.1. Materials

Copper nitrate (Cu(NO3)2·3H2O, 99.0%) and methylene blue (MB, 99.5%) were purchased from
Spectrum, USA. Sacha inchi (SI) leaves were collected with the help of Mr. Abraham Rodolfo Sanchez
Piňuela from a farm in Quito, Ecuador. Milli-Q water was used in all experiments. All chemicals listed
above were of analytical grade and used without any purification.
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2.2. Preparation of Cu2O Nanoparticles

Thoroughly washed SI leaves were shade-dried for one week. The extraction of phytochemicals
from the SI leaves was performed by an earlier extraction method [34]. Nearly 800 mg of the dried
SI leaf was crushed into small pieces and transferred to a 100 mL flask containing 50 mL of Milli-Q
water, and then it was mixed well and heated (64–68 ◦C) for 30 min. The obtained red extract of SI
leaf was filtered through Whatman No. 1 paper and stored at 4 ◦C for further use. For the synthesis
of Cu2O nanoparticles, 5 mL of SI leaf extract was added slowly to 20 mL of Cu(NO3)2 solution (10
mM), followed by heating for 5 h at 85–90 ◦C with continuous stirring. The formation of the Cu2O
nanoparticles was indicated by a change of reaction mixture color from bluish-red to a greenish color.

2.3. Characterization of Cu2O Nanoparticles

The samples containing nanoparticles were confirmed by a UV-visible spectrophotometer,
GENESYSTM 8 from Thermo Spectronic, England. The particle size distribution of the sample
was analyzed using the HORIBA, DLS Version LB-550 program, Japan. The morphology and selected
area electron diffraction (SAED) pattern of the nanoparticles were captured on a transmission electron
microscope (TEM), FEI Tecnai, G2 Spirit Twin, Holland. X-ray diffraction (XRD) studies on thin films
of the nanoparticle were carried out using a PANalytical brand θ-2θ configuration (generator-detector)
X-ray tube, copper λ = 1.54059 Å, and an EMPYREAN diffractometer. The Fourier-transform infrared
(FTIR) spectra were collected on a Spectrum Two IR spectrometer from Perkin Elmer, USA. The samples
for FTIR and XRD analysis were prepared by carefully depositing a thin film of Cu2O nanoparticles on
a glass slide by injecting and heating 1800 µL (600 µL × 3 times) of Cu2O solution drop by drop at
60–65 ◦C for 20–30 min allowing the solvent to evaporate. After that, the thin film of the samples was
scratched and the FTIR-ATR analysis was performed.

2.4. Photocatalytic Effects

The photocatalytic activity of Cu2O nanoparticles during the degradation of MB was determined
by carrying out the reaction in direct sunlight (1040–1165 cd/m2) at 30–35 ◦C (atmospheric temperature).
Typically, 5 mL MB (10 mg/L) was mixed with 1 mL H2O in a glass tube; in a second glass tube, 5 mL
MB (10 mg/L), aqueous solution containing Cu2O nanoparticles (500 µL) and H2O (500 µL) was mixed
in the dark for 20 min to reach an adsorption-desorption equilibrium. Then, both sets were exposed to
direct sunlight and the progress of the degradation reaction was monitored at different time intervals
by UV-vis spectroscopy at a wavelength of 664 nm. To evaluate the interference of SI leaf extract on the
reduction of MB, a separate reaction was performed in which 5 mL of MB (10 mg/L) was mixed with
500 µL of SI extract and 500 µL of H2O. After that, the reaction mixture was heated at 40 ◦C for 120 min
in the dark. The photocatalytic degradation percentage of MB was calculated using Equation (1) and
the respective first-order rate constants (k) according to Equation (2).

η = (A0 − At)/A0 × 100% (1)

kt = ln (A0/At) (2)

where η is the rate of degradation of MB in terms of percentage, A0 is the initial absorbance of the dye
solution and At is the absorbance of the MB at time t, respectively. C0/Ct is measured from the relative
intensity of absorbance (A0/At). The linear relationship of ln (A0/At) versus time indicates that the
photodegradation of MB follows first-order kinetics [35,36].
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3. Results and Discussion

3.1. UV-Vis Spectroscopy Analysis

Figure 2 shows the UV-visible absorption spectra of as-prepared Cu2O nanoparticles in the
presence of SI leaf extract in an aqueous medium. The colorimetric reduction reaction of Cu2+ ions with
the SI leaf extract (red colour) indicated the formation of a greenish-colored solution (a and b in Figure 2),
attributed to the surface plasmon resonance (SPR) of the Cu2O nanoparticles [30,39]. The absorption
peaks appearing at 260 and 340 nm (red line) correspond to the polyphenolic compounds present in
the SI leaf extract [34], while as-prepared Cu2O nanoparticles exhibited a broad absorption peak at
between 240 to 380 nm having two λmax at 255 and 360 nm (green line), respectively [39,40]. The change
observed in the spectrum after the reduction of Cu2+ ions to Cu2O nanoparticles corresponds to the
formation of Cu-phytochemicals, complex or spherical Cu2O nanoparticles with size 2–5 nm and quite
stable in the shape-position of absorption after one month, indirectly indicating the stability of the
nanoparticles [39,40].
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Figure 2. UV-vis spectra of SI leaf extract (red line) and Cu2O nanoparticles (green line). Visual picture
of solution containing (a) SI leaf extract and (b) Cu2O nanoparticles.

3.2. TEM and SAED Analysis

The exact shape and size of the nanoparticles was determined using a TEM image. The high-
(Figure 3a) and low- (Figure 3d) magnification TEM images showed a good dispersion with the
spherical morphology of Cu2O nanoparticles inside the SI leaf extract. The majority of the nanoparticles
observed from the TEM micrograph are small, with a size of 6–10 nm, indicating the availability of high
surface catalytic activity for Cu2O nanoparticles; a small few of the Cu2O nanoparticles are of a bigger
size, around 20–45 nm. This may be due to the presence of excessive SI phytochemicals on the surface
of the Cu2O nanoparticles, which can cause the aggregation and enlargement of nanoparticles during
the synthesis of Cu2O nanoparticles. The size distribution pattern of the nanoparticles observed in the
TEM image (Figure 3a) was analyzed manually using ImageJ software. It showed the average size of
the Cu2O nanoparticles to be 6.67 ± 3.96 nm (Figure 3b). No aggregation of nanoparticles suggested
the presence of hydrophobic coating around the Cu2O nanoparticles. The SAED pattern of the Cu2O
nanoparticles (Figure 3c) shows partial concentric rings which signify that the particles are spherical
shape, semicrystalline nature and indexed as (111) and (200) lattice planes for the face-centred cubic
(FCC) structure of Cu2O nanoparticles [16].
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3.3. DLS Analysis

The dynamic light scattering (DLS) technique gives valuable information about the hydrodynamic
size distribution of the Cu2O nanoparticles (Figure 4). The average width of the Cu2O nanoparticles
was found to be 8.2 ± 2.1 nm with polydispersity index (PDI) = 0.0656. The observed PDI < 0.1 clearly
indicates that the synthesized Cu2O nanoparticles were monodispersed in nature [29]. However,
the average size of as-synthesized Cu2O nanoparticles determined by the DLS method was slightly
higher than in the TEM analysis. This is due to either the presence of organic coating around
nanoparticles or the screening of small particles by bigger ones [36,41].
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Figure 4. DLS size distribution of the Cu2O nanoparticles. Abbreviations: DLS, dynamic light scattering.

3.4. XRD Analysis

In order to clarify the nature and crystallinity of the Cu2O nanoparticles, XRD analysis was
performed as shown in Figure 5. The presence of intense peaks at 2θ = 36.46 and 42.45◦ represents the
(111) and (200) planes. The XRD reflections of Cu2O match that of Inorganic Crystal Structure Database
ICDD (Inorganic Crystal Structure Database) no. 98-018-0846 corresponding to the semi-crystalline
cubic FCC structure, which match the common peaks in the earlier report [42]. It can be also
observed that the undesired peak at 2θ = 32◦ is due to a typical impurity caused by a metallo-organic
structure [23,24]. It is likely that these peaks indicate that the phytochemicals in SI leaf extract attached
to the Cu2O nanoparticles and were also involved with surface-capped nanoparticles. However,
the observed size of the nanoparticles in the XRD using the Scherrer formula (~46 nm) is bigger than
in the TEM-DLS results [40]; this may be due to the aggregation of particles during drying for the
preparation of XRD samples. This increment could be attributed to the light scattering effect because
of the aggregation of the metal [43].
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3.5. FTIR Analysis

FTIR spectra of the particles were recorded to detect the chemical interaction between SI leaf
extract and Cu2+ that occurs during the synthesis of Cu2O nanoparticles (Figure 6). They reveal a weak
absorption band at 698 cm−1 may correspond to the Cu-O bond vibrational frequencies, which are
slightly higher than reported Cu–O (645 cm−1) bond vibration due to depending on the degree of
hydrogen bonding. Furthermore, the additional Cu–O–H bonds lead to bending absorptions in the
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region of 896 cm−1 [44]. This can be attributed to the presence of the Cu–O bond. The strong band
at 1028 cm−1 can be attributed to the C–O–C/secondary C–OH bonds in the polysaccharide/protein
structure of the SI leaf [34]. The prominent bands at around 1241, 1314, 1374 and 1601 cm−1 can be
attributed to the vibrational mode for C–H, C–N, C=C and C=O (amide 1) [30]. The existence of the
peaks at 2847 and 2921 cm−1 is due to the symmetric and asymmetric C–H stretching vibrations of
flavonoids/phenolic compounds, respectively. The broad absorption peak at 3331 cm−1 shows the
existence of O–H/N–H stretching groups of macromolecular association [32,34]. The FTIR results
indicate that the extract of SI leaf acted as a reducing and capping agent in the synthesis of the
Cu2O nanoparticles.
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Cu–O at 698 cm−1.

3.6. Photocatalytic Activity

Figure 7a shows the photocatalytic activity of Cu2O nanoparticles in the degradation of MB.
The peaks at around 300 nm correspond to the absorption of the benzene ring and the peaks between
600–700 nm represent the absorption of heteropoly aromatic linkage of MB [45]. It can be seen that the
degradation of MB increases with increasing solar irradiation time by observing the decrease in λmax at
664 nm [35]. The photodegradation percentages (η) of MB for 30, 75 and 150 min are 25.45%, 59.88%
and 78.90% in the presence of Cu2O nanoparticles when compared with that of the respective controls.
No change of absorbance at λmax = 664 nm was observed when a blank test was performed with MB
and SI leaf extract. This confirms that the SI leaf extract does not interfere with the reduction of MB.
In Figure 7b, the plots of ln (A0/At) versus time yield good linear correlations and are well fitted with
pseudo-first-order kinetics. The result indicates that the observed rate constant (k) and correlation
coefficient (R2) for the MB degradation were 21.9106 × 10−3 min−1 and 0.9999. Hence, the present
study highlights the promising potential of SI leaf-synthesized Cu2O nanoparticles for MB degradation
in wastewater.
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