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Abstract: The aim of the study was to investigate the effects of neodymium: yttrium aluminium
garnet (Nd:YAG) (1064 nm) and erbium: yttrium aluminium garnet (Er:YAG) (2940 nm) laser energy
on titanium when delivered with conventional optics (focusing handpieces or plain ended optical
fibres) or with a conical tip. Machined and micro-roughened implant discs were subjected to laser
irradiation under a variety of energy settings either dry (without water) or wet (with water). Samples
were scanned using a 3D non-contact laser profilometer and analysed for surface roughness, volume
of peaks and the maximum diameter of the ablated area. Conical tip designs when used with both
lasers showed no surface effect at any power setting on both machined and micro-roughened implant
surfaces, regardless of the irrigation condition. When used with conventional delivery systems,
laser effects on titanium were dose related, and were more profound with the Nd:YAG than with
the Er:YAG laser. High laser pulse energies caused surface fusion which reduced the roughness of
micro-roughened titanium surfaces. Likewise, repeated pulses and higher power densities also caused
greater surface modifications. The presence of water reduced the influence of laser irradiation on
titanium. It may be concluded that conical fibres can reduce unwanted surface modification, and this
may be relevant to clinical protocols for debridement or disinfection of titanium dental implants.
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1. Introduction

Titanium and its alloys are used commonly for dental implants. After insertion of a titanium dental
implant, the accumulation of a dental plaque biofilm and an adverse host inflammatory response to this
biofilm can lead to peri-implantitis, a condition where the bone around the implant is resorbed, and where
if untreated the implant may be lost. Conventional treatments for peri-implantitis have included [1]
mechanical debridement of the titanium implant surface using hand, sonic and ultrasonic scalers with
plastic, metal or carbon fibre tips, air–powder devices, or pulsed infrared lasers; [2] disinfection using
antiseptics, photothermal laser disinfection or photodynamic therapy, [3] local or systemic antibiotics,
and [4] combinations of the above methods [3,5,6]. While the current literature describes many possible
treatment modalities for peri-implantitis, there is a lack of high-quality evidence to suggest that any one
approach could be considered a gold standard [7].

Lasers have been increasingly utilised in dentistry for the treatment both of periodontitis and
peri-implantitis [8–10]. The neodymium: yttrium aluminium garnet (Nd:YAG) [11] the erbium: yttrium
aluminium garnet (Er:YAG) [12,13], the erbium, chromium: yttrium, scandium, gallium, garnet
(Er,Cr:YSGG) [14,15], the carbon dioxide (CO2) laser [11,16] and various diode lasers [17,18] have
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been used for periodontal applications. The Er:YAG laser has shown the most promising results in
non-surgical periodontal therapy, with outcomes for laser debridement of the roots of teeth similar to
those seen with mechanical debridement [13,19].

In the treatment of peri-implantitis, the erbium family of middle infrared lasers (Er:YAG and
Er,Cr:YSGG) has received the most attention. The laser energy from both is absorbed strongly by
water [20]. The Er:YAG laser has strong bactericidal effects against periodontal pathogens, and also
inactivates bacterial toxins such as lipopolysaccharide [13,21]. When used on the roots of teeth, the
Er:YAG laser can effectively remove plaque and calculus from implant surfaces without causing
excessive heating of the adjacent bone [22,23].

Several studies have reported no significant change in the surface roughness of implants irradiated
with Er:YAG lasers at intensities from 60 mJ/pulse to 180 mJ/pulse (average powers less than 1 Watt) and
application times of up to 2 min [24–26]. Park et al. (2012) found, however, that alterations to titanium
implant surfaces occurred if they were irradiated at average power settings over 2W for 30 s [27].
The nature of the laser interaction with the titanium surface of a dental implant may vary according to
the surface topography. Titanium surfaces may be machined, sandblasted and acid-etched, titanium
plasma sprayed, or anodic-oxidised. The surface treatment influences how the implant surface interacts
with the adjacent bone [24,28]. Surface alterations such as melting of surface projections may increase
with increasing laser energy and exposure time [22,26]. For example, surface alterations to machined
and anodised titanium implants have been shown with Er,Cr:YSGG irradiation for 30 s at average
power settings over 3W [27]. Accordingly, there is an interest in methods to reduce any adverse effect
of infrared laser energy on titanium surfaces, either by altering the laser delivery system or by using
water irrigation during laser irradiation.

The effect of any given laser depends not only on the absorption of the laser energy into the
substrate but also on delivery system used, which changes the power density and may in some
cases also change the pulse shape [22]. With middle infrared lasers, the delivery system could be
an articulated arm, a hollow waveguide or a rare-earth element (germanium or gallium) containing
fibre [29]. This would then be attached to a fibre tip, a handpiece with a focusing lens and a window or
a hollow tip, depending on the system being used. When optical fibres are used for the distal part of
the delivery system, factors such as the design of the fibre tip (e.g., plain, conical, or side firing) also
influence the spatial distribution of laser energy onto the target [29].

Other factors that may influence the effect of laser energy on a substrate include the water-layer
thickness if a cooling water mist spray is used [30], the pulse energy and pulse shape [31], the spot size [32]
and the pulse duration [33]. Variations in the target may also influence the laser–target interaction,
by changing the extent of reflection versus absorption [34]. This point is particularly relevant to titanium
dental implants given the wide variety of surfaces available [24,27]. Any safe clinical protocol for dental
use must consider how to minimize thermal stress on the alveolar bone and periodontal soft tissues [35].
A water coolant will reduce the temperature rise on the substrate. However, an excessive water film
thickness may decrease absorption of laser energy by the substrate [36]. Suggested optimal water flow
rates range from 1 to 2 mL/min [36] to 6.75 mL/min for ablation of dental enamel [37].

The primary aim of this study was to assess the effect of conical fibre tips versus conventional laser
delivery systems (plain fibres and focusing handpieces) on the nature of the interaction of infrared laser
energy with titanium. A secondary aim was to assess the influence of water irrigation on the interaction
of laser energy with titanium. The primary laser of interest was the Er:YAG laser (2940 nm). An Nd:YAG
laser (1064 nm) was included in the study as a positive control, since it is known to interact strongly with
titanium and many other metals. It was hypothesised that the extent of surface modification of titanium
surfaces would be reduced by the use of conical fibre tips and by the presence of water.
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2. Materials and Methods

2.1. Lasers and Optical Fibres

Two free running pulsed laser systems were used: Nd:YAG (dLase 300, American Dental Laser,
Fremont, CA, USA) and Er:YAG (Key 3, KaVo, Biberach, Germany). The Nd:YAG laser was fitted
with a 200 µm plain glass fibre (BioLitec, Winzelaer, Germany) which was used either with a plain
(cleaved) end, or after undergoing a conical honeycomb modification through a process of etching and
abrasion as described previously [38] to increase lateral emission from the tip. With the Er:YAG laser,
a germanium oxide-based fibre was used, which was then attached to either a focusing handpiece
(model 2060) with a sapphire window, or a plain fibre handpiece (2062) with a 200 µm fibre that was
used either with a plain (cleaved) end, or after undergoing the same conical honeycomb modification.

2.2. Titanium Discs

Discs of grade IV commercially pure titanium (Ti), as used in dental implants, were used (Dentsply
Friadent GmbH, Steinzeugstr, Mannheim, Germany). These discs were 10 mm in diameter. The discs
had a plain machined surface or had been micro-roughened by the manufacturer using grit-blasting
and thermal etching to impart the desired microstructure for dental implants (Ankylos® with plus
surface, Dentsply Friadent GmbH, Steinzeugstr, Mannheim, Germany). Discs were cleaned with
ethanol prior to the study to remove traces of machining oil or debris.

2.3. Experimental Setup

Titanium discs were subjected to laser irradiation under a variety of experimental conditions.
A standardized setup was used, with the distal part of the laser delivery system mounted perpendicular
to the surface of the titanium disc with a laboratory jig at a constant distance of 1.0 mm from the
terminus of the delivery system to the target for the 200 µm fibre tips, and 10 mm (the focal point)
for the Er:YAG laser-focusing handpiece. Multiple laser treatments were undertaken on non-exposed
regions of each disc.

To explore the effect of a surface film of water, discs were irradiated dry (without water) or wet
(with water). For the latter, a micro-pipette was used to transfer a 10 µL droplet of de-ionised water
onto the surface of the discs immediately before laser exposure.

2.4. Experimental Groups

The study followed a matrix design, and involved two different laser types (Er:YAG or Nd:YAG),
two different fibre tip designs (plain or conical), and two different irrigation conditions (wet or dry).
With the Er:YAG laser, a focusing handpiece was available, so this was also included as a further
experimental group. Untreated discs and untreated areas of discs served as controls. The experimental
groups are summarized in Table 1. The intention was to keep laser parameters within the range that
would be used in clinical practice for implant debridement or disinfection, hence laser powers were
kept at or below an average power of 3.0 watts (e.g., with the Nd:YAG laser, 100 mJ/pulse at 20 Hz
gives an average power of 2.0 W, while 150 mJ/pulse at 20 Hz gives 3.0 W).

2.5. Emission Measurements

To inform the analysis, the actual emitted laser energy was measured for each laser and with each
relevant delivery system. These measurements were taken at a fixed distance of 10 mm from the distal
end of the delivery system, using a power meter (Nova II, Ophir Optronics, North Andover, MA, USA).
The power density (W/cm2) was recorded over three seconds and the average value was used (Table 2).
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Table 1. Experimental design.

Panel Setting

Implant Surface and Fibre Tip Design Combinations

Machined Surface Micro-Roughened Surface

Plain Conical Plain Conical

Group 1
Er:YAG

with fibre in 2062
handpiece

400 mJ/1Hz
500 mJ/1Hz
600 mJ/1Hz

Wet Dry

Wet Dry

Wet Dry

Wet Dry

Group 2
Er:YAG

2060 Focusing handpiece

200 mJ/1Hz
300 mJ/1Hz
400 mJ/1Hz
500 mJ/1Hz
600 mJ/1Hz

N/A N/A

Group 3
Nd:YAG with fibre

30mJ/10Hz
60 mJ/10Hz
90 mJ/10Hz
1W/20Hz
2W/20Hz
3W/20Hz

Wet Dry Wet Dry

Group 4
Control Non-irradiated N/A N/A N/A N/A

Table 2. Power density for laser systems.

Panel Setting
Power Density (W/cm2)

Conical Fibre Tips Plain Fibre Tips

Er:YAG fibre in 2062 handpiece
400 mJ/1Hz
500 mJ/1Hz
600 mJ/1Hz

5.40
6.45
7.60

11.50
13.25
15.45

Er:YAG 2060 focusing handpiece

200 mJ/1Hz
300 mJ/1Hz
400 mJ/1Hz
500 mJ/1Hz
600 mJ/1Hz

N/A

6.75
8.55

11.35
14.65
18.45

Nd:YAG

30 mJ/10Hz
60 mJ/1Hz
90 mJ/1Hz

50 mJ/20Hz (1 W)
100 mJ/20Hz (2 W)
150 mJ/20Hz (3 W)

9.90
16.50
25.00
29.50
59.00
81.00

12.00
23.00
34.00
38.00
75.00

109.00

2.6. Surface Profilometry

Surface analysis was conducted using a non-contact 3D laser profilometer (Talysurf CCI MP,
Taylor Hobson, Leicester, England) using a 20× lens. Profilometric analysis was completed only for
samples where laser irradiation produced a visible zone of ablation. Surface roughness was measured
for all samples. This parameter quantifies the Z-axis perpendicular to the analysed surface (according
to ISO 25178) [39]. The profilometer was calibrated at the beginning of each day of measurement
using the manufacturer’s standard reference. The profilometric images produced were analysed using
TalyMap software, Platinum version (Taylor Hobson, Leicester, England). To ensure a uniform method
of data collection and analysis, a template was created within the TalyMap software, and applied to
each sample, so that surface characteristics could be compared before and after laser irradiation of
the same sample. Profilometric images were processed to determine the mean surface roughness (Sa),
the volume of peaks within the ablated area, and the maximum diameter of the ablated area.
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2.7. Analysis of Results

The surface roughness (Sa) of each sample before and following irradiation was compared
using paired sample t-tests, for each of the gradations in laser parameters. Effects of irrigation on
surface roughness, ablation zone volume and maximum diameter were compared for each laser
parameter using a similar approach. Within each treatment group, the effects of laser parameters
surface roughness, crater volume and maximum crater diameter were assessed for normality using
the Kolmogorov–Smirnoff test and then analyzed by using ANOVA, with Bonferroni post-hoc tests.
The level of significant was set at α = 0.05.

3. Results

3.1. Surface Roughness

3.1.1. Control Group

Prior to any laser treatments, the surface roughness of machined (smooth) surfaces (M = 0.23 µm,
SD = 0.03) was significantly less than that of roughened surfaces (M = 2.73 µm, SD = 0.45), as supplied
by the manufacturer (p = 0.0002).

3.1.2. Group 1—Er:YAG Laser with Focusing Handpiece

Changes in mean surface roughness for machined (smooth surface) and rough surface samples
irradiated with the Er:YAG laser using a focusing handpiece are shown in Figure 1. For smooth surfaces,
there was significant alteration to surface roughness. With significantly greater roughness seen in the
wet group when compared to the dry group at lower energy settings. This observation change between
dry and wet ablation changed with increase energy settings (Figure 1a). Rough surfaces became
progressively smoother as laser pulse energy increased, under both wet and dry conditions (Figure 1b).
For the rough surfaces, with most laser parameters that were used, the surface smoothening was
significantly greater when the sample was dry than when it was covered with a water film.

3.1.3. Group 2—Er:YAG Laser with an Optical Fibre

Conical fibre tip designs when used with the Er:YAG laser showed no surface effect at any laser
parameter setting on both machined and micro-roughened implant surfaces, regardless of the irrigation
condition. These groups are therefore not discussed further.

As shown in Figure 2a, when using an optical fibre with a plain (cleaved) end, there was no
significant change to smooth surfaces at any energy setting regardless of irrigation condition compared
to the control group. The surface roughness at 400 mJ was not assessed for the dry samples as no
surface modification could be recorded. These samples should therefore be considered similar to
controls. Wet ablation significantly increased the surface roughness at 500 mJ and displayed a trend to
increased roughness at 600 mJ, although this was not statistically significant.

The reduction in surface roughness for rough samples (Figure 2b) was less marked than when the
focusing handpiece (2060 handpiece) was used at the same settings. There was a slight decrease in
surface roughness at all power settings, however, this was not statistically significant. Comparing the
effect of water, wet surfaces were significantly rougher when ablated at 500 mJ/pulse and 600 mJ/pulse
(Figure 2b). The presence of water generally reduced the laser induced surface modification.

3.1.4. Group 3—Nd:YAG Laser with an Optical Fibre

Conical tip designs, when used with the Nd:YAG laser showed no surface effect at any laser
parameter setting on either machined or micro-roughened implant surfaces, regardless of the irrigation
condition. These groups are therefore not discussed further.

Exposure to the Nd:YAG laser increased the surface roughness of smooth Ti discs under wet and
dry conditions, and this effect was variably attenuated by a film of water (Figure 3a). On rough surfaces,
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a bimodal effect was seen, with a reduction in roughness at 30–90 mJ/pulse delivered as single pulses
(Figure 3b). Similarly, surface roughness was decreased following exposure of rough surfaces to the
Nd:YAG laser at all but the highest laser energy, however, this increase was not statistically significant.
This effect was compounded by the fact that the highest pulse energy settings (100 and 150 mJ/pulse)
were used at 20 Hz.

3.2. Volume of Peaks in the Ablation Zone

3.2.1. Group 1—Er:YAG Laser with Focusing Handpiece

The total volume of peaks within the ablation zone was measured for samples treated at 300 mJ
and above, as these gave a measurable zone of ablation. For smooth discs, there was no significant
relationship between pulse energy and the volume of peaks, and this outcome variable was not
influenced by the presence of water. For rough surface discs, there was no significant relationship
between pulse energy and the volume of peaks for wet conditions, but there was a significant positive
relationship for dry conditions. Water reduced the peak volume only at 300 mJ.Bioengineering 2020, 7, x FOR PEER REVIEW  6  of  14 
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Figure 1. Effects of the Er:YAG laser with a focusing handpiece (2060). (a): Machined surfaces.
(b): Roughened surfaces. Bars show controls (green), wet surfaces (blue), and dry surfaces (red).
* indicates a significant difference between wet and dry conditions (p < 0.05).
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Figure 2. Effects of the erbium: yttrium aluminium garnet (Er:YAG) laser with a plain fibre tip held
in a 2062 handpiece. (a): Machined surfaces. (b): Roughened surfaces. Bars show controls (green),
wet surfaces (blue), and dry surfaces (red). * indicates a significant difference between wet and dry
conditions (p < 0.05).

3.2.2. Group 2—Er:YAG Laser with Optical Fibre

Measurements of volume or of the diameter of the ablation zone were not possible as no visible
zone of ablation was produced on the titanium surface.

3.2.3. Group 3—Nd:YAG Laser with Optical Fibre

On both machined surfaces and roughened surfaces, there was a significant positive relationship
between pulse energy and the volume of peaks for both wet and dry conditions. The presence of water
had a variable influence on smooth samples, with a trend to decrease the volume of peaks for rough
surfaces at higher pulse energy settings.

3.3. Maximum Diameter of the Zone of Ablation

3.3.1. Group 1—Er:YAG Laser with Focusing Handpiece

For smooth surfaces, under wet conditions, power level did not influence the maximum diameter
of the ablation zone. Under dry conditions the diameter was significantly decreased at 400–600 mJ.
For rough samples, 500 mJ and 600 mJ power resulted in significantly greater diameter of the
ablation zone.
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Figure 3. Effects of the neodymium: yttrium aluminium garnet (Nd:YAG) laser with a plain fibre tip.
(a): Machined surfaces. (b): Roughened surfaces. Bars show controls (green), wet surfaces (blue), and dry
surfaces (red). * indicates a significant difference between wet and dry conditions (p < 0.05).

3.3.2. Group 2—Er:YAG Laser with Optical Fibre

Measurements of diameter of the ablation zone for Group 2 was not possible as no visible zone of
ablation was produced on the titanium surface.

3.3.3. Group 3—Nd:YAG with Optical Fibre

The diameter of the ablation craters increased with pulse energy, on both smooth and rough
surfaces. The presence of water reduced the diameter of the zone of ablation for both surface types.

4. Discussion

This study provides several insights into the interactions between near infrared and middle
infrared laser energy and titanium, with the former being strongly absorbed, and the latter only weakly
absorbed. The titanium discs provided by the manufacturer are consistent with the surfaces provided
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on implants for clinical use, with the smooth surface being typical for abutment components, and the
roughened surface being representative of the surface of the implant fixture below the alveolar bone
crest. Indeed, the roughened discs displayed almost twelve times the roughness of machined discs.
The purpose of this implant surface modification is to increase the surface area available for apposition
of bone during osseointegration of the implant [40,41]. The titanium discs used in this study with
a microscopically roughened surface had a greyish tint. The irregular nature of the microscopically
roughened surface could be the reason why more variation was seen for laser effects on this surface
type than for the machined surface, which was more regular in its topography.

The Nd:YAG laser was used as a positive control in this study. While this laser induced
surface modifications to both types of titanium surface when the plain optical fibre tip was used,
no modifications occurred when the modified conical honeycomb tip was used. Based on this,
the original hypothesis that the use of the conical tip would reduce the adverse effects of laser energy
on the titanium surface is supported.

Despite previous research indicating the deleterious effects of Nd:YAG lasers on implant
surfaces [42–44], the current findings indicate that even a strongly absorbed laser wavelength may
have minimal effects on the substrate when it is dispersed widely by the delivery system. Indeed,
the Nd:YAG laser used with a plain optical fibre tip and a low pulse energy (below 30 mJ) may be
appropriate for post debridement disinfection around titanium implants. Using a low pulse energy
would reduce the risk of severe surface modifications, such as melting, fusion and cratering. As was
expected, when used with plain fibre tips on rough implant surfaces, the Nd:YAG laser at low pulse
energies generally reduced the roughness of the surface because of melting. With higher energy pulses,
cratering occurred in a proportional fashion to the delivered energy. The influence of water on the
interaction of Nd:YAG laser energy with the roughened titanium surface was variable, with no strong
trends seen. The absorption of Nd:YAG laser radiation in water is very low, hence any changes seen
could be due to altered reflection or scatter from the surface, as well as from cooling effects. The impact
of irrigation condition requires further clarification with the use of continuous water spray.

With regard to the Er:YAG laser, its effects on titanium surfaces were less than those of the Nd:YAG
laser. Overall, the current findings are consistent with previous research demonstrating no significant
surface effects following irradiation with the Er:YAG laser at up to 140 mJ/pulse at 10 Hz on roughened
(SLA surface) implants [24] and on machined and anodised surface implants [27] when examined
with white light interferometry and scanning electron microscopy. Laser profilometry measurements
of surface roughness revealed that the mean 3D surface roughness (Sa) of smooth titanium could be
increased by exposure to the Er:YAG laser, but only when high pulse energies were used. Compared
to previous research, the present study used relatively high pulse energy settings for the Er:YAG
laser with optical fibre delivery. Despite this, minimal surface modification was caused on smooth
or roughened surfaces. Based on the present findings, it can be concluded that provided a low pulse
energy is used, no adverse effects on the smooth titanium implant surfaces should occur. The Er:YAG
laser used in the present study had a pulse duration of 250–350 microseconds. If a much shorter pulse
duration was used, the higher peak power that occurs with this could, however, pose a risk of causing
surface alterations. The parameter of pulse duration requires further investigation.

With regard to the role of water, under clinical conditions, typical pulse energies are in the order
of 50–200 mJ, and the Er:YAG laser is used with a water mist spray. The Er:YAG laser, when used at
low pulse energy with a water mist spray, was found to effectively remove experimentally induced
biofilms from SLA implant surfaces at 80–100 mJ/pulse (10 Hz), without significant alteration to the
surface [45,46]. In the present study, as the water was not applied continuously, both heating and
evaporation of the water may have occurred, thereby reducing the effectiveness of the water in reducing
thermal changes on the titanium surface.

The results of the present study also show the effect of laser spot size and thus power density
on Er:YAG laser effects on titanium, with the focusing handpiece causing significant effects for the
same pulse energy, compared to the plain optical fibre. Plain fibre ends give a beam dispersion
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of around 20◦. Moreover, the gallium doped endodontic fibre used in the current investigation
attenuates the laser energy within the fibre, to a greater extent than occurs with the sapphire window
of the focusing handpiece [47]. Any attenuation of laser energy by absorption in the optical fibre,
reduced transmission with repeated use, or degradation of the fibre tip will reduce the laser effect,
and this will result in decreased surface temperatures and thus decreased propensity for damage to
titanium surfaces [22]. For the roughened samples irradiated with the Er:YAG and focusing handpiece,
a significant relationship between increasing pulse energy and decreasing surface roughness was seen,
regardless of irrigation, demonstrating that significant modification of these surfaces had occurred.
It can be concluded, therefore, that using a focusing handpiece would not be appropriate for clinical
implant therapy.

An important variable that needs to be taken into consideration is the spot profile. The present
laser had a Gaussian beam profile. Some dental Er:YAG lasers have complex beam profiles because of
multimode operation, and this spatial inhomogeneity may influence the geometry of surface craters on
the substrate [31,48]. The water flow rate for irrigation varies between dental Er:YAG lasers. Higher
water flow rates may cause greater attenuation of laser effects on titanium surfaces, because of higher
water film thickness, as well as a greater cooling action, which may prevent melting of the titanium
surface [22,36]. In the present study, the water film was stationary rather than moving, and was
not replenished continuously. Despite this, surface modifications were generally reduced under wet
conditions. It is reasonable to expect that surface temperature, and thus potential for implant surface
modification, would be decreased with the use of continuous air–water spray from the laser handpiece
as would be used routinely with an Er:YAG laser in clinical practice.

A key point of interest in the current study was the lack of appreciable surface modification or
deleterious effects from either laser when modified conical fibre tips were used. This can be explained
by the reduced beam intensity in a frontal (distal) direction (by as much as 49%) and correspondingly
greater lateral emission of laser energy [38,49,50]. This aspect may be relevant to the use of lasers for
periodontal disinfection following the debridement of dental implants and root surfaces. Such conical
laser tips may be advantageous in directing laser energy laterally onto the implant surface, as well
as against the soft tissue walls of the periodontal pocket, and may be particularly useful in accessing
narrow bony defects adjacent implant fixtures. The clinical efficacy and applicability of modified
optical fibre tip designs need to be investigated further in clinical trials.

The generalization of the current findings to the clinical setting should be performed with caution.
The 90-degree angulation of the laser beam to the titanium surface used in the study would not
necessarily be the same as for clinical practice. The results would also vary for other brands of lasers,
because of differences in pulse shape and pulse duration. Hence, the current results may not be directly
applied to other brands of Nd:YAG and Er:YAG laser systems on the market. Further, the impact of
crevicular fluid, blood and saliva may not be the same as for water. The presence of plaque biofilm and
calculus on laser interactions with titanium was outside the scope of this laboratory study.

5. Conclusions

Pulses of laser energy from Er:YAG and Nd:YAG lasers may modify the surface characteristics
of machined and roughened dental implants, depending on the pulse energy and the power density.
The Er:YAG laser delivered using a plain fibre tip was associated with minimal surface modification,
while the Nd:YAG laser used at similar parameters caused considerable changes. In contrast, when
a modified conical tip was used with either laser type, no surface melting or cratering occurred on
either machined or micro-roughened titanium surfaces. Using such tips for implant debridement or
disinfection may help prevent undesirable surface modification.
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