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Abstract: In bioprocess development, the host and the genetic construct for a new biomanufacturing
process are selected in the early developmental stages. This decision, made at the screening scale
with very limited information about the performance in larger reactors, has a major influence on
the efficiency of the final process. To overcome this, scale-down approaches during screenings that
show the real cell factory performance at industrial-like conditions are essential. We present a fully
automated robotic facility with 24 parallel mini-bioreactors that is operated by a model-based adaptive
input design framework for the characterization of clone libraries under scale-down conditions.
The cultivation operation strategies are computed and continuously refined based on a macro-kinetic
growth model that is continuously re-fitted to the available experimental data. The added value of
the approach is demonstrated with 24 parallel fed-batch cultivations in a mini-bioreactor system
with eight different Escherichia coli strains in triplicate. The 24 fed-batch cultivations were run under
the desired conditions, generating sufficient information to define the fastest-growing strain in
an environment with oscillating glucose concentrations similar to industrial-scale bioreactors.

Keywords: high-throughput screening; rapid phenotyping; model-based experimental design;
Escherichia coli; automated bioprocess development

1. Introduction

Emerging technologies in robotic biolaboratories open new opportunities for both high-throughput
(HT) screening and HT bioprocess development. On the screening side, significant progress has
been made in terms of cultivation scale (down to femtoliter), parallelization and non-invasive
observation, which have been widely reviewed [1–3]. The focus of this work is conditional screening,
where a reduced number of candidate clones are tested under different conditions with the aim to
significantly improve the performance at an industrial scale (e.g., media, pH and temperature profiles,
bioreactor heterogeneities, induction and feeding strategies). These factors are known to affect the
underlying nonlinear dynamics of the bioprocess and are part of the very complex time-dependent
interaction between the bioreactor environment and the cell. This highly nonlinear behavior makes
it difficult to predict the effect of changes in the cultivating conditions and is responsible for the
high failure rate in scale-up [4–6]. In order to overcome these challenges, experiments in conditional
screening require highly advanced experimental setups able to: (i) operate as similar as possible to
the industrial strategy (e.g., fed-batch or continuous cultivations), (ii) mimic the harsh conditions of
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industrial-scale bioreactors as closely as possible (e.g., growth limitation; bioreactor heterogeneities)
and (iii) generate the maximal amount of information possible about the strain’s phenotype and its
complex dynamic interaction with the process. Many experimental strategies in all scales as well as
kinetic and computational fluid dynamics (CFD) modeling approaches focus on this challenge [7–9].

The technology to perform parallel experiments with advanced operation in fed-batch or
continuous mode has recently become available [10–13]. Mini-bioreactors (MBR) integrated in
liquid handling stations (LHS) allow a large number of parallel cultivations while maintaining the
properties of benchtop bioreactors [9]. With working volumes of 2–250 mL, geometric similarities to
large-scale reactors [14] and high-frequency measurements and analytics, MBRs have been used for
process characterizations [10,12,15] and scale-down studies [16] for up to 48 cultivations in parallel.
Such robotic facilities with automated cultivation control, sampling and at-line analytic operations
are very powerful systems that can accelerate bioprocess development [11,17–19], especially in
combination with digital solutions for experiment (re-)planning [20–22], data acquisition [11,17] and
real-time dynamic analysis [23]. The bottleneck is currently the lack of advanced computer-aided
tools to plan the experiments, operate the robots and build the necessary models and digital twins
for scale-up and advanced process control. Because of limitations of the planning and operation
capacity of humans, much too often, robots are on hold, waiting for the next experiment to be planned,
experimental campaigns need to be repeated because of failures that were not detected on time and the
same feeding strategy is used for clones with different characteristics. These are the main issues we
address in the present work.

Initial attempts to solve these challenges have demonstrated the added value of model-based
tools in terms of accelerating the development process and increasing robustness during scale-up [24].
Nevertheless, the existing solutions are mostly limited to single-strain applications due to the complexity
of the used mechanistic models and the difficulty of identifying the parameters for a large number of
strains at the same time [25]. Therefore, screening approaches often use simple black-box models for
the microorganisms, which do not allow a detailed comparison of their phenotypes.

This contribution proposes an advanced conditional screening design framework and its
integration into an autonomously working robotic facility. To achieve this, (i) a macro-kinetic
model of the central carbon flux of Escherichia coli is defined that can describe the phenotypes of all
clones, (ii) a parameter estimation is carried out to cover a characteristic parameter set that describes
the individual phenotype and, (iii) based on the unique models, the process is (re)defined in a dynamic
process redesign approach as an adapted modelling framework. By this, we not only gain a robust
and accurate prediction of the characteristics of each clone but can also quantify and confidently
compare their performances. Finally, the method is applied in an online model calibration framework
to adaptively define individual optimal feed start and feeding strategies.

During the parallel cultivation of this study, the adaptive framework for conditional screening
experiments recursively executes the following steps: (i) collection of cultivation data, (ii) selection
of an identifiable parameter (sub)set (sensitivity analysis) for each clone, (iii) estimation of kinetic
parameters for each clone, (iv) updating of the optimal feeding profiles and (v) transfer of the new feeding
profiles to the database (Figure 1). As a proof of concept, parallel screening experiments with eight
different clones, including six knockout mutants of E. coli K-12, are conducted in 24 mini-bioreactors.
At the start of the experiment, virtually no information on the growth behavior of all these strains was
available, as it is common in early conditional screening. From the generated data (of all 24 parallel
experiments), it was possible to identify 13 model parameters for all clones, with sufficient accuracy to
discriminate the performance between the clones.
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Figure 1. Illustration of the model calibration cycle in the adaptive framework for conditional 
screening experiments. The cultivation of the clones is performed on the cultivation and analysis 
platform (consisting of two liquid handling stations and a mini-bioreactor system); samples are 
collected and autonomously analyzed. The generated online and at-line measurements are sent to the 
central data storage (database). The model calibration cycle starts with the collection of all available 
data. Based on the measurements, the sensitivity analysis is performed; based on the results, the 
identifiable parameters are selected, and non-identifiable parameters are not considered/fixed in the 
subsequent parameter estimation. In the parameter estimation, the identifiable parameter subset is 
adjusted to fit the model to the measurements. Based on the calibrated model, the feed is calculated 
during the feed calculation step, according to previously defined criteria. The feed is further converted 
into corresponding pulses with individual times. These time/pulse setpoints are stored in the database 
and executed directly by the cultivation and analysis platform. 

2. Materials and Methods  

2.1. HTBD Facility 

The high-throughput bioprocess development facility is composed of two liquid handling 
stations (LHS, Freedom Evo 200, Tecan, Switzerland; Microlab Star, Hamilton, Switzerland) and a 
mini-bioreactor system (48 BioReactor, 2mag AG, Munich, Germany), which is mounted on the Tecan 
LHS. Both LHSs are connected at the hardware and software level to exchange samples, process and 
measurement information (Figure 2). The process control (e.g., feed, pH control and volume balance) 
is carried out by the LHSs in a pulsed based manner. A detailed description of the used hardware 
and software framework is given in Haby et al. 2019 [17]. 

Figure 1. Illustration of the model calibration cycle in the adaptive framework for conditional screening
experiments. The cultivation of the clones is performed on the cultivation and analysis platform (consisting
of two liquid handling stations and a mini-bioreactor system); samples are collected and autonomously
analyzed. The generated online and at-line measurements are sent to the central data storage (database).
The model calibration cycle starts with the collection of all available data. Based on the measurements,
the sensitivity analysis is performed; based on the results, the identifiable parameters are selected,
and non-identifiable parameters are not considered/fixed in the subsequent parameter estimation. In the
parameter estimation, the identifiable parameter subset is adjusted to fit the model to the measurements.
Based on the calibrated model, the feed is calculated during the f eed calculation step, according to
previously defined criteria. The feed is further converted into corresponding pulses with individual
times. These time/pulse setpoints are stored in the database and executed directly by the cultivation and
analysis platform.

2. Materials and Methods

2.1. HTBD Facility

The high-throughput bioprocess development facility is composed of two liquid handling
stations (LHS, Freedom Evo 200, Tecan, Switzerland; Microlab Star, Hamilton, Switzerland) and
a mini-bioreactor system (48 BioReactor, 2mag AG, Munich, Germany), which is mounted on the Tecan
LHS. Both LHSs are connected at the hardware and software level to exchange samples, process and
measurement information (Figure 2). The process control (e.g., feed, pH control and volume balance)
is carried out by the LHSs in a pulsed based manner. A detailed description of the used hardware and
software framework is given in Haby et al. 2019 [17].
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Figure 2. Schematic description of the high-throughput bioprocess development facility used in this 
study. Composition of the two liquid handling stations (LHS, 1 and 2) and a mini-bioreactor system 
(3). The liquid handling stations are connected by a linear transfer unit (4) for automatic sample 
exchange. The facility is surrounded by supporting laboratory equipment (5–8), all accessible by one 
of the liquid handling stations. 

2.2. Cultivation 

Precultures were performed with EnPresso B (Enpresso GmbH, Berlin, Germany) medium with 
9 U L−1 Reagent A at 37 °C in a 24-multi-well Oxodish plate to keep the cells in the growth phase 
(PreSens GmbH, Regensburg Germany). The main culture was started as a batch culture at 37 °C with 
5 g L−1 glucose. The initial batch phase was prolonged after 1 h by an additional feed pulse to a final 
concentration of 5 g L−1 glucose. The stirrer speed was kept constant at 3000 rpm. After the end of the 
batch phase, a fed-batch was started with a pulse-based glucose feeding every 5 min of feed solution 
400 g L−1 glucose dissolved in deionized water. The feeding rate was increased exponentially and 
switched to a constant feed when the maximum pulse volume of 22 µL was reached. In total, the 
cultivations were carried out over 8 h with fed-batch phases of 5.4 to 6.1 h, depending on the length 
of the clone-specific batch phases. The µset for the exponential feed was chosen to be 50% of the model-
predicted µmax value and was adapted in every modelling cycle for each clone. The volume of the feed 
pulses was determined on the basis of the calculated feed rate. All experiments were carried out as 
biological triplicates. 

2.3. Sampling and Analytic 

During the cultivations, pH and dissolved oxygen tension (DOT) were measured online in the 
mini-bioreactor system. Each column of the bioreactor system was sampled every 45 min in a 
sequential mode with a sampling interval of 15 min. Samples were inactivated directly with NaOH 
and stored in 96-well plates at 4 °C on the deck of the LHS until further processing [20]. After 5 
samplings, the sampling plates were automatically transferred to the Hamilton LHS for OD600, 
glucose and acetate measurements in 96-well plates [17]. For the OD600 measurements, the samples 
were diluted to remain in the linear range. The dilution factor was adjusted between 20 and 100 over 
the course of the cultivation process. All OD600 values were multiplied by a correction factor of 2.62 
to convert the values to a liquid height of 1 cm. Based on the OD600 measurements, the dry cell weight 

Figure 2. Schematic description of the high-throughput bioprocess development facility used in this
study. Composition of the two liquid handling stations (LHS, 1 and 2) and a mini-bioreactor system (3).
The liquid handling stations are connected by a linear transfer unit (4) for automatic sample exchange.
The facility is surrounded by supporting laboratory equipment (5–8), all accessible by one of the liquid
handling stations.

2.2. Cultivation

Precultures were performed with EnPresso B (Enpresso GmbH, Berlin, Germany) medium with
9 U L−1 Reagent A at 37 ◦C in a 24-multi-well Oxodish plate to keep the cells in the growth phase
(PreSens GmbH, Regensburg Germany). The main culture was started as a batch culture at 37 ◦C
with 5 g L−1 glucose. The initial batch phase was prolonged after 1 h by an additional feed pulse to
a final concentration of 5 g L−1 glucose. The stirrer speed was kept constant at 3000 rpm. After the end
of the batch phase, a fed-batch was started with a pulse-based glucose feeding every 5 min of feed
solution 400 g L−1 glucose dissolved in deionized water. The feeding rate was increased exponentially
and switched to a constant feed when the maximum pulse volume of 22 µL was reached. In total,
the cultivations were carried out over 8 h with fed-batch phases of 5.4 to 6.1 h, depending on the
length of the clone-specific batch phases. The µset for the exponential feed was chosen to be 50% of the
model-predicted µmax value and was adapted in every modelling cycle for each clone. The volume of
the feed pulses was determined on the basis of the calculated feed rate. All experiments were carried
out as biological triplicates.

2.3. Sampling and Analytic

During the cultivations, pH and dissolved oxygen tension (DOT) were measured online in the
mini-bioreactor system. Each column of the bioreactor system was sampled every 45 min in a sequential
mode with a sampling interval of 15 min. Samples were inactivated directly with NaOH and stored
in 96-well plates at 4 ◦C on the deck of the LHS until further processing [20]. After 5 samplings,
the sampling plates were automatically transferred to the Hamilton LHS for OD600, glucose and
acetate measurements in 96-well plates [17]. For the OD600 measurements, the samples were diluted
to remain in the linear range. The dilution factor was adjusted between 20 and 100 over the course
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of the cultivation process. All OD600 values were multiplied by a correction factor of 2.62 to convert
the values to a liquid height of 1 cm. Based on the OD600 measurements, the dry cell weight of the
biomass was calculated by multiplying the OD600 by 0.33 [26]. Due to the time-consuming sampling
and analysis procedure, the values for biomass, glucose and acetate were written to the database with
a delay of 0.25–1.35 h for the biomass and 0.66–2 h for glucose and acetate, depending on the column
of the bioreactor system where the sample was taken.

During the eight hours of cultivation, for each reactor, 1440 values for DOT and pH were collected,
as well as 23 samples for biomass (OD600), 20 for glucose and 20 for acetate measurements. This yields,
in total, for each reactor, 1503 data points. Considering three replicates, the size of the parameter
sensitivity matrix is (1503 x 18) ∗ 3 (measurements x parameter) ∗ replicates).

2.4. Strains

The strains used in this study are E. coli K-12 W3110 (F− λ− IN(rrnD-rrnE)1 rph-1), E. coli K-12
BW25113 (F−, DE(araD-araB)567, lacZ4787(del)::rrnB-3, LAM−, rph-1, DE(rhaD-rhaB)568, hsdR514) and
six knockout strains obtained from the NBRP at the National Institute of Genetics, Shizuoka, Japan (Keio
collection [27]), namely E. coli BW25113-JW0554-KC (∆ompT), E. coli BW25113-JW3975-KC (∆aceA),
E. coli BW25133-JW1907-KC (∆fliA), E. coli BW25133-JW2076-KC (∆gatC), E. coli BW25113-JW2082-KC
(∆gatZ) and E. coli BW25133-JW2943-KC (∆glcB).

2.5. Computational Methods

The E. coli macro-kinetic growth model [25] consists of 5 ordinary differential equations, describing
biomass, glucose, acetate, oxygen and enzymatic glucose release, and represents the major extracellular
dynamics of E. coli, including the acetic acid overflow. The model contains 18 parameters, from which 13
have been shown to vary with clones and cultivation conditions. All computational methods related to
the model calibration and feed calculation were carried out in MATLAB (The MathWorks, Inc., Natick,
Massachusetts, USA), available at https://gitlab.tu-berlin.de/hts_modelling/ModellingFramework.
The commit used for this study is efaee5eba813237860264fc33ba79315eef5bbca. Cultivation time and
data for the different sequential tasks are summarized in Table 1. All measurements used for the
parameter estimation are available in Table S1.

Table 1. Underlying data sets, i.e., the number of sensor data, for the parameter estimates of one
biological triplicate. DOT—dissolved oxygen tension.

Sequential Task
(Iteration)

Cultivation Time
(h)

Available Measurements

DOT Biomass Glucose Acetate

1 1.38 321 6 0 0
2 1.88 411 16 0 0
3 2.55 531 16 10 10
4 3.52 705 26 10 10
5 3.93 780 26 20 20
6 5.17 999 36 20 20
7 5.94 1137 36 30 30
8 6.91 1311 46 30 30
9 7.66 1440 46 40 40

2.5.1. Parameter Estimation

The parameter estimation problem is solved for a reduced (identifiable) parameter subset.
This subset is updated in each model calibration cycle in Table 1 and is selected based on the local
sensitivity matrix [28]. In doing so, the model calibration updates both the identifiable parameter
subset and corresponding parameter values. This approach is useful as the information content
in the data increases with each cycle. The algorithm implements a stepwise forward selection of

https://gitlab.tu-berlin.de/hts_modelling/ModellingFramework
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parameters to be included in the estimation problem based on the dynamical parameter sensitivities.
Identifiable parameters are selected by a ranking of all parameters according to linear independence
and an analysis of the matrix rank condition of the sensitivity matrix.

The parameter estimation is formulated as the following optimization problem:

θ̂argmin
θ

Φ(U, θ) (1)

where the objective function reads:

Φ(U, θ)
5∑

i=1

1
Ni

Ni∑
j=1

(yi, j(U,θ) − ym
i, j)

2 (2)

where yi, j(U,θ) are the simulated states and ym
i, j are the corresponding measured states. The index

i = 1, . . . , 5 indicates the measured variables and the index j = 1, . . . , Ni indicates individual data points.
The CVODES solver in SUNDIALS [29] is used to solve the ODE system and the interior-point

algorithm is used for optimisation (MATLAB fmincon). Initial values and lower and upper bounds of
the parameter estimation (PE) are based on experts’ knowledge and summarized in Table S2.

2.5.2. Monte Carlo Simulation

Parameter distribution and pairwise correlations are determined by Monte Carlo simulations
based on the last dataset (n = 500) and with the identifiable parameter set based on the subset selection.
Monte Carlo simulations were carried out with σ = 0.15 for biomass, glucose and acetate and with
σ = 0.05 for DOT.

2.5.3. Feed Calculation

The exponential feed was calculated using the standard fed-batch equation [30], which was
adapted to consider a pulse-based profile. Since the feed in a fed-batch process is the only major
volume-changing factor, volume changes due to sampling are neglected at this point and the volume
change could be described as

V∫
V0

dV = F0

t∫
t0=0

eµset·tdt =
F0

µset
eµset·t|t0 (3)

With µset
[
h−1
]

as the predefined specific growth rate, F0
[
g L−1

]
is the initial feed rate and time

t [h]. The pulse volume is calculated as

V = V0 +
F0

µset
(eµset·t − 1) (4)

with
F0 =

µset

YX/S ∗ Si
X0 V0 (5)

where Y X
S

[g g−1
x ] is the yield coefficient of glucose per biomass, Si [g L−1] is the glucose concentration

in the feed solution, X0 [g] is the biomass concentration and V0 is the volume at the feed start.
Volume manipulations by the pipetting robot (e.g., volume balancing, sampling and base addition for
pH control) are considered in the feed calculation apart from the equations above.

Biomass and volume for the calculation of F0 (Equation (5)) were estimated by simulations based
on the last calibrated model. The end of the batch phase was defined as the time point where the
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predicted glucose and acetate concentrations were below 0.02 g L−1, but not later than 45 min after the
depletion of glucose.

3. Results

Eight different E. coli K-12 clones were cultivated in parallel with an industrial process-relevant
feeding design consisting of batch, exponential fed-batch and constant feed phases. The feed was
applied as pulses to expose the cells to inhomogeneities similar to those in large-scale bioreactors.

3.1. Parallel Cultivation

The length of the batch phase varied among the clones and lasted 1.65 h for E. coli W3110 (the
fastest growing clone) and 1.86 h for E. coli BW25113 ∆glcB (the slowest growing clone). After the
end of the batch phase, the feed was automatically started. Due to the pulse nature of the feed
procedure, the feed start is visible through the oscillating DOT values (Figure 3a). These oscillations,
as well as the glucose at-line data, prove that glucose limitation was maintained during the fed-batch
phase in all cultivations. Furthermore, no significant acetate accumulation was observed (Figure 3b).
The cultivations show a low variance between triplicates, which is obvious from the online DOT and pH
profiles as well as from the automatically analyzed biomass, glucose and acetate values. As expected,
the pH decreased during the batch phase and started to increase after glucose depletion (typically
caused by acetate consumption). During each glucose pulse cycle, a perturbation of pH is observed,
which is caused by the transient production of acetic acid (Figure 3c). Finally, a small increase in pH
was observed after the switch to constant pulse-based feed.
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BW25113 ∆ompT; E. coli BW25113 ∆aceA; E. coli BW25113 ∆fliA; E. coli BW25113 ∆gatC; E. coli BW25113
∆gatZ; E. coli BW25113 ∆glcB. (a) DOT (%): solid lines, pH: dotted lines. (b) Biomass (g L−1): red dots;
glucose (g L−1): purple dots; acetic acid (g L−1): brown dot. (c) Illustration of the oscillating pH values
with each glucose pulse. The figure shows the section marked in (a) red. An interactive version of (a,b)
is available at http://www.bioprocess.tu-berlin.de/fileadmin/fg187/Publications/Hans_2020/fig2.html.
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3.2. Prediction of Batch and Feed Start

After inoculation, samples for biomass were taken and, together with the initial parameter set,
served as the basis for the first prediction of the batch phase, feed start and feed rate (Figure 4a,
black dashed line). The difference in the initial biomass between the clones led to different simulation
results and different predicted batch phases prior to the first model calibration. After the second
biomass measurement, the first model calibration cycle was initiated after 1.4 h of batch cultivation
and the feed start and rate were re-computed using the updated models. From that time onwards,
the model calibration cycle was started after each entry of new at-line data (biomass or glucose/acetate).
The end of batch was defined as the time point at which glucose as well as acetate (produced during
overflow growth) were depleted (Table 2). Therefore, the fed-batch phase in our cultivations started
purposely later compared to typical fed-batch processes, which are mostly started when glucose is
depleted and the DO signal increases. Note that feeding was started only when acetate had been
metabolized. This prevent possible overfeeding with glucose by co-metabolism of the remaining
acetate and thus allowed a higher process stability.
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Figure 4. Illustration of the results of the model calibration cycles 1 to 3 for the cultures of
E. coli BW25113 ∆glcB. (a) Black dashed line: initial model without adjustment; blue line: current
model calibration at time tn; light blue line: previous model calibration (time tn−1); grey crosses:
measurements. (b) Computed feeding profiles after model calibration cycles 1 to 3 and the initial feed
as a cumulative volume.

Table 2. Batch end prediction overview: initial model, adjusted model (parameter estimation after
1.88 h) and observed times for consumption of glucose and acetate and the actual feed start based on
the first executed glucose pulse.

Strain
Glucose Consumption (hh:mm) Acetate Consumption (hh:mm) Feed Start

(hh:mm)Initial Adjusted Observed Initial Adjusted Observed

E. coli W3110 01:46 01:40 01:39 ± 00:01 02:03 01:48 01:48 01:55
E. coli BW25113 01:52 01:38 01:49 ± 00:03 02:00 03:02 >02:23 02:23

E. coli BW25113 ∆ompT 01:46 01:40 01:40 ± 00:01 01:53 03:05 02:10 02:23
E. coli BW25113 ∆aceA 02:13 02:11 01:48 ± 00:21 02:22 03:06 >02:37 02:37
E. coli BW25113 ∆fliA 01:51 01:36 01:42 ± 00:01 01:59 02:13 02:07 02:16
E. coli BW25113 ∆gatC 01:49 01:39 01:46 ± 00:05 01:57 02:50 02:25 02:30
E. coli BW25113 ∆gatZ 01:46 01:43 01:43 ± 00:01 01:55 03:03 >02:09 02:09
E. coli BW25113 ∆glcB 01:55 01:56 01:51 ± 00:03 02:03 02:24 02:30 02:37
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Figure 4a illustrates the outcome of the model calibration cycle during the batch phase, with the
example of the E. coli BW25113 ∆glcB cultivation data (grey cross) and simulations after model
calibration (blue line). It is obvious that the first parameter estimate indicates, for this strain, a slower
growth compared to the initial parameter set. However, with each model calibration cycle, the computed
growth rate (µmax) increased from 0.36 h−1 at t1 to 0.58 h−1 at t2 and up to 0.82 h−1 at the third shown
model calibration cycle. The fit to the cultivation data is improved with each modelling cycle and the
trend of the cultivation is well represented, at least after the third modelling cycle.

In addition, due to the underestimated µmax, the first model calibration cycle failed to propose the
end of the batch phase properly. An accurate estimation of the specific glucose uptake rate is only
reached after the first glucose measurements are available, but then the estimation is very precise.
Although the glucose depletion is equally estimated in the third model calibration cycle (1.94 h) and in
the initial, unadjusted model (1.92 h; Figure 4a, black dashed line), the feed (Figure 4b) started 21 min
later (calibrated model: 2.40 h; initial model: 2.01 h). This is due to differences in the production and
consumption rates of acetate, resulting in different starting times of the fed-batch phase. Based on the
DOT profiles, acetate is consumed after 2.5 h; this also corresponds well with the at-line measurements
of E. coli BW25113 ∆glcB in Figure 3.

The predicted end of the batch phase is very close to the observed one in all cultivations, even after
the second model calibration and 1.5 h of cultivation (Table 2). For some cultivations, the time of
glucose depletion was predicted with an accuracy of less than one minute (E. coli BW25113 ∆gatZ).
In the worst case, the glucose depletion was predicted 22.8 min too late (E. coli BW25113 ∆aceA).
A missed batch end and even a short starvation phase could lead to unwanted metabolic reactions by
the clone and influence the process and product quality. However, with this triplicate, the variance of
glucose uptake is very high, because with one triplicate, the glucose consumption is clearly leading
(Figure 3a). Without the leading one, the gap between predicted and observed glucose depletion is
significant lower. Nevertheless, a difference of 22 min is still in an operational range for conditional
screening. Due to operational reasons, the model calibration with all clones was maintained. The overall
mean difference between the observed and predicted glucose depletion is 6.9 min for the calibrated
model after 1.5 h and, thus, better, compared to the initial model with a mean prediction error of
7.3 min.

Complete consumption of acetate was only observed for five of the eight clones. For all these
clones, the adjusted model predicted the acetic acid consumption to better compare to the initial model,
with the exception of E. coli BW25113 ∆omp. Complete consumption of acetic acid was not observed
for three clones because of the time-dependent restrictions in the feed start (maximum tolerance
between end of glucose depletion and feed start; see Section 2.5.3). Nevertheless, for these three clones,
the initial model predicted a faster, and the adjusted model, a slower, acetic acid consumption rate.
The times of the first feed pulse are summarized in Table 2 (feed start); the predicted end of batch and
the first pulse may differ due to technical reasons (delay in computation or first pulses are calculated
with 0 µL due to the minimal pipetting volume restrictions).

3.3. Feed and Fed-Batch

During the fed-batch phase, the size of the feed pulses is re-computed during each model
calibration cycle. The maximal glucose uptake rate was determined as basis for the new feed rates.
However, the biomass concentration and the substrate yield coefficient (YX/S) have a major impact
on the initial feed rate (F0) and influence the feed as well. With the exception of E. coli BW25113
∆glcB (Figure 5h), the first feed rate (grey bars) was higher than the following calculated feed pulses.
However, the second applied feed rates for E. coli BW25113 ∆ompT, E. coli BW25113 ∆fliA and E. coli
BW25113 ∆gatZ (Figure 5c,d,f) were close to the initial feed rates, indicating only a minor parameter
drift, but were reduced in the later model calibration cycles. In the case of E. coli BW25113 ∆glcB,
the second feed was somewhat higher than the later one, which is reflected in both the initial feed rate
and in the slope of the feed (all feed pulses are summarized in Figure 5). Feed pulses were calculated
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by the optimization algorithm for each clone and applied to all biological triplicates. In this way,
eight different feeding rates were calculated and 24 cultivations were carried out in parallel.Bioengineering 2020, 7, x FOR PEER REVIEW 10 of 18 
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Figure 5. The applied feed and scheduled feeds for each clone between cultivation hours 2 and 5.
Black dots: the applied feed based on the real executed feed, logged by the LHS. Light grey bars:
scheduled feed at feed start. Colored bars: scheduled feeds in the following modelling cycles; the color
change indicates the next modelling cycle. (a) E. coli W3110; (b) E. coli BW25113; (c) E. coli BW25113
∆ompT; (d) E. coli BW25113 ∆aceA; (e) E. coli BW25113 ∆fliA; (f) E. coli BW25113 ∆gatC; (g) E. coli
BW25113 ∆gatZ; (h) E. coli BW25113 ∆glcB.

3.4. Parameter Estimation

During all model calibration cycles, the model parameters are estimated on the basis of all
available data (Table S1), i.e., all data which were collected from the start of the cultivations to the actual
time point. For all clones, the measurements and dynamics of cultivation are well represented in the
simulation of the calibrated model, as illustrated in Figure 6 for the strain E. coli BW25113 ∆glcB (last
modelling cycle; for the other strains, see Supplementary Figures S1–S7). In contrast to the calibrated
model, the initial model overestimated the biomass formation. This trend could be observed for all
strains, with the exception for E. coli BW25113 (Figure S2). The DOT measurements indicate a slower
glucose uptake rate than predicted in the last modelling cycle. A lower maximal specific glucose
uptake rate (qSmax) was calculated in the first two modelling calibration cycles compared to the later
ones (Figure 7). In the first two model calibration cycles, no glucose measurements were available
due to the time delay in the at-line analytics. The prediction error of acetic acid was decreased in
the batch and fed-batch phase after model calibration. The cultivation dynamics of all cultivation
measurements are well represented by the calibrated model. The parameters to be adjusted in each
model calibration cycle are selected by the included subset selection (sensitivity analysis, Figure 1).
The parameters Kap, kLa and qm are not adjusted in one model calibration cycle. This means that the
underlying measurement data are not sufficient to determine these model parameters with sufficient
certainty, not even in the last model calibration cycle. The model parameters Ko, Ksq, Yofm and Yoresp

are only partly selected for parameter estimation (Figure 7, filed dots). Within the subset selection
model parameters can influence other’s parameter sensitivity if they have dependencies to each other.
Accordingly, the selection of one parameter may lead to a lower sensitivity of another one and the latter
may be excluded from the subset selection although it was active in previous cycles. All parameter
subsets and parameter values are summarized in the Supplementary Tables S3–S10. Regularization of



Bioengineering 2020, 7, 145 11 of 18

parameter estimation using a subsets selection method [28] was used to ensure a meaningful parameter
set and to avoid non-physiological model calibrations.Bioengineering 2020, 7, x FOR PEER REVIEW 11 of 18 
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Monte Carlo simulations have been shown to give a good insight into actual, non-linear parameter
distribution [31] and were therefore performed to gain a better understanding of the parameter
correlation and its variances. In Figure 8, the parameter distributions for E. coli BW25113 ∆glcB
(last model calibration cycle) are shown based on Monte Carlo simulations. The correlation between all
parameters is very weak. Only Kaq and Ksq showed a correlation with qAmax. The model parameters
Kaq and Ksq are the affinity constants for acetate and glucose uptake, respectively, and a dependence to
the maximal acetate uptake rate (qAmax) cannot be avoided in the model. The high significance of
each parameter is indicated by a narrow distribution in Figure 8 as well as low variation for the most
important model parameters (Table 3), especially for the model parameters Yem, qSmax and Yosresp.

Normal distribution is given for all parameters except for Yam. This parameter is quite close to the
lower bound of the previously defined solution space (lower and upper parameter bound). It is noted
that this situation should be avoided as it might reduce the accuracy of the parameter estimates.
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Table 3. Values, variance and relative variance of the adjusted parameters for all clones after the final model calibration cycle.

E.coli
W3110

E. coli BW215113

Parameter Unit Inital
Guess

WT ∆ompT ∆aceA ∆fliA ∆gatC ∆gatZ ∆glcB

θ σθ %σθ θ σθ %σθ θ σθ %σθ θ σθ %σθ θ σθ %σθ θ σθ %σθ θ σθ %σθ θ σθ %σθ

qAmax g g−1 h−1 1.0252 1.59 0.11 6.78 0.52 0.11 21.74 0.90 0.05 5.92 0.56 0.15 26.05 0.72 0.11 15.59 0.68 0.08 12.19 0.86 0.10 11.54 0.71 0.07 9.54
Kaq g L−1 0.2133 0.59 0.14 23.11 0.55 0.09 16.28 0.98 0.07 7.11 0.98 0.14 13.82 0.60 0.12 20.70 0.68 0.10 14.16 0.75 0.12 15.97 0.70 0.04 6.24
Ksq g L−1 1.0667 1.52 0.33 21.71 1.98 0.34 16.98 1.97 0.26 13.17 1.91 0.32 16.95 1.77 0.29 16.26 1.99 0.25 12.35 1.63 0.31 18.80 1.68 0.34 20.14
Yam g g−1 0.1955 0.40 0.03 7.18 0.41 0.04 10.79 0.44 0.05 10.16 0.44 0.08 18.79 0.48 0.04 8.04 0.44 0.08 17.80 0.44 0.04 8.89 0.42 0.03 6.82
Yaresp g g−1 0.1672 0.15 0.01 4.94 0.15 0.01 5.09 0.15 0.01 4.55 0.12 0.01 8.36 0.15 0.01 4.79 0.15 0.01 8.02 0.13 0.01 6.65 0.13 0.00 3.44
Yem g g−1 0.56 0.60 0.01 2.48 0.60 0.01 1.82 0.60 0.02 2.89 0.58 0.02 2.70 0.60 0.01 1.94 0.60 0.02 3.27 0.58 0.01 2.19 0.59 0.01 1.53
qSmax g g−1 h−1 1.3431 1.60 0.02 1.20 1.58 0.03 2.09 1.60 0.03 2.02 1.47 0.03 1.79 1.59 0.03 1.83 1.55 0.03 2.08 1.39 0.02 1.16 1.40 0.04 2.54
Ks g L−1 0.05 0.03 0.01 22.73 0.03 0.00 15.72 0.03 0.01 27.93 0.08 0.01 8.44 0.03 0.01 19.59 0.03 0.01 21.88 0.04 0.01 29.35 0.03 0.01 18.79
Ko g L−1 1 19.87 1.52 7.64 18.13 1.87 10.32 14.51 1.27 8.76 18.64 1.93 10.38 16.29 1.66 10.17 16.00 2.22 13.88 14.13 0.95 6.69 9.57 1.27 13.28
Yosresp g g−1 1 2.00 0.05 2.54 2.00 0.04 1.90 1.99 0.09 4.46 1.80 0.09 4.78 1.76 0.05 3.03 1.97 0.08 4.31 1.89 0.06 3.04 1.19 0.02 2.03
pAmax g g−1 h−1 1.3091 1.60 0.07 4.18 0.93 0.12 13.29 1.13 0.08 7.31 0.86 0.07 8.64 0.95 0.07 7.45 0.98 0.09 8.96 1.08 0.09 8.37 0.87 0.09 10.77
Yaof g g−1 0.4607 0.35 0.01 3.88 0.20 0.02 12.23 0.24 0.02 7.52 0.21 0.02 6.99 0.21 0.02 7.05 0.20 0.02 8.88 0.23 0.02 8.21 0.23 0.02 7.91
Yofm g g−1 0.2795 0.20 0.01 4.74 0.20 0.02 7.53 0.22 0.01 5.46 0.21 0.02 9.87 0.23 0.01 5.75 0.21 0.02 10.21 0.22 0.01 5.20 0.22 0.01 5.08
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In the present work, eight strains were examined in 24 successful cultivations. The end of glucose
uptake was, in part, predicted with small errors of less than one minute, thanks to the iterative model
calibration cycle. The feed start was automatic and in an operable acceptable time window using
the dynamic process redesign as defined in the model calibration cycle. The model parameter sets
estimated are always unique and with a physiological meaning, even with very little data in the initial
phase of this study, e.g., the first 3 h of cultivation. This is ensured by the built-in subset selection and
is proven by the Monte Carlo simulations made afterwards.

4. Discussion

In this study, we presented a computational framework able to design and operate parallel E. coli
cultivations without human supervision. The results demonstrate that a robust operation tailored to
each specific clone is possible through an adaptive input design. Undesired experimental conditions
(e.g., overfeeding and starvation) are avoided while sufficient information to allow a confident
discrimination of the clones is generated. Both start time and feed rate were accurately predicted
for each one of the eight clones, using feedback information from online and at-line cultivation
measurements. This is essential in an experimental facility aimed to perform screening cultivations
for clones whose phenotype is not known beforehand. The relevance of an adaptive and specific
experimental design can be seen in this case study. As illustrated in Figure 9, despite the fact that the
clone characteristics differ only minimally from each other, an experiment with a fixed start time and
feeding rate would have violated important experimental constrains (here, overfeeding).
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Figure 9. In-silico comparison of different clones; simulation based on last modelling cycle parameter
set. Initial values: glucose 10 g L−1; biomass 2 g L-1. Solid line: E. coli BW25113; dashed line: E. coli
BW25113 ∆gatZ. Feed start is simulated at 2.3 h; µset is fixed at 0.5 h−1. If the feed start and rate are
only adjusted to one strain, the cultivation of the ∆gatZ mutant would lead to overfeeding.

Additionally, the use of a macro-kinetic growth model that describes the main extracellular
dynamics of E. coli was shown to be sufficient, even though it is insufficient to describe the complex
nonlinear dynamics of the bioprocess and the different genotypes of the clones. The adaptive nature
of the framework ensures a proper prediction within the current horizon and is sufficient to assure
a robust operation of the cultivations. On average, the predicted feed start differed by less than 10 min
for the optimal one, which is in an acceptable range and is mainly caused by unobserved disturbances
in the system. If necessary, the mismatch can be further reduced by increasing the frequency of model
calibration. Furthermore, the framework provides all necessary parameters and actions to define
a wide range of alternative feet start triggers (e.g., glucose reduction or acetate consumption).

As expected, the parameter variance in general decreases with every model calibration cycle.
After the cultivation, the parameter distribution is generally very narrow. This is also reflected in the
small deviations of the simulation results of the Monte Carlo studies (Figure 10) and demonstrates the
value of the parameters for further in-silico studies. Important parameters, such as maximum glucose
uptake (qSmax), can be distinguished with statistical significance and used for clone discrimination
(Figure 7, Table 3). In this study, E. coli BW25113 ∆ompT had the largest qSmax value and E. coli BW25113
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∆gatZ the lowest one. However, some parameters could not, or only with insufficient confidence,
be identified. This hampered a distinction of some essential parameters, such as the maximal acetate
uptake rate (qAmax). Furthermore, parameter identifiability can be increased in future applications
using methods for optimal experimental design (OED) [20,32,33] or enhanced parameter identifiability
analysis [34–36].
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Figure 10. Model uncertainty based on parameter standard deviation. Monte Carlo simulation: results
of 1000 parameter estimates based on in-silico data. In-silico data were generated based on the last data
set for E. coli BW25113 ∆glcB and by a random σ of 0.15 for biomass, glucose and acetate and a σ of 0.05
for DOT.

The frequency of the parameter estimation was defined based on the availability of at-line
data (biomass, glucose and acetate), and as expected, the at-line data are decisive to achieve model
identifiability. Still, the results show that especially parameters related to glucose consumption can be
identified using only the online DOT signal. This shows that, even though in a significantly limited
manner, the framework can also be used to increase the robustness of robotic facilities that do not
have embedded at-line analytics. This significantly reduces the operative effort of the experimental
setup. The glucose consumption rate seems to be observable from the DOT signal, by which a reduced
version of the macro-kinetic model could be used to build an observer-based feeding control. Finally,
we also demonstrated that the length of the batch phase is essential to assure sufficient data before the
start of the feeding so as to allow a reliable operation of the following phases.

Some parameters drift over time or change rapidly between batch and fed-batch (Figure 7).
This could be related to the increasing information content of the growing data set and the resulting
addition of previously neglected model parameters to the subset selection. However, the variations in
the parameters caused by intracellular changes in the metabolic machinery together with heterogeneous
mutations in the population [37] are not represented in the model and could also cause such parameter
changes. Such uncovered intracellular changes may also explain the apparently poor representation of
the batch phase in the last model calibration cycle compared to earlier ones. Therefore, an iterative
recalculation of the feed is necessary to cope with disturbances in the experiments and inaccuracies in
the model prediction. Moving horizon approaches can also increase the model prediction accuracy by
allowing different parameter sets in different cultivation phases for a single clone [38].
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5. Conclusions

The operation of robotic experiments with multiple fed-batch cultivations in parallel is very
challenging even for skilled operators, since many decisions and tasks are needed at the same time.
In this work, we present an adaptive framework for conditional screening for parallel fed-batch
experiments, aiming to identify the best candidate strain for industrial scale biomanufacturing.
We demonstrate that the use of a macro-kinetic growth model in an adaptive framework using online
and at-line data information in a feedback loop is necessary to:

1. Design a specific strategy for each different clone of the conditional screening experiment.
2. Increase the robustness of the robotic operation against experimental disturbance.
3. Give an approximation of the reliability of the simulation results with respect to production

scale performance.

To our knowledge, this is the first successful model-based operation of 24 fed-batch cultivations
with as many as eight different clones in parallel including its characterization, sufficient for clone
discrimination. The results clearly demonstrate the capabilities of the framework to increase the
efficiency of combined mini-bioreactor systems with liquid handling stations to drastically reduce the
experimental time, efforts and failure rate in high-throughput bioprocess development.
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