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Abstract: This review describes the first studies on successful conversion of porcine soft-tissue
bioprostheses into viable permanently functional tissue in humans. This process includes gradual
degradation of the porcine tissue, with concomitant neo-vascularization and reconstruction of the
implanted bioprosthesis with human cells and extracellular matrix. Such a reconstruction process
is referred to in this review as “humanization”. Humanization was achieved with porcine bone-
patellar-tendon-bone (BTB), replacing torn anterior-cruciate-ligament (ACL) in patients. In addition
to its possible use in orthopedic surgery, it is suggested that this humanization method should
be studied as a possible mechanism for converting implanted porcine bioprosthetic heart-valves
(BHV) into viable tissue valves in young patients. Presently, these patients are only implanted
with mechanical heart-valves, which require constant anticoagulation therapy. The processing of
porcine bioprostheses, which enables humanization, includes elimination of α-gal epitopes and
partial (incomplete) crosslinking with glutaraldehyde. Studies on implantation of porcine BTB
bioprostheses indicated that enzymatic elimination of α-gal epitopes prevents subsequent accelerated
destruction of implanted tissues by the natural anti-Gal antibody, whereas the partial crosslinking
by glutaraldehyde molecules results in their function as “speed bumps” that slow the infiltration of
macrophages. Anti-non gal antibodies produced against porcine antigens in implanted bioprostheses
recruit macrophages, which infiltrate at a pace that enables slow degradation of the porcine tissue,
neo-vascularization, and infiltration of fibroblasts. These fibroblasts align with the porcine collagen-
fibers scaffold, secrete their collagen-fibers and other extracellular-matrix (ECM) components, and
gradually replace porcine tissues degraded by macrophages with autologous functional viable tissue.
Porcine BTB implanted in patients completes humanization into autologous ACL within ~2 years. The
similarities in cells and ECM comprising heart-valves and tendons, raises the possibility that porcine
BHV undergoing a similar processing, may also undergo humanization, resulting in formation of an
autologous, viable, permanently functional, non-calcifying heart-valves.

Keywords: heart valve bioprosthesis; anterior cruciate ligament reconstruction; porcine tendon
bioprosthesis; anti-Gal antibody; anti-non gal antibody; α-gal epitope; α-galactosidase;
bioprosthesis humanization

1. Introduction

A major objective in the bioengineering research of biomaterials implanted in humans
is the formation of bioprostheses that will gradually convert into autologous viable func-
tional tissues, and which conserve their biomechanical function, thereby extending their
durability for life. This review describes preclinical and clinical studies of a novel method
that enables the conversion of soft tissue porcine bioprostheses into human autologous
functional tissue in patients with torn anterior cruciate ligament (ACL), and further dis-
cusses the potential applicability of this method to bioprosthetic porcine heart valves (BHV).
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The limitations of the currently used soft tissue porcine bioprostheses are exemplified in
BHV implanted in young patients for the replacement of impaired heart valves.

BHV crosslinked by glutaraldehyde are the most common bioprosthesis used in
the clinic [1–3]. The implanted BHV have a limited durability of 10–20 years in elderly
recipients (>70 year), whereas the failure rate is nearly 100% within 5 years in patients
<35 years old [1–5]. The much lower durability of BHV in young vs. elderly recipients is
the result of extensive antibody response in the young against porcine antigens, resulting
in chronic inflammation that calcifies the BHV, and forms a pannus, tear, or perforation of
the valve leaflets [5–11]. This immune response results in impairment of the BHV function
and stenosis within 1–5 years post implantation of the BHV in young recipients. Due
to this limited durability, young patients are implanted with mechanical valves which
require constant anticoagulation therapy. In an attempt to decrease the anti-BHV immune
response in young recipients, the porcine BHV underwent decellularization as part of
their processing [12–16]. However, decellularization was found not to prevent antibody
production against the porcine valve antigens [17–19]. Decellularization further caused
substantial loss in valve stiffness, and resulted in significant extracellular matrix (ECM)
disruption [18–20]. It has been further suggested that the impairment of porcine BHV
in young recipients may be delayed by eliminating immunogenic carbohydrate antigens
from the BHV, such as α-gal and Neu5Gc [1,21–26]. However, as discussed below, removal
of carbohydrate antigens does not eliminate the elicited antibody production against the
multiple porcine protein antigens which are immunogenic in humans. These shortcomings
of BHV might be resolved if bioprostheses could be gradually converted post implantation
into autologous heart valves. This process of gradual, in situ reconstruction of an animal
originated bioprosthesis into a human viable, functional tissue is referred to in this review
as “humanization” of the bioprosthesis, a term previously used for in vitro humanization
of bone [27].

Humanization of porcine bioprostheses may be feasible if they are processed in a
way that enables their gradual degradation and destruction post implantation at a pace
slow enough to allow for their reconstruction by autologous cells and ECM within the
recipient. In presently used BHV such degradation is minimal, because of the extensive
complete crosslinking by glutaraldehyde which prevents penetration of macrophages and
granulocytes beyond the surface of the implant. The pace of degradation of bioprosthetic
implants may be controlled by partial (i.e., moderate), rather than complete, crosslinking
of the BHV. This partial crosslinking should be further combined with the attenuation
of the immune mediated rejection of porcine bioprosthesis by avoiding the activity of a
natural antibody, called the natural anti-Gal antibody, and by the harnessing of elicited
anti-non gal antibodies for the gradual destruction of the bioprosthesis and its subsequent
humanization. These antibodies recruit macrophages that mediate the gradual degradation
of the bioprosthesis, and enable infiltration of fibroblasts that align with the porcine
collagen fibers “scaffold”, and secret their own ECM, including collagen fibers that replace
porcine disrupted collagen fibers. The orientation and organization of the infiltrating
fibroblasts within the different parts of the BHV is directed by the porcine ECM scaffold
that is characteristic of each of the different parts of the BHV. Thus, it is suggested that
such BHV implants may undergo humanization and convert into functional viable heart
valves, consisting of cells and ECM autologous to the implant recipient. Whereas no studies
testing this humanization method have been performed with BHV in experimental animal
models, successful studies using the suggested method have been performed in monkeys
and humans implanted with porcine bone-patellar tendon-bone (BTB) bioprostheses that
replace torn ACL. The studies on the humanization of porcine BTB bioprostheses in patients
with torn ACL, which are described in this review, may be regarded as a “proof of principle”
for the efficacy of this method in in situ humanization of soft tissue porcine bioprostheses.

The ACL is the key stabilizer of the knee joint and is frequently torn in athletic activities.
Current surgery for reconstruction of torn ACL includes grafting of autologous harvested
tendon from the uninjured leg or of allogeneic cadaveric tendon. These grafting techniques
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have disadvantages and risks. ACL reconstruction with autologous tissue involves two
surgical sites, resulting in additional incisions, increased pain, longer recovery periods,
and increased morbidity. Cadaveric tendon allografts are of variable quality and the
availability of those of good quality, with long term biomechanical performance for ACL
reconstruction, is limited due to the scarcity of tissue from young healthy donors. In
addition, allogeneic grafts carry the risk of transmission of various pathogens. Therefore, it
was of interest to determine whether a porcine BTB bioprosthesis undergoing processing
that diminishes rejection by the natural anti-Gal antibody, and which is partially crosslinked
by glutaraldehyde, can undergo humanization in patients with torn ACL and become
functional, autologous viable ACL. As described in this review, such humanization of
bioprostheses is completed within ~2 years, while permanently maintaining the function
of this ligament. Based on the results of humanization of BTB in replacing torn ACL, we
suggest that it would be of interest to determine whether a similar processing of BHV may
enable humanization of these bioprostheses in young patients with impaired heart valves.

2. Anti-Porcine Antibody Response in Humans Implanted with Porcine Bioprostheses

Success in humanization of porcine bioprostheses requires the selective prevention of
anti-Gal antibody response to the α-gal epitope in these bioprostheses, and the harnessing
of anti-non gal antibodies for mediating this humanization process.

2.1. Anti-Gal Antibody

Anti-Gal is a natural antibody (i.e., antibody produced without active immunization)
constituting ~1% of immunoglobulins in humans [28–31]. Anti-Gal binds specifically
to a carbohydrate antigen called the α-gal epitope, with the structure Galα1-3Galβ1-
4GlcNAc-R [32–34]. The α-gal epitope is abundantly synthesized, and presented on cells
of non-primate mammals, lemurs, and New-World monkeys (105–107 α-gal epitopes per
cell) [33,35,36]. In contrast, Old-World monkeys, apes, and humans completely lack α-gal
epitopes, but all produce the natural anti-Gal antibody [33,35,37]. Anti-Gal binding to
α-gal epitopes on porcine viable organ xenografts (e.g., porcine heart or kidney) causes
their hyperacute rejection, in Old World monkeys and in humans, primarily as a result of
anti-Gal mediated activation of the complement system that kills endothelial cells binding
anti-Gal, resulting in collapse of the vascular bed of the xenograft [38–44]. Anti-Gal also
mediates chronic rejection of xenograft cells originating in non-primate mammals. As
many as 1% of circulating B cells in humans are capable of producing anti-Gal, however,
most of them are quiescent [45], and those along the gastrointestinal track produce anti-
Gal in response to continuous antigenic stimulation by gastrointestinal bacteria [46–48].
Upon exposure to α-gal epitopes on xenografts, the quiescent anti-Gal B cells are activated,
resulting in extensive production of elicited anti-Gal antibody, which markedly increase
titers of this antibody within 10–14 days (Figure 1).

Anti-Gal is also detrimental to porcine bioprostheses that are crosslinked by glu-
taraldehyde. Implantation of porcine BHV results in a marked increase in anti-Gal titers in
adults [49–51] and in child recipients [52], because α-gal epitopes on porcine BHV activate
many quiescent anti-Gal B cells to produce the antibody. The full extent of the robust
activation of anti-Gal B cells by α-gal epitopes on porcine tissue was shown in rhesus
monkey transplanted with unprocessed porcine patellar tendon [53]. Anti-Gal IgG titer
increased by ~1000-fold, two weeks post transplantation of this tendon (Figure 1). Within
two months, the grafted unprocessed porcine tendon had nearly completely disappeared
because of what seems to be extensive macrophage mediated destruction of the xenograft,
which was induced by the elicited anti-Gal antibody [53]. Many macrophages are re-
cruited into the xenograft by chemotactic complement cleavage peptides, produced as
a result of complement activation by anti-Gal binding to α-gal epitopes in the porcine
tissue. These macrophages bind via their Fc receptors to the Fc portion of anti-Gal on
the tendon cells and ECM and effectively degrade the porcine tissue to the extent that
it is resorbed within two months. This anti-Gal induced chronic rejection of a porcine
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xenograft was also demonstrated in cynomolgus monkeys transplanted with porcine car-
tilage [54]. Two months post transplantation, the cartilage xenografts were filled with
macrophages that degraded the tissue. However, enzymatic elimination of α-gal epitopes
from these cartilage xenografts resulted in a >90% decrease (but not complete elimination)
of infiltrating macrophages within these xenografts [54]. The detrimental role of anti-Gal
was further demonstrated with BHV leaflets immunocomplexed with anti-Gal, which
developed much more in vivo calcification than leaflets that lacked this antibody [55,56]. A
30–200 fold increase in anti-Gal titers in response to α-gal epitopes on nonprimate xenograft
was also observed in patients transplanted with live porcine islet cells [57], live mouse
cells [58,59], or with porcine BHV [49–52]. All these observations led to the conclusion that
elimination of the α-gal epitope from the porcine tissue will contribute to the success of
both xenografts and bioprostheses [1,14,15,21–26,55,56]. Such an elimination is feasible
in porcine bioprostheses by enzymatic destruction of α-gal epitopes with the recombi-
nant enzyme α-galactosidase, which cleaves the terminal galactose from the α-gal epitope
(Galα1-3Galβ1-4GlcNAc-R) [15,21–24,53,54]. The remaining N-acetyllactosamine epitope
(Galβ1-4GlcNAc-R) on the glycans does not bind anti-Gal. Alternatively, bioprostheses
may be prepared from pigs that have been engineered to lack α-gal epitopes by disruption
of the α1,3galactosyltransferase gene (α1,3GT gene also called GGTA1), which codes the
enzyme α1,3galactosyltransferase that synthesizes α-gal epitopes [25,26,60,61].
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Figure 1. Anti-Gal and anti–non-Gal IgG titers at various time points post implantation of porcine
patellar-tendon in rhesus monkeys (n = 13). Anti-Gal titers were measured by ELISA with synthetic
α-gal epitopes linked to bovine serum albumin (BSA) as solid-phase antigen. Anti-non gal antibodies
measured by ELISA with homogenate of unprocessed porcine patellar-tendon as solid-phase antigen
and with sera that were depleted of anti-Gal. The implanted tendon was unprocessed or was a bone-
patellar-tendon-bone (BTB) bioprosthesis processed by treatment with recombinant α-galactosidase
and partial crosslinking with glutaraldehyde. Error bars represent standard deviation of titers
(modified from [53]).

2.2. Anti-Non Gal Antibodies

Human anti-non gal antibodies which react against porcine antigens in BHV consist of
the natural anti-carbohydrate anti-Neu5Gc antibody and the elicited antibodies against the
multiple porcine protein antigens. Anti-Neu5Gc is naturally produced in humans against
the sialic acid, N-5-glycolyl-neuraminic acid (Neu5Gc) [62–64]. Neu5Gc is synthesized in
all apes, Old World monkeys, and many non-primate mammalian species, but is absent
in humans [65–67]. Since Neu5Gc is synthesized in pigs, as well as in many other non-
primate mammals, the natural anti-Neu5Gc antibody is considered to be detrimental to
live xenografts in humans [68,69]. For this reason, genetically engineered pigs, lacking
both α-gal epitopes and Neu5Gc, have been generated [25,26]. However, in the clinical
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trials with porcine tendon bioprostheses described in this review, anti-Neu5Gc antibody in
human serum was not found to be detrimental to the humanization of these bioprostheses.

A second group of anti-non gal antibodies are the de novo produced antibodies
against the multiple porcine immunogenic xeno-proteins of bioprostheses implanted in
humans. Most proteins in non-primate mammals are immunogenic in humans because of
the ~3–40% difference in their amino acid sequences in comparison to homologous proteins
in humans [58,70]. These antibodies are shown in Figure 2, in which human anti-non-gal
antibodies to porcine BTB proteins were studied by Western blot analysis. BTB proteins
were separated by electrophoresis in polyacrylamide gel, blotted on nitrocellulose that
was subsequently incubated with sera (diluted 1:10) depleted of the anti-Gal antibodies
by adsorption on glutaraldehyde fixed rabbit red blood cells (RBC) [71]. No anti-non
gal antibodies binding to porcine BTB proteins were detected in pre-implantation serum
(Figure 2A). However, sera obtained 6 months post implantation contained multiple anti-
bodies that bound to many porcine tendon proteins, resulting in a partial overlap between
bands of antibodies bound to proteins of close size (Figure 2B,C). Some of the porcine
proteins binding these antibodies were also observed in porcine kidneys. Anti-non-gal
antibodies were highly specific to porcine antigens, and did not bind to human BTB pro-
teins (Figure 2B,C). Production of anti-protein, anti-non gal antibodies was also observed
in sheep transplanted with decellularized porcine valve leaflets [18], and in humans in-
jected intraperitoneally with mouse xenograft cells, in the course of an experimental cancer
therapy study [58]. Similar to anti-Gal, anti-non-gal antibodies binding to bioprosthe-
sis cells and ECM are likely to activate the complement system, chemotactically recruit
macrophages by complement cleavage peptides, such as C5a, and induce gradual destruc-
tion of the implant. However, as described below, the destruction of porcine bioprosthesis
implants by the anti-non-gal antibodies can be controlled to occur at a pace that is slow
enough to enable the harnessing of these antibodies for mediating humanization of the
implant by its gradual reconstruction into a functional autologous viable tissue.
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Figure 2. Anti-non gal antibody analysis by Western blots with porcine patellar-tendon and kidney
proteins, or human patellar-tendon proteins separated by sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE). (A) Pre-implantation serum of patient P-10. (B) Serum of patient P-10,
six months post-implantation of porcine BTB. (C) Serum of patient P-03, six months post-implantation
of porcine BTB. In this analysis, the sera were diluted 1:10, and depleted of anti-Gal by adsorption on
glutaraldehyde fixed rabbit red blood cells (RBC) (modified from [71]).
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3. Hypothesis on Humanization of Porcine Bioprostheses

We hypothesized that the process of humanization of soft tissue porcine bioprosthesis
implants may involve the physiologic mechanisms of repair and regeneration observed
in wound healing [72–74]. Within few days post injury, pro-inflammatory macrophages
migrate into the injury site, and debride it of dead cells and degraded ECM. Subsequently,
pro-reparative macrophages in the debrided injury site secrete cytokines that orchestrate the
neo-vascularization and recruitment of cells which repair the injury site. The reconstruction
of human ACL by grafting of autologous or allogeneic cadaveric tendons by a process called
“ligamentization” [75–77] was found to include similar elements of the healing processes
as those in wound repair. In the ligamentization process, the fibroblasts within the implant
become necrotic, because of ischemia, and macrophages infiltrating the implant debride the
necrotic tissue and induce neo-vascularization of the implant. Fibroblasts of the recipient
repopulate the implant, and align with its collagen fibers “scaffold”. These fibroblasts
secrete collagen and other matrix proteins, ultimately resulting in gradual remodeling the
implant into an autologous tissue, with characteristic ACL structure and function.

We hypothesized that bioprosthesis implants such as porcine BTB, and possibly BHV,
may be subjected to similar processes of degradation and reconstruction as those observed
in the ligamentization of autologous or allogeneic tendons replacing torn ACL. However,
in view of the extensive anti-Gal immune response following exposure of the immune
system to porcine α-gal epitopes, we assumed that humanization of porcine soft tissue
bioprostheses requires elimination of α-gal epitopes, to prevent binding of anti-Gal to
implanted bioprostheses (Stage 1 in Figure 3). If this is not prevented, natural and elicited
anti-Gal antibodies binding to the bioprosthesis are likely to result in an extensive chronic
inflammatory reaction that accelerates destruction of the bioprosthesis, and thus prevent ap-
propriate reconstruction of the implant into an autologous ACL or heart valve. We further
hypothesized that bioprostheses should be only partially crosslinked with glutaraldehyde
(or other crosslinkers), instead of the complete crosslinking as presently performed with
porcine BHV. The partial crosslinking is expected to slow macrophage infiltration, thus
decreasing the pace of bioprosthesis degradation, and thereby enabling neo-vascularization
and migration of fibroblasts. These fibroblasts follow the macrophages and gradually
reconstruct the degraded parts of the bioprosthesis. Crosslinking glutaraldehyde molecules
function as “speed bumps” that slow, but do not prevent, macrophage infiltration (Stage 2).
The complete crosslinking, due to prolonged immersion of the bioprosthesis in glutaralde-
hyde, presently performed with porcine BHV, blocks any macrophage infiltration into
the bioprosthesis, and thus prevents the gradual degradation which is required for the
humanization process.

One of the main factors inducing macrophage infiltration into the bioprosthesis is
anti-non gal antibodies against porcine protein antigens, which are continuously produced
for as long as there are porcine antigens in the bioprosthesis (Figure 2). Binding of these
antibodies to the ECM, and to the dead crosslinked cells within the bioprosthesis, results in
complement activation [17]. One of the byproducts of this activation is the formation of
complement cleavage peptides (e.g., C5a) that induce continuous chemotactic recruitment
of macrophages into the bioprosthesis. The infiltrating macrophages bind via their Fc
receptors to anti-non gal antibodies immunocomplexed to the porcine ECM and cells and
cause the slow degradation of the bioprosthesis. The macrophages further debride the
bioprosthesis and induce gradual neo-vascularization by the vascular endothelial growth
factor (VEGF) they secrete. Fibroblasts infiltrating via the newly formed blood vessels,
align with the porcine ECM collagen fibers scaffold, and secrete their own collagen fibers
(Stage 3). Overall, the gradual degradation of the porcine tissue within bioprostheses
by macrophages recruited by anti-non gal antibodies, and the concomitant replacement
of the degraded areas with human fibroblasts and ECM were hypothesized to result in
the humanization of implanted bioprostheses into autologous biomechanically functional
viable tissue, and to prevent short or long term impairment of the bioprosthesis function
and calcification. As described below, this hypothesis was tested with porcine BTB biopros-
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theses initially in monkeys, and subsequently in patients in whom such bioprostheses were
implanted for replacement of torn ACL.
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Figure 3. Hypothesis on humanization of porcine BTB or BHV bioprostheses implanted into patients
with torn ACL or with impaired heart valve, respectively: Stage 1. Elimination of α-gal epitopes from
the bioprosthesis by incubation with recombinant α-galactosidase prevents accelerated destruction
by anti-Gal and by the macrophages it recruits. Stage 2. Partial crosslinking with glutaraldehyde
creates “speed bumps” that slow macrophage infiltration following recruitment of the macrophages
into the bioprosthesis by anti-non-gal antibodies binding to many porcine protein antigens. Colors
of the antibody molecules vary because of different specificities of anti-non-gal antibodies. The
macrophages bind via Fc-receptors to the Fc “tail” of anti-non-gal IgG molecules that interact with
the porcine antigens of the ECM, and of non-viable cells in the implanted bioprosthesis. Stage 3.
The porcine tissue is gradually degraded by the infiltrating macrophages. Fibroblasts that follow
the macrophages align with the porcine collagen fibers scaffold and secrete their collagen and
other ECM components. This concomitant destruction and reconstruction (remodulation) results
in humanization of the bioprosthesis by gradual replacement of the porcine tissue with autologous
permanently functional ACL or heart valve.

4. Processing of Porcine Patellar-Tendon into Bioprostheses, and Pre-Clinical Studies
in Monkeys

Porcine patellar-tendons and the attached patellar and tibial bone-plugs (Figure 4)
were processed to remove α-gal epitopes by incubation of the tendon for 12 h in recom-
binant (r)α-galactosidase solution [53,71]. Tendons may be of various sizes according to
the age of the pig. The complete removal of α-gal epitopes was confirmed by an ELISA
Inhibition Assay [54], displaying no binding of the monoclonal anti-Gal antibody M86 [78]
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to the homogenate of the treated tendon [71]. The patellar-tendons were washed and
partially crosslinked by incubation in 0.1% glutaraldehyde for 12 h. Subsequently, these
processed tendons (referred to as BTB bioprostheses) were washed, and residual active
aldehyde groups of glutaraldehyde were blocked with 0.1 M glycine.
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Figure 4. Bioprosthesis prepared from porcine bone-patellar-tendon-bone (length of ~10 cm and
width of ~1 cm) for reconstructing torn ACL in humans. Note the two bone-plugs of the patella and
tibia bones.

The optimal concentration of 0.1% glutaraldehyde used for partial crosslinking was
determined empirically by incubation for 12 h of α-galactosidase treated patellar-tendon
specimens in solutions containing glutaraldehyde at various concentrations, then washing
and blocking of free aldehyde groups with glycine. These tendon specimens were im-
planted in the suprapatellar pouch of rhesus monkeys. The implants were explanted after
2 months, and their histopathology evaluated. The optimal glutaraldehyde concentration
for partial crosslinking was determined as the concentration that subsequently enabled
infiltration of macrophages to the extent that they occupied 20–30% of the implant. The
crosslinked tendons were further preserved in 0.1 M glycine, and not in glutaraldehyde, to
prevent additional crosslinking. The BTB bioprostheses were stored frozen after low level
(17.8 kGy) e-Beam irradiation for final sterilization. In vitro stress tests indicated that this
processing of the porcine tendons did not affect their biomechanical characteristics [53]. It
should be noted that the optimal concentration of glutaraldehyde has to be determined
empirically for each type of tissue, to ensure the appropriate macrophage infiltration rate
in soft tissues that may contain cellular and ECM components at concentrations that differ
from those in tendons.

A pre-clinical study of BTB bioprostheses implantation was performed in 20 rhesus
monkeys, in which the safety and efficacy of the method were evaluated [53]. The ACL
in the monkeys was removed and reconstructed by using treated porcine BTB implants,
or allograft controls. Animals were stratified into 2-, 6-, and 12-month post implantation
cohorts. Porcine BTB bioprostheses and rhesus patellar-tendon allografts were found to be
incorporated by the host as functional ACL. There was no indication of toxicity with any of
the bioprostheses. Both porcine BTB and rhesus tendon allografts revealed gradual host
cellular infiltration and collagen remodeling similar to the ligamentization process observed
in humans grafted with autologous or allogeneic (cadaveric) patellar tendon. Tensile tests
of the strength of explanted transplants at the various time-points, demonstrated similar
functional integration of allografts and treated porcine BTB reconstructions, and a similarity
in gait between the two groups [53].
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Despite the elimination of α-gal epitopes by recombinant (r)α-galactosidase, titers of
anti-Gal were elevated by ~30 fold, 2–4 weeks post implantation, as measured in ELISA
assays with synthetic α-gal epitopes linked to albumin as solid-phase antigen (Figure 1) [53].
This elicited anti-Gal response occurred because the of stimulation of the immune system
to increase production of anti-Gal by α-gal epitopes on porcine RBC and bone marrow cells
encased in the small cavities of the bone-plugs. The rα-galactosidase cannot reach these
cells. However, α-gal epitopes on cells released from the bone-plugs in the course of their
remodeling activate quiescent anti-Gal B cells to produce increased amounts of anti-Gal for
a period of 2–10 weeks post implantation (Figure 1). The subsequent decrease in anti-Gal
production, to a level close to that observed in the pre-implantation serum, suggests that
the porcine bone-plugs underwent near complete remodeling into autologous monkey
bone, devoid of porcine cells, within ~3 months post implantation (Figure 1). Accordingly,
analysis of changes in anti-Gal titers post implantation of this bioprosthesis in humans
can provide information on the extent of humanization of the bone-plugs in implanted
patients at various time points [71]. The elevation in anti-Gal activity in monkeys implanted
with processed porcine BTB further supports the assumption that if α-gal epitopes are not
removed from the BTB, the increased anti-Gal activity elicited by α-gal epitopes on soft
tissue, and on RBC released from the bone cavities, will reach very high levels, and thus
destroy the bioprosthesis prior to achieving appropriate humanization of the implant.

ELISA assays for anti-non gal antibody activity could provide information on the
extent of replacement of the porcine bioprostheses with autologous ACL monkey tissue
at various time points. In these assays the solid-phase antigen was porcine tendon ho-
mogenate, and the sera assayed were depleted of anti-Gal (by adsorption on glutaraldehyde
fixed rabbit RBC, which present multiple α-gal epitopes) prior to the assay. Anti-non gal
antibody titers peaked 3–6 months post transplantation, and subsequently decreased with
the increased replacement of porcine tissue with the monkey fibroblasts and the ECM they
produced (Figure 1). Anti-non gal antibody activity did not return to the pre-implantation
level, even at 12 months post implantation, suggesting that not all porcine soft tissue was
eliminated at that time point. As described below, near complete replacement of porcine
BTB with human tissue in implanted patients, was observed by the anti-non gal ELISA
assay ~2 years post implantation.

5. Implantation of Porcine BTB Bioprosthesis in Patients with Torn ACL

The studies in monkeys indicated that treatment with porcine BTB bioprosthesis is
safe and results in remodeling and regeneration of the implant into a functional autologous
monkey tissue, as hypothesized in Figure 3. Thus, the study of possible humanization of
porcine BTB bioprostheses progressed to a clinical trial, performed in patients with torn
ACL. This clinical trial was a non-randomized FDA and Institutional Review Board (IRB)
approved Phase 1, single-center feasibility study, and included 10 consenting subjects [71].
The study group was a highly active athletic subject population. The average age was
41 years (range of 21 to 51). In each of the patients, the damaged ACL was replaced with
a porcine BTB bioprosthesis. The bone-plugs of the bioprosthesis were fixed to drilled
femoral and tibial tunnels with interference fit screws. Patients underwent periodic clinical
examinations, radiographic and MRI examinations, and blood and urine analysis for each
subject for a two-year period following surgery.

Of the six evaluable subjects, five presented with functional humanized ACL at
the 24-month post-operative time-point and satisfied all study success criteria including
functional return to a high level versus the unoperated knee at 12 and 24 months after
surgery. Athletes undergoing this surgery returned to regular training activity within
6–12 months. In all these patients, the humanized ACLs have continued and are continuing
to function for ~17 years, and thus seem to be permanently functional. The sixth evaluable
subject presented with tibial bone-plug loosening at 15-months post ACL reconstruction,
had the implant removed, and was grafted with an allograft patellar tendon. The remaining
four patients were non-evaluable subjects, who ruptured their porcine BTB bioprostheses
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due to sport injuries within the first-year post implantation, in accidents that usually cause
the rupture of autologous ACL, as well. Their implants were explanted in secondary
surgical interventions. Histologic examination of the explanted porcine BTB implants
in the four non-evaluable subjects provided insight into the cellular events within the
bioprosthesis in course of its humanization into an autologous ACL (Figure 5) [71].
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Figure 5. Histopathology demonstrating humanization stages in patients with implanted porcine BTB
bioprostheses. Black arrows: blood vessels, white arrows: macrophages. (A) Pre-implantation porcine
BTB bioprosthesis. (B) Infiltration of macrophages into the implanted bioprosthesis by extravasation.
Elongated cells are endothelial cells of a blood vessel. (C) Vascularization of the implanted BTB
in a region near macrophage infiltrates. (D) Repopulation of a section of the bioprosthesis by
the recipient’s fibroblasts that aligned with the porcine collagen fiber scaffold (above the dashed
line). Porcine collagen fibers and no cells, seen under the dashed line. (E) An advanced stage of
humanization, with repopulating fibroblasts secreting their own ECM. (F) De novo produced collagen
fibers, stained blue in Mason-trichrome staining. H&E, (×200) (modified from [71]).

The initial recruitment of macrophages (illustrated in Stage 2 of Figure 3) and the
start of neo-vascularization, which enables additional infiltration of macrophages, are
shown in Figure 5B, in which endothelial cells of a small blood vessel are surrounded by
infiltrating mononuclear cells, many of which are macrophages. The continuing migration
of macrophages through the blood vessels is further shown in Figure 5C. The right section of
this figure demonstrates an area with a high concentration of the infiltrating macrophages.
The blood vessels also enable infiltration of the recipient’s fibroblasts, which align with
the porcine collagen fibers scaffold (Figure 5D). This figure suggests that the humanization
process occurs in different stages at various areas of the implant. In the upper half of the
figure, multiple fibroblasts align with the porcine collagen fibers scaffold, whereas in the
lower part, this scaffold is devoid of infiltrating cells. The aligned infiltrating fibroblasts
secrete their own collagen fibers, and thus humanize the porcine patellar-tendon into
an autologous functional, viable ACL (Figure 5E). The newly formed collagen fibers are
stained blue by Mason-trichrome staining (Figure 5F). The blood vessels in Figure 5B,C
are likely to be the result of neo-vascularization, since the porcine blood vessels were
crosslinked by glutaraldehyde, and no anastomoses were made between the recipient
blood vessels and the implanted bioprostheses. Overall, the neo-vascularization and
macrophage infiltration observed in Figure 5B,C, the infiltrating fibroblasts in Figure 5D,
and the newly formed collagen fibers in Figure 5F, all strongly suggest the occurrence of
an active humanization process within the first year post-operatively. This suggestion is
supported by the observation of the peak anti-non gal antibody production at 6 months
post-operatively (Figure 6), implying ongoing degradation of the bioprostheses at that time.
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Figure 6. Anti-non gal IgG antibody response in three of the patients implanted with processed
porcine BTB bioprosthesis for the reconstruction of torn ACL. Anti-non gal antibody activity at various
time-points post-implantation was determined with anti-Gal depleted sera, by ELISA. Homogenate
of fragmented porcine tendon was used as solid-phase antigen. The figure describes antibody binding
at serum dilution of 1:640 (based on data from [71]).

The humanization of porcine BTB into autologous ACL appears to complete within
~2 years, as indicated by the anti-non gal antibody production at various time-points.
The titer of these antibodies in pre-implantation sera is usually very low (~1:20) and
reflects a background level (Figure 6). At the low level of pre-implantation anti-non gal
antibody activity, no significant antibody binding to porcine tendon proteins was observed
in Western blots (Figure 2). Anti-non gal antibody production, as measured by ELISA with
homogenate of porcine tendon as solid-phase antigen, and with sera depleted of anti-Gal,
peaked at ~6 months post-implantation (Figure 6). This peak anti-non gal antibody activity
reflects the immune response to the multiple porcine antigens released from the porcine
BTB that is gradually degraded by macrophages and is further shown in Figure 2. After
12 months, anti-non gal antibody titers decreased because of diminishing amounts of
released porcine antigens. By 24 months, this antibody production decreased to a level
that was within the range of the pre-implantation level, because of diminished, or absence
of stimulating porcine antigens (Figure 6). This absence of anti-non gal antibodies at
24 months, strongly suggests that most or all of the original porcine tissue was replaced by
permanently functioning human ACL tissue, thus completing the humanization process.

Porcine BTB bioprostheses processed for elimination of α-gal epitopes and partial
crosslinking, as described above, were also used in an international double blinded, ran-
domized controlled clinical trial in clinical centers in Italy, Denmark, Belgium, Spain, the
Netherlands, and South Africa, for the reconstruction of torn ACL [79]. That study was
initiated ~10 years ago with a second group of patients that included 61 subjects with
ruptured ACL, of which 32 were grafted with cadaveric allografts and 29 were implanted
with porcine BTB bioprostheses. The processing of these bioprostheses was the same as
that of the bioprostheses described above, and in Figures 5 and 6 [53,71], but included an
additional step of decellularization prior to treatment with rα-galactosidase. Six additional
subjects in the BTB bioprosthesis implanted group got a deep infection in the bioprostheses,
attributed to a water-based pathogen (Ralstonia pickettii) bioprostheses contamination that
occurred during the processing. By changing the water filter from 0.2 µm to 0.05 µm,
this contamination was prevented in subsequent processed bioprostheses [79]. Similar to
the patients in the first group described above [71], the patients in the second group [79]
presented with functional reconstructed ACL at the 24-month post-operative time-point.
Moreover, at 24 months, functional performance assessment in the bioprosthesis implanted
subjects satisfied all study success criteria, and did not reveal significant functional perfor-
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mance differences between subjects implanted with the BTB bioprosthesis and those with
cadaveric allograft. In addition, anti-Gal production increased above the pre-surgery level
at 2 weeks post surgery, and returned to the natural level after ~12 months. Anti-non gal
antibody production peaked at 3–6 months at 100 fold the background level, and subse-
quently decreased back, close to the background level after 24 months [79]. Taken together,
the lack of differences in functional performance between recipients of the porcine BTB
bioprosthesis and the recipients of cadaveric allograft tendons, and the return of anti-Gal
and anti-non gal antibody levels close to the pre-surgery level, strongly suggest that in the
second group of bioprosthesis recipients, the implants also underwent humanization into
autologous, functional, viable ACL. These humanized ACL have continued to function
with no failure for >8 years post surgery (personal communication). The similarities in
results between the study of patients in the first group [71] and those in the study of the
second group [79] further suggest that the addition of the decellularization step is not
required for successful humanization of the porcine bioprosthesis into viable human tissue.

Overall, the studies above imply that elimination of α-gal epitopes and partial
crosslinking of the porcine BTB to slow macrophage infiltration and degradation of the
implant, enable neo-vascularization, fibroblasts infiltration, and alignment with the porcine
collagen fiber scaffold. Continuous degradation of this scaffold by macrophages and its
concomitant replacement with human fibroblasts, collagen fibers and other ECM compo-
nents, result in humanization of the bioprosthesis into viable and permanently functional
autologous ACL.

6. Potential Translation of ACL Studies to Porcine BHV Implants

This section is mostly speculative, and draws possible analogies between the structures
of tendons and heart valves in order to suggest that humanization of BHV should be
studied by processing these bioprostheses according to the processing of porcine BTB,
described above. The tendon and heart valve are essentially comprised of collagen, elastin,
proteoglycans and the fibroblasts producing these ECM components [2,80,81]. However,
the collagen fibers are at a variety of orientations and concentrations in various parts
of the heart valve, compared to their uniform longitudinal orientation and their similar
concentration in tendons and ligaments. In addition, the luminal surface of the heart
valve is covered with endothelial cells, which are absent on the surface of tendons and
ligaments. Moreover, the concentration of fibroblasts and their orientation are much
less uniform in the heart valve leaflets and fibrous ring than that in the tendon. Thus,
it remains to be determined whether the collagen fibers scaffold at various parts of the
BHV can direct the orientation of the infiltrating fibroblasts for restoring the appropriate
structure and function of the heart valve, similarly to the restoration observed above in the
humanized ACL. All these assumptions will have to be studied in appropriate experimental
models. In the absence of porcine BHV humanization studies, this section discusses several
theoretical aspects regarding the future processing of porcine BHV for evaluating the
possible humanization of these bioprostheses.

6.1. Removal of the α-Gal Epitope from the Porcine BHV

Porcine heart valves were found to present multiple α-gal epitopes [21,24,82]. Ac-
cordingly, patients implanted with porcine BHV were found to display increased titers
of anti-Gal [49–52]. Removal of α-gal epitopes from porcine BHV will prevent increased
production of anti-Gal, which may be detrimental to the humanization process, because of
natural and elicited anti-Gal-mediated accelerated degradation of the bioprosthesis. The
feasibility of α-gal epitope elimination from the porcine heart valve was indeed demon-
strated by the use of rα-galactosidase of plant or microbial sources and produced in various
expression systems [21–24,53,71,83]. Confirmation for the effective removal of α-gal epi-
topes can be achieved by the ELISA Inhibition Assay, which measures the removal of
these epitopes on homogenates of the treated tissue. In the absence of α-gal epitopes on
the homogenate tissue fragments, no binding of the monoclonal anti-Gal antibody M86
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to these fragments was detected [54,71,78]. An alternative possibility is the use of heart
valves harvested from genetically engineered pigs lacking α-gal epitopes due to disruption
of the α1,3GT gene (i.e., knockout pig for the α1,3GT gene GGTA1) [25,26,55,56,60,61]. In
addition, these knockout pigs may be considered as an appropriate initial experimental
animal model since they produce the natural anti-Gal antibody, like humans [84–86]. If this
model is to be used, the donor of the BHV should be from a different evolutionary lineage
(to simulate pig/human discordance), and the studied pigs should lack natural anti-non
gal antibodies against the donor antigens.

6.2. Glutaraldehyde Crosslinking of the Porcine BHV

Partial crosslinking by glutaraldehyde is performed to prevent rapid degradation
of the BHV and to enable the slow infiltration of macrophages, which mediate gradual
degradation. It is important to identify the optimal concentration of glutaraldehyde for
this purpose. This can be determined empirically, as described for the porcine patellar-
tendon [53]. As indicated above, the concentration and orientation of fibroblasts differ in
the leaflets from that in the fibrous ring. It remains to be determined whether the different
organization and structure of the ECM in the leaflets and fibrous ring can appropriately di-
rect the humanization of the BHV implant. This objective of the reconstruction of implants
by autologous cells and ECM has also been the goal of studies with decellularized porcine
BHV [14,15,18]. Decellularization was found, however, to cause disruption of the ECM
within porcine heart valve [20] and early failure of the implant [19]. Since processing of
BHV by partial crosslinking does not involve immersion of the heart valve in a detergent
for achieving decellularization, the biomechanical integrity of BHV described in this review
may be higher than that of decellularized BHV during the in situ humanization process.
Due to the constant exposure of the BHV implant to blood flow, determining the optimal
glutaraldehyde concentration should be performed by evaluating macrophage infiltration
under conditions that simulate the blood flow through the valve with leaflet movement.
This may be feasible in a primate model in which the heart valve is replaced by porcine
BHV, devoid of α-gal epitopes and subjected to 12 h crosslinking by various concentrations
of glutaraldehyde. It should be noted that in many of the bound glutaraldehyde molecules,
one of the two aldehyde “arms” may remain free and cause toxicity and calcification
post-operatively by binding amino groups on various cells and proteins. In order to block
these free aldehyde groups, and thus decrease subsequent calcification, crosslinked BHV
have been treated with amino group presenting agents such as monosodium glutamate [87]
or amino oleic acid [88]. In the method described here, the crosslinked bioprosthesis is
immersed in glycine solution which provides the amino groups required for blocking the
free arms of glutaraldehyde. In addition to various blocking agents, several crosslink-
ing agents have been evaluated for use in BHV processing, including phytic acid [89],
polyepoxy compounds [90,91], and carbodiimide [92,93]. In all these methods, as well as
with glutaraldehyde crosslinked BHV, the implanted bioprosthesis functions as a dead
tissue prone to calcification and disruption of the collagen fibers, with no repair [94]. In
contrast, the method studied above for humanization of porcine tendon bioprostheses
may allow for reconstruction of the porcine BHV into a viable, autologous valve that
functions permanently, as it undergoes repair by infiltrating fibroblasts. The cellular and
matrix components, including resurfacing endothelium may further avoid thrombotic
complications, because they are of autologous origin. Under such circumstances, it would
be of further interest to determine whether partial application of alternative crosslinkers
instead of glutaraldehyde may improve the efficacy of the humanization process.

6.3. Monitoring Humanization of the Implanted Porcine BHV

In addition to the standard imaging methods for evaluating the function of the porcine
BHV, it may be possible to monitor the extent of porcine tissue humanization into autolo-
gous human valve tissue by measuring anti-non gal antibody production against porcine
antigens in the BHV. Based on the humanization studies with porcine tendon bioprosthe-
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sis [71], it is expected that the titer of anti-non gal antibodies will increase to a plateau for
several months, and subsequently decrease because of decreasing amounts of immunizing
porcine antigens. Completion of the humanization process will be indicated by a return
of anti-non gal antibody titer to the pre-implantation level, due to elimination of porcine
antigens.

If remodeling and regeneration of porcine BHV in a primate model is ultimately found
to be successful, clinical trials with such BHV may be considered. Success in such clinical
trials may enable the use of porcine BHV in young individuals, and thus negate the need
for constant use of anticoagulation therapy, which is currently required for implanting
mechanical valves. Hypothetically, stentless porcine BHV, which undergo humanization
may further enable their use in children, in whom humanized porcine BHV may increase
in size with the growth of patients. In addition, the use of porcine BHV that humanizes
may solve in all age groups the current problem of leaflet sagging, because of disruption
of crosslinked collagen fibers [94]. The live recipient’s fibroblasts in the humanized BHV
will provide intact collagen fibers to replace disrupted fibers. In addition to the use of
porcine heart valves as BHV, many BHV are made of bovine pericardium which contains
cellular and matrix components of dense fibrous tissue, similar to those in the tendon.
Thus, it is possible that the valve processing method of α-gal epitopes elimination and
partial crosslinking by glutaraldehyde may be considered for humanization studies of BHV
made of bovine pericardium, as well.

7. Conclusions

Partially crosslinked porcine bone-patellar-tendon-bone (BTB) bioprostheses, devoid
of α-gal epitopes and implanted in patients with torn ACL, undergo humanization into
autologous, viable, permanently functional ACL. In that process, anti-non gal antibod-
ies contribute to the recruitment of macrophages that infiltrate into the implanted bio-
prostheses. This infiltration is slowed, but not prevented, by partial crosslinking with
glutaraldehyde molecules that function as “speed bumps” within the bioprosthesis. The
infiltrating macrophages induce neo-vascularization, which enables recruitment of many
more macrophages that degrade and debride the bioprosthesis with the help of anti-non gal
antibodies binding to the BTB. Fibroblasts, following the recruited macrophages, align with
the porcine collagen fibers scaffold and secrete their own collagen and other ECM compo-
nents. The humanization process, which includes gradual degradation of the bioprosthesis
and the concomitant replacement of the destroyed porcine tissue with human fibroblasts
and ECM, is completed within ~2 years, and results in the formation of an autologous ACL
that conserves permanently the biomechanical function even in athletic patients.

Porcine bioprostheses of heart valves (BHV) contain ECM and cellular components
similar to those in tendons. Thus, studies on the possible humanization of BHV implants
that are processed by elimination of α-gal epitopes and partial crosslinking by glutaralde-
hyde, should be considered. Successful conversion of such porcine or bovine BHV into
viable, autologous, functional heart valves in experimental animal models may be followed
by studies on BHV replacing impaired heart valves in young patients. Presently, these
patients are implanted only with mechanical heart valves that require anticoagulation
therapy. In addition, porcine, bovine, or equine (and possibly other mammalian) dermis,
intestinal submucosa, pericardium, urinary bladder, blood vessels, ligaments, and other
soft tissues processed to lack α-gal epitopes, and which are partially crosslinked, should
be considered for studying as bioprostheses with high biomechanical integrity, and which
undergo gradual humanization for conversion into functioning autologous viable tissues.
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