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Abstract: Hybrid kinetic models, linking structured cell metabolic processes to the dynamics of
macroscopic variables of the bioreactor, are more and more used in engineering evaluations to derive
more precise predictions of the process dynamics under variable operating conditions. Depending on
the cell model complexity, such a math tool can be used to evaluate the metabolic fluxes in relation to
the bioreactor operating conditions, thus suggesting ways to genetically modify the microorganism
for certain purposes. Even if development of such an extended dynamic model requires more
experimental and computational efforts, its use is advantageous. The approached probative example
refers to a model simulating the dynamics of nanoscale variables from several pathways of the central
carbon metabolism (CCM) of Escherichia coli cells, linked to the macroscopic state variables of a
fed-batch bioreactor (FBR) used for the tryptophan (TRP) production. The used E. coli strain was
modified to replace the PTS system for glucose (GLC) uptake with a more efficient one. The study
presents multiple elements of novelty: (i) the experimentally validated modular model itself, and
(ii) its efficiency in computationally deriving an optimal operation policy of the FBR.

Keywords: glycolysis; tryptophan synthesis; modified E. coli; fed-batch bioreactor optimization; cell
structured kinetic model; hybrid modular model

1. Introduction

Over the last few decades, there has been a continuous trend to develop more and
more effective bioreactors [1,2] “to industrialize important biosyntheses for producing
fine chemicals used in the food, pharmaceutical, or detergent industry, by using free-
suspended or immobilized cell cultures (or enzymes) in suitable bioreactors (or enzymatic
reactors)”, as reviewed by Maria [3]. The batch (BR), semi-batch (fed-batch, FBR), a serial
sequence of BRs [4], and the continuously operated fixed-bed or three-phase fluidized-bed
bioreactors (with immobilized biocatalyst) are successfully used to conduct biosyntheses
aimed at replacing complex chemical and energetically intensive processes, as well as those
generating toxic wastes [5,6].

Applications include “fermentative processes for production of organic acids, alcohols,
vinegar, amino acids/proteins, yeast, hydrogen, food products and additives, recombinant
proteins/antibodies, etc., by using bioreactors with microbial (cell cultures) or enzymatic
reactors [1,5] and by integrating genetic and engineering methods” [7,8].

Bioreactors with microbial/animal cell cultures have been developed in simple or
complex constructive/operating alternatives as underlined in reviews by Maria [3] or
by [9,10]. In spite of their larger volumes, the continuously mixing aerated tank reactors
(CSTR), operated in BR or FBR modes, are preferred for bioprocesses requiring a high
oxygen transfer and rigorous temperature/pH control. For these reasons, an effective FBR
was used in the approached case study of TRP production.
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From the engineering point of view, in addition to the production capacity optimiza-
tion, there are several important issues to be addressed when screening among bioreactor
alternatives and operating modes: (1) the maintenance of the bioprocess optimal conditions
that ensure a high biomass activity (free or immobilized on a suitable porous support),
by supporting its growth to compensate for “its natural biodegradation, and the risk to
disintegrate the flocks or the support through mechanical shearing induced by the mixing,
thus leading to the biomass leakage and washout”; (2) development of optimal operating
policies based on an available process dynamic (kinetic) model derived from on/offline
measurements. The model-based optimal operation of the bioreactor can be applied in two
ways: (2a) “offline”, in which an optimal operating policy is determined on the basis of
an adequate kinetic model (usually a deterministic one, based on the process mechanism),
previously identified from separate experiments, and (2b) “online”, involving a simplified
dynamic model identified using a classic state parameter estimator based on the online
recorded data [11–16].

The current (default) approach to solve the model-based design, optimization, and
control problems of industrial biological reactors is the use of unstructured models of
Monod type (for cell culture reactors) or of Michaelis–Menten type (if only enzymatic
reactions are retained), which ignores detailed representations of cell processes. The
applied engineering rules are similar to those used for chemical processes and are inspired
by the nonlinear system control theory [11,17–26]. However, by accounting for only key
process variables (biomass, substrate and product concentrations), these models do not
properly reflect the metabolic changes, being unsuitable to accurately predict the cell
response to environmental perturbations by means of (self-)regulated cell metabolism.

The alternative is to use structured kinetic models, by accounting for cell metabolic
reactions and component dynamics. Such deterministic models lead to a considerable
improvement in the predictive power, at the expense of incorporating a larger number
of species mass balances, including parameters (rate constants) difficult to be estimated
from often incomplete cell data and, consequently, difficult to be used for industrial-scale
purposes [27,28].

An alternative compromise is to use hybrid models that combine unstructured with
structured process characteristics to generate more precise predictions [28–32]. The idea
of hybrid kinetic models is to interconnect groups of process variables belonging to at
least two hierarchical levels of model details. The resulting composite model is able to
simulate the bioreactor dynamics simultaneously at various levels of detail. Thus, the
dynamics of the bioreactor macroscopic state variables (i.e., species present in the liquid
bulk) is simulated concomitantly to the nanoscale variables describing the cell metabolic
processes of interest, because the macro/nanoscale variables are closely linked, as long as
some cell metabolites are imported/excreted from/in the bioreactor bulk. Even if such
a complex/extended dynamic model, including some complex cell metabolic pathways,
requires more experimental and computational efforts to be built up and identified from
structured kinetic data, the resulting hybrid (bilevel) dynamic model presents the following
major and remarkable advantages: (i) the extended model allows further in silico (model-
based) engineering developments (bioreactor design, offline optimization) of a higher
accuracy compared to the unstructured/empirical models. For instance, such a hybrid
model could better predict the optimal time stepwise continuously feeding policy of the
FBR to increase the bioreactor production. This numerical analysis is approached here;
(ii) the extended hybrid model can also be used for bioinformatics purposes, by evaluating
the influence of the bioreactor operating conditions (control variables) on the dynamics of
cell key species and metabolic fluxes involved in the synthesis of target metabolites [33–35].
Examples includes conditions for occurrence of glycolytic oscillations [36], oscillations
in the TRP-operon expression [33,37], or conditions leading to a balanced cell growth
(quasi-steady-state QSS, i.e., homeostasis [36]). All these in silico simulations can direct
the design of genetically modified microorganisms (GMO) with desirable “motifs” [38];
(iii) the extended hybrid structured models can also be used to obtain lumped (reduced)
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dynamic models of the process useful for rapid engineering calculations/process control,
by employing specific model reduction rules and a check in local operating domains (see the
pioneering works of Villadsen and Nielsen [39], as well as the large number of subsequent
contributions, such as [40–43] for nonlinear models or [44–46] for linear models). As a
result, the bioprocess complexity may be described by a succession of local reduced models
enfolded on the real process; (iv) as proven by several case studies, the hybrid bilevel
structured models allow more robust extrapolation of the bioprocess behavior. For instance,
Maria and Luta [28] optimized the mercury uptake by modified E. coli cells in an FBR;
Maria et al. [38] optimized the succinate production by modified E. coli in batch mode; see
also the reviews of Maria [3] or Dorka [47] on FBR optimization for mAbs production.

In fact, such a hybrid structured cell dynamic model must include only the essential
parts of the central carbon metabolism (CCM), by incorporating the pathways respon-
sible for the target metabolite synthesis and the lumped modules of the cell core, i.e.,
the glycolysis, the GLC uptake system (i.e., the phosphotransferase (PTS) or an equiva-
lent system), the ATP recovery system, and others (if necessary in simulations); see, for
instance, [33,34,38,48].

Special interest has been given to the accurate modeling of the glycolysis dynamics
and its self-regulation [33,36,48,49], as most of the glycolysis intermediates are starting
nodes for the internal production of several cell metabolites (e.g., amino acids, SUCC, CIT,
TRP) [3,34,35,37,38].

This need to have good-quality structured cell models to simulate the dynamics
(and regulation) of the bacteria CCM became a subject of very high interest over the
last decades, allowing in silico design of GMO-s with desirable characteristics of various
applications [31,32,50].

As a result, an impressive large number of valuable structured deterministic models
(based on a mechanistic description of the metabolic enzymatic reactions tacking place
among individual or lumped species) have been proposed in the literature to simulate
the cell CCM dynamics, including tens to hundreds of key species. Here, it is worth
mentioning the E. coli model of Edwards and Palsson [51] used by [38,48,52–56] for various
purposes, the S. cerevisiae glycolysis model of Teusink et al. [57], the JWS platform of
Olivier and Snoep [58], and the MPS platform of Seressiotis and Bailey [59] to simulate
the cell metabolism (species dynamics, and/or fluxes), to mention but a few. Simulation
platforms, such as E-cell [60,61] or V-cell [62], accounting for thousands of species and
reactions, display extended capabilities to predict the dynamics of the cell metabolism
under various conditions, based on EcoCyc, KEGG, Prodoric, Brenda, and other omics
databanks (as reviewed by Maria [32]). Worthwhile CCM-based dynamic or stationary
models were reported by Maria [35,38,48] and are schematically represented in (Figure 1).
Meritorious structured deterministic kinetic models have been reviewed by Maria [31].
Deterministic kinetic models using continuous variables have been developed by Maria [48]
for glycolysis, and by Schmid et al. [63], Chassagnole et al. [52], Costa et al. [64,65], and
Machado et al. [66] for the CCM. Such models can adequately reproduce the cell response
to continuous perturbations, with the cell model structure and size being adapted on the
basis of available omics information. Even if such extended structured models are currently
used only for research purposes, as they are difficult to be identified, it is a question of
time until they will be adapted for industrial/engineering purposes in the form of reduced
structured hybrid models. The case study discussed here proves the engineering aspect.

At this point, it is worth underlining that the cell metabolism is highly sophisticated,
involving 103–4 components, 103–4 transcription factors (TF-s), activators, inhibitors, and at
least one order of magnitude higher number of (bio)chemical reactions, all ensuring a fast
adaptation of the cell to the changing environment through complex genetic regulatory
circuits (GRC-s) [50]. The cell is highly responsive to the environmental stimuli and
highly evolvable by self-changing its genome/proteome and metabolism, mediating the
stoichiometry and the reaction rates (fluxes) of the enzymatic reactions to get an optimized
and balanced growth by using minimum resources (nutrients/substrates).
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Figure 1. Simplified representation of the CCM pathway in E. coli of Edwards and Palsson [51] (i.e., the wild cell, including 
the PTS-system). Fluxes characterizing the membrane transport [Metabolite(e) ↔ Metabolite(c)] and the exchange with 
environment are omitted from the plot (see [38] for details and explanations regarding the numbered reactions). Nota-
tions: [e] = environment; [c] = cytosol. Adapted from Maria et al. [38] with the courtesy of CABEQ Jl. The considered 72 
metabolites, the stoichiometry of the 95 numbered reactions, and the net fluxes for specified conditions are given by Ma-
ria et al. [38]. The left rectangle indicates the chemical node inducing glycolytic oscillations [33,36]. Notations [+] and [−] 
denote the feedback positive and negative regulatory loops, respectively. GLC = glucose”. See the abbreviation list for 
species names; V1–V6 = lumped reaction rates discussed in the Section 3.1.3. 
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Figure 1. Simplified representation of the CCM pathway in E. coli of Edwards and Palsson [51] (i.e., the wild cell, including
the PTS-system). Fluxes characterizing the membrane transport [Metabolite(e) ↔ Metabolite(c)] and the exchange with
environment are omitted from the plot (see [38] for details and explanations regarding the numbered reactions). Notations:
[e] = environment; [c] = cytosol. Adapted from Maria et al. [38] with the courtesy of CABEQ Jl. The considered 72 metabolites,
the stoichiometry of the 95 numbered reactions, and the net fluxes for specified conditions are given by Maria et al. [38].
The left rectangle indicates the chemical node inducing glycolytic oscillations [33,36]. Notations [+] and [−] denote the
feedback positive and negative regulatory loops, respectively. GLC = “glucose”. See the abbreviation list for species names;
V1–V6 = lumped reaction rates discussed in the Section 3.1.3.

Development of extended CCM dynamic models on a deterministic basis to adequately
simulate in detail the cell metabolism self-regulation, cell growth, and replication for
such an astronomical cell metabolism complexity is practically impossible due to the
lack of structured and comprehensive information, as well as computational limitations.
Reviews of some trials were presented by Styczynski and Stephanopoulos [67] and by
Maria [31,32,50].

In spite of such tremendous modeling difficulties, the development of structured
reduced deterministic (rather than stochastic) models [31] able to adequately reproduce the
dynamics of some CCM complex metabolic syntheses [48,67,68], as well as the dynamics of
the genetic regulatory systems [50] tightly controlling the metabolic processes, has reported
significant progress over the last few decades [69,70]. Even if they are rather based on
sparse information from various sources, unconventional statistical identification, and
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lumping algorithms [31,41,45,50], such structured reduced deterministic kinetic models
have been proven to be extremely useful for in silico analysis and characterization of the
CCM, as well as for the design of a novel GRC-s conferring new properties/functions to
the mutant cells [31,50,71].

This paper is aimed at proving the feasibility and advantage of using this novel
concept to couple an extended cell structured deterministic kinetic model with a bioreactor
macroscopic dynamic model. The resulting hybrid dynamic model was successfully used
for engineering evaluations. The applied example involves the optimization of the FBR
used for TRP synthesis.

“L-tryptophan is a high-value aromatic amino acid with important applications in
food and pharma industry. TRP is an aromatic nonpolar α-amino acid essential in hu-
mans, which is used in the cell biosynthesis of proteins, being also a precursor to the
neurotransmitter serotonin, the melatonin hormone, and vitamin PP” [72].

This paper uses a hybrid dynamic model built up by Maria [35] by linking a CCM-
based structured kinetic model with an FBR simple dynamic model. The resulting hybrid
FBR model was used to computationally determine the optimal (time stepwise) feeding
policy of the FBR used by Chen et al. [73] to study TRP synthesis using a modified E. coli
T5 strain culture. The thus obtained optimal operating policy of the FBR has proven to be
very effective, by ensuring maximization of TRP production involving a few key control
variables (i.e., the feed flow-rate and the feeding GLC concentration), and it reported better
performance compared to the non-optimally operated FBR of Maria et al. [34,35] or of
Chen [74].

The structured modular kinetic model of Maria [35,48] used in this numerical analysis
includes modules characterizing the dynamics of the concerned cell pathways involved in
TRP synthesis, i.e., glycolysis, ATP recovery system, TRP operon expression, and biomass
growth. This bioprocess model was experimentally identified and checked over extensive
experiments conducted by several authors, i.e., [33,48,52,68] for glycolysis, and by Chen
et al. [73,74] and Maria [35] for TRP synthesis. Experimental data of Chen [74] for TRP
synthesis were also used to compare the derived predictions of the hybrid model.

The present study presents multiple elements of novelty: (i) although production of
TRP by engineered E. coli has been extensively studied, “the need of multiple precursors
for its synthesis and the complex regulations of the biosynthetic pathways make the
achievement of a high product yield still very challenging” [35]. This engineering problem
was solved here by using a model-based (in silico) approach, completed with a biological
improvement of the used E. coli cell culture; (ii) the derived optimal operating policy of the
FBR is given in time intervals (the so-called “time-arcs”) of equal length, with a reduced
number, to be easily implemented. The control variables present optimal but constant
levels over each time-arc (different between time-arcs) during the FBR operation; (iii) the
used biomass culture refers to a modified E. coli T5 strain. The characteristics of this strain
were reflected in the rate constants estimated by Maria [35]. This T5 strain was produced
by Chen [75] and Chen et al. [73] to increase TRP production in their bench-scale FBR. They
performed genetic modifications of the TRP-producing “wild” strain S028. Basically, “they
removed the PTS import-system of GLC, by replacing it with a more effective one based on
the galactose permease/glucokinase (GalP/Glk) uptake system, by modulating the gene
expression of GalP/Glk. The resulting T5 strain showed an increase of the specific TRP
production rate in a nonoptimal FBR by 52.93% (25.3 mg/gDW biomass /h) compared to
the initial strain” [73] and by ca. 70% if the used FBR was optimally operated (this paper);
(iv) the results reveal the close link between the cell key metabolites and the FBR operating
conditions; (v) the used hybrid bilevel kinetic model is complex enough to adequately
represent the dynamics of the FBR state variables (i.e., the biomass growth, the GLC
depletion, and the excreted TRP and PYR in the bulk phase), as well as the dynamics of the
cell key species involved in the concerned reaction pathway modules, i.e., (a) glycolysis,
(b) ATP recovery system, and (c) TRP operon expression.
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2. E. coli T5 Strain and the Experimental FBR
2.1. The Used E. coli Strain

Although production of TRP by engineered E. coli has been extensively studied, the
need of multiple precursors for its synthesis, and the complex regulations of the biosyn-
thetic pathways make the achievement of a high product yield still very challenging. The
metabolic flux analysis [74–76] suggests that replacement of the PTS glucose uptake system
in the wild E. coli with the galactose permease/glucokinase (GalP/Glk) uptake system
can double the TRP yield from glucose. These authors obtained a promising E. coli T5
strain which, tested in an FBR, showed an increased GLC import capacity together with
an increased TRP yield by ca. 20% compared to an initial mutant S028 strain (i.e., 0.164 vs.
0.137 g TRP/g GLC), while the specific production rate was increased by 53% [73]. The
cell flux analysis by Chen [74,75] indicated (Figure 2) the doubling of fluxes responsive to
TRP synthesis. Finally, a highly productive strain T5AA was obtained, with a TRP pro-
duction rate of 28.83 mg/gDW/h [73,74,76,77]. More details on E. coli mutants presenting
alternative routes for GLC uptake were given by Chen et al. [73], Chen et al. [77], Chen and
Zeng [76], Chen [74], Li et al. [78], Niu et al. [79], and Carmona et al. [80].
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Figure 2. Comparison between the reduced schemes for GLC import systems into the cell linked to
the TRP synthesis. Adapted from [73,74] (see the acknowledgement). (A) The wild E. coli model of
Chassagnole et al. [52] and Maria [48] uses the phosphoenolpyruvate/sugar phosphotransferase (PTS)
system for the GLC uptake. (B) The modified E. coli T5 strain of Chen et al. [73] and Chen [74], studied
in this paper, uses the more efficient GLC uptake system based on galactose permease/glucokinase
(GalP/Glk). The numbers on arrows indicated the relative metabolic fluxes at QSS predicted by
Chen [74,75]. The same authors predicted a maximum theoretical yield of 0.23 g Trp/g glucose for
the wild E. coli strain and of 0.45 g Trp/g glucose for the modified T5 strain.

2.2. Experimental Bioreactor and the Recorded Kinetic Data

To estimate the rate constants of the hybrid structured kinetic model for the studied
TRP synthesis using the modified E. coli T5 strain (Figure 3), Maria [35] used the experi-
mental kinetic data of Chen [74] obtained in a lab-scale three-phase FBR operated under
the so-called “nominal” (nonoptimal) conditions displayed in (Table 1). The completely
automated FBR of 1.5 L capacity includes a large number of facilities described in detail
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by Chen [74]. The nominal operation of this bioreactor by Chen [74] requires addition of a
controlled constant feed flow rate of substrate solution (GLC) of a constant concentration,
together with nutrients, antibodies, etc. in recommended amounts (Table 1) along the entire
batch. A reduced FBR scheme can be found in the upper left corner of Figure 4.

To obtain the necessary kinetic data, samples were taken from the FBR bulk during
the batch (63 h), with a certain frequency (2 to 5 h), thus determining the concentration
dynamics of the key species of interest, i.e., X (biomass), GLC, TRP, and PYR. These
recorded data are presented in Table 1 (see also the blue points in Figures 4–8). The reader
interested in the analytical methods used to obtain the experimental data, as well as in the
details related to the bench-scale bioreactor operation and to the data acquisition system, is
referred to the PhD thesis of Chen [74] (see also the Acknowledgement).
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Figure 3. Simplified structured reaction pathway in E. coli for glycolysis (after Maria [48]), and for the TRP synthesis (the
gray area) (after Maria et al. [35,37,48]). This reaction pathway was used by Maria et al. [34,37] to derive a TRP synthesis
kinetic model. Connection of the TRP synthesis to glycolysis is realized through the PEP node [33,37]. The modular model
structure also includes the synthesis of adenosine cometabolites ATP, ADP, and AMP, as part of the ATP recovery system
(the pink rectangle in the figure). Notations: GLC(ex)= glucose in the cell environment. Species abbreviations are given
in the abbreviations list. Species in parenthesis are not explicitly included in the glycolysis model. Italic letters denote
the enzymes. Squares include notations of enzymatic reactions V1–V6 included in the glycolysis model (Tables 2 and 3).
Adapted from [48] with the courtesy of CABEQ Jl., and completed according to the Maria [35] kinetic model.
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Figure 4. Model-based predictions of the tryptophan (Trp) concentration dynamics in the same
FBR using the modified E. coli T5 strain, but operated in two alternatives: (i) (2, black) optimal
operation derived in this paper (i.e., variable fed [GLC] and variable feed flow rate), or (ii) (1,
blue) simulations [35] and the experimental data (•, blue) of Chen [74] for the nominal, nonoptimal
operation of Table 1, with a constant fed [GLC] and a constant feed flow rate. (Left corner) A
simplified scheme of the used FBR with suspended biomass (small points).
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Figure 5. Model-based simulated trajectories (-) for the glycolytic key species (PYR, F6P, FDP, ATP,
and PEP) in the modified E. coli T5 strain for the FBR operated in two alternatives: (i) (2, black) optimal
operation derived in this paper (variable fed [GLC] and variable feed flow rate), and (ii) (1, blue) the
experimental data (•, blue) of Chen [71] recorded under nominal, nonoptimal operation of Table 1,
with a constant fed [GLC] and a constant feed flow rate. Species abbreviations are given in the
abbreviations list.
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Figure 7. Top curves. The time stepwise optimal feeding policy (2, black) of the GLC concentration
in the bioreactor c f eed

glc,j (j = 1, . . . , 5 time-arcs), derived in this paper (variable fed [GLC] and variable
feed flow rate). Comparison is made with the experimental FBR (1, blue) operated under the nominal
(nonoptimal) operating conditions of Table 1, with a constant feed flow rate, and with a constant
GLC concentration in the feed. Both cases use the same modified E. coli T5 strain. (Bottom curves).
Model-based simulated trajectories (—) of glucose (GLC) in the bioreactor bulk for the FBR operated
in two alternatives: (i) (2, black) optimal operation derived in this paper (variable fed [GLC] and
variable feed flow rate), and (ii) (1, blue) experimental data (•, blue) of Chen [71] derived under
nominal, nonoptimal operation of Table 1, with a constant fed [GLC] and a constant feed flow rate.
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Table 1. The nominal initial operating conditions of the FBR used by Chen [74] to collect the kinetic data of the TRP synthesis
using a suspended culture of genetically modified E. coli cells (T5 strain). More experimental details were given by Chen [74].

The FBR Initial Conditions

Parameter Nominal (Initial) Value Obs.

Bioreactor type DASGIP parallel bioreactor system,
Eppendorf (completely automated) [74]

Bioreactor mixing Both mechanical and sparkling gas (O2) [74]

Oxygen supply Pure oxygen sparging [74]

Biomass initial concentration (cx ,0)
(g DW·L−1)

0.16
Experimental data of Chen [74]

(Figure 8c)
With the courtesy of Chen [74]

Batch time (tf ) 3780 min (63 h)

Cell content dilution rate (µ),
(1/min) 1.25× 10−5–0.015

Estimated
0.0017 [52]

Feed flow rate (FL ) 0.015 L h−1 Maintained quasi-constant

Bioreactor liquid initial volume (VL,0) 0.5 L (initial) Variable, due to the continuous feeding of
the FBR

Glucose feeding solution concentration c f eed
glc

3330.5 mM Maintained constant by Chen [74]

Initial glucose concentration in the
bioreactor cext

glc at (t = 0)
194.53 mM

Experimental data of Chen [74] (Figure 7) [74]

Temperature/pH 37 ◦C/6.8 [74]

Bioreactor capacity [max(VL )], and
facilities

3 L, automatic control of pH, DO,
temperature [74]

Biomass density (ρx ) 565.5 g DW·L cytosol−1 [52]

Initial concentrations for the glycolytic
cell species (in mM)

cF6P(t = 0) = 0.6003
cFDP(t = 0) = 0.2729
cPEP(t = 0) = 2.6729
cPYR(t = 0) = 2.6706

cATP(t = 0)= 4.27
[AMDTP]total = 5.82

Measured by Chassagnole et al. [52]

Initial concentrations for the TRP
synthesis operon species (in µM)

cOR (t = 0) = 0.01
cOT (t = 0) = 3.32 (nM)
cMRNA (t = 0) = 0.01
cE(t = 0) = 928 (nM)

Measured by Bhartiya et al. [81]

cTRP(t = 0) = 0.164 This paper; data of Chen [74]



Bioengineering 2021, 8, 210 11 of 33

Table 2. Mass balance of the cell glycolytic key species and of the FBR control variables (GLC, FL) for the optimally operated
(time stepwise feeding policy) FBR, adapted from Maria [33–35,37,48].

Species Mass Balance Auxiliary Relationships and Estimated Rate Constants

Glucose
dcext

glc
dt =

FL,j

VL(t)

(
c f eed

glc,j − cext
glc

)
− cx(t)

ρx
V1

c f eed
glc,j = control variables to be optimized; j = 1, . . . , Ndiv (equal

time-arcs)
cext

glc (t = 0) is given in (Table 1) for the nominal FBR of Chen [74]
For the optimal FBR with adopted Ndiv = 5, the feeding policy is

(Footnote a):

c f eed
glc,j =



c f eed
glc,0 if 0 ≤ t < T1

c f eed
glc,1 if T1 ≤ t < T2

c f eed
glc,2 if T2 ≤ t < T3

c f eed
glc,3 if T3 ≤ t < T4

c f eed
glc,4 if T4 ≤ t < t f

(i) camp + cadp + catp = camdtp = constant [33,86,87]
(ii) cadp results from solving the thermodynamic equilibrium

relationship catpcamp = Kc2
adp , i.e.,

c2
adp

K
catp

+ cadp − camdtp + catp = 0
(iii) µ = cell dilution rate (Table 1)

(iv) The initial values of cell species concentrations are given in
Table 1 (see also footnote (b))

(v) The lump ctca of Figure 3 includes species belonging to the
TCA cycle; there are no measurements on this lump, so it was

excluded from data fitting
(vi) The adopted value for ytrp by Maria [35] is

ytrp = rsyn,trp/rsyn,pep = 1/43.63 (at QSS) [88]; ytrp was
re-estimated from experimental data by Maria [35], resulting in

ytrp = 0.467
(vii) See Table 3 for the V1 − V6 flux expressions

Species inside the cell
dc f 6p

dt = V1 −V2 − µ c f 6p

dc f dp
dt = V2 −V3 − µ c f dp

dcpep
dt = 2 V3 −V4 − ytrp(2 V3) − µ cpep

dcpyr
dt = V4 −V5 − µ cpyr

dcatp
dt =

−V1 −V2 + 2 V3 + V4 −V6 − µ catp

Liquid volume dynamics
d VL

dt = FL,j; VL(t = 0) = VL,0 in Table 1; j = 1, . . . , Ndiv(equal
time-arcs)

(viii) For the adopted Ndiv = 5, the feeding policy is (see
footnote (a))

FL,j =


FL,0 if 0 ≤ t < T1
FL,1 if T1 ≤ t < T2
FL,2 if T2 ≤ t < T3
FL,3 if T3 ≤ t < T4
FL,4 if T4 ≤ t < t f

Biomass dynamics
dcx
dt =

µx cglc cx

(ax exp(bx t))Nx ; cx(t = 0) = cx ,0 in (Table 1)

(ix) The biomass growth inhibition corresponds to a modified
Contois model [85]

The estimated rate constants by Maria [35] are
µx = 1.05·10−4 (1/min·mM),

ax = 10.19,
bx = 1.8036·10−2 (1/min),

Nx= 7.334 × 10−2

(a) For the adopted Ndiv = 5, j = 1, . . . , the Ndiv time-arc approximate switching points are T1 = 12.5 h, T2 = 25 h, T3 = 37.5 h, T4 = 50 h,
t f = 63 h. The FL,0 − FL,4 time stepwise feed flow rates are determined together with the other control variables (i.e., c f eed

glc,j) to ensure the
FBR optimal operation. (b) The initial concentrations of cell species (F6P, FDP, PEP, PYR, ATP) and of the biomass are given in Table 1.
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Table 3. Reaction rate expressions V1–V6 of the hybrid model of Table 2, describing the dynamics of the cellular glycolytic
species according to the kinetic model of Maria [35,48] and of Chassagnole et al. [52]. In the present study, this glycolysis
kinetic model was modified by replacing the PTS system (V1 flux) for the GLC uptake with those of the mutant T5 E. Coli
strain tested in this paper. The model rate constants were estimated by Maria [46] to fit the experimental data of Chen [71]
(presented in Table 1 and Figures 4–8). Species abbreviations are given in the abbreviation list.

Reactions Rate Expressions Estimated Rate Constants
(Units in mM, min)

GLC import system
glc + pep→ f6p + pyr

pyr + atp→ pep + adp + h
glc + atp→ f6p + adp +h

Modification for the T5 strain
V1 = ruptake = ρx/cx ·

rmax
uptakecext

glc(
KPTS,a1+cext

glc

)
rmax

uptake = 1.1191 (1/min)
KPTS,a1 = 3487.5 (mM)

KPTS,a2 = 0
KPTS,a3 = 0

f6p + atp→ fdp + adp + h
V2 = rPFK =

(V1/V2m) cδ
f 6p(

Kδ
2m+Kδ

2m

[
Kamp

R
Katp

T

]n( catp
camp

)n
+cδ

f 6p

)
δ = 1.0437

n = 2
V2m = 0.062028 (mM/min)

K2m= 6.16423 (mM)
Kamp

R = 25 µM
Katp

T = 60 µM

fdp + 2 adp (+ 2 nad + 2 p)↔ 2 pep
+ 2 atp (+ 2 nadh + 2 h + 2 h2o) V3 = k3cα

f dp − k3pcβ
pep

k3 = 4602.3 (1/min)
k3p = 31.917 (1/min)

α= 0.05
β= 3

pep + adp + h→ pyr + atp
V4= rPK =

(V1/V4m)c
γ
pep(

Kγ
4m+Kγ

4m

[
K f dp

R
Katp

T,PK

]m(
catp
c f dp

)m

+cγ
pep

)
γ = 1.331879

m = 4
V4m = 0.1333655 (mM/min)

K4m= 1.146443 (mM)
K f dp

R = 0.2 (mM)
Katp

T,PK = 9.3 (mM)

pyr→ products (accoa, cit, succ, lac,
etoh, ac, . . . ) V5 =

k5c
nconsum,pyr
pyr

Kconsum,pyr+cpyr

k5= 693.3544 (1/min)
Kconsum,pyr = 395.525 (mM)

nconsum,pyr= 2.6814

atp→ adp +h V6 = k6catp k6= 552.38 (1/min)

2 adp↔ atp + amp

catpcamp = Kc2
adp K = 1

(i) Termonia and Ross [86,87] indicated experimental evidence of a very fast reversible
reaction catalyzed by AKase, with the equilibrium being quickly reached

(ii) The k6 constant takes values according to the microorganism phenotype (related to the
gene encoding the enzyme ATPase that catalyzes this reaction)

(iii) camp + cadp + catp = camdtp = constant [86,87]
(iv) cadp results from solving the following thermodynamic equilibrium relationship:

catpcamp = Kc2
adp, i.e., c2

adp
K

catp
+ cadp − camdtp + catp = 0.
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Bioreactor type 
DASGIP parallel bioreactor 
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Bioreactor mixing 
Both mechanical and sparkling 

gas (O2) 
[74] 

Oxygen supply Pure oxygen sparging [74] 
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Estimated 
0.0017 [52] 

Figure 8. (a). The time stepwise optimal policy of the feed flow-rate (FL), (j = 1, . . . , 5 time-arcs) in
the bioreactor (—) for the FBR operated in two alternatives: (i) (2, black) optimal operation derived
in this paper (variable fed [GLC] and variable feed flow rate), and (ii) (1, blue) trajectories under
nominal, nonoptimal operation of (Table 1), with a constant fed [GLC] and a constant feed flow
rate. Both cases use the same modified E. coli T5 strain. (b) The liquid volume (VL) dynamics in
two alternatives: (i) using the optimal policy of the variable feed flow rate (FL) in the bioreactor (2,
black) derived in this paper, or (ii) using (1, blue) the nonoptimally operated FBR under the nominal
conditions of Table 1, with a constant fed [GLC] and a constant feed flow rate. (c). The model-based
predictions of the biomass (X) concentration in the same FBR with using the modified E. coli T5 strain,
but operated in two alternatives: (i) (2, black) optimal operation derived in this paper (i.e., variable
fed [GLC] and variable feed flow rate), or (ii) (1, blue) simulations and the experimental data (•,
blue) of Chen [71] under nominal, nonoptimal operation of Table 1, with a constant fed [GLC] and a
constant feed flow rate.

3. Bioprocess and Bioreactor Dynamic Model
3.1. The Structured Hybrid Kinetic Model of Maria

Being a metabolite of high practical importance, intense efforts have been invested
to decipher the synthesis regulation mechanism of TRP in various microorganisms, for
deriving an adequate dynamic model of its QSS or oscillatory synthesis to be used for
engineering purposes. Some results include the deterministic kinetic models of [37,81],
while other studies [63] rather focused on determining correlations among flux distribution,
flux control, and the optimized enzyme amount distribution, by employing a reduced
kinetic model, not able to simulate most CCM reaction pathways.

As the TRP synthesis regulation is a very complex process, a significant number of sim-
plified kinetic models with lumped terms (species and/or reactions) have been proposed
in the literature (see the review of Maria et al. [34,37]). Kinetic modeling of this complex
process is even more difficult because, as proven by Xiu et al. [82,83], Chen et al. [84], and
Maria [33,36,37], under certain FBR operating conditions, TRP synthesis can become an
oscillatory process. Oscillations in the TRP synthesis are produced due to the concomi-
tant activation and high-order repression of the TRP operon expression, together with
a nonlinear demand for end product, making its expression cyclic. The cell growth and
dilution rates (related to the cell cycle and the liquid residence time in a (semi-)continuous
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bioreactor) strongly influence the TRP system stability, as proven in silico by Maria [33]
and Maria et al. [34].

The adopted hybrid kinetic model is that of Maria [35] built up using the kinetic data
of Chen [74] collected in an FBR operated under the nominal (nonoptimal) conditions of
(Table 1), using the T5 strain of E. coli. This complex structured kinetic model (presented
in Tables 1, 2 and 4) is a deterministic one. The CCM-based model core is the glycolysis
dynamic model of Maria [48] validated using literature data.

Table 4. The mass balances in the kinetic module [c]. Species mass balances in the TRP operon
expression kinetic model of Bhartiya et al. [81] were modified by Maria et al. [37] to better fit the
experimental data, as follows: (i) PEP (from glycolysis) is the substrate of TRP synthesis and the
node coupling this synthesis with the glycolysis [a] module; (ii) a novel model for the TRP synthesis
inhibition was proposed and identified from experiments. The model rate constants were estimated
by Maria [35] to fit the experimental data of Chen [74] (Figures 4–8) collected in the FBR using the
modified E. coli T5 strain, under “nominal” operating conditions (Table 1). Species notations (TRP,
OR, OT, mRNA, and E) are given in the abbreviation list. QSS = quasi-steady state.

Rate Expression Kinetic Model Parameters
(Units in mM, µM, min)

dcOR
dt = k1cOTC1(ctrp)− kd1 cOR − µ cOR

dcMRNA
dt = k2cORC2(ctrp)− kd2 cMRNA − µ cMRNA

dcE
dt = k3 cMRNA − µ cE

C1(ctrp) =
KnH

i,1

KnH
i,1 + cnH

trp
; C2(ctrp) =

K1.72
i,2

K1.72
i,2 + c1.72

trp

k1 = 59.062, 1/min·mM
kd1 = 0.5443, 1/min
k2 = 17.796, 1/min
kd2 = 14.094, 1/min
k3 = 1.157, 1/min

Ki,1 = 3.53, µM
nH = 1.92

Ki,2 = 0.04, µM
(see footnote (d))

dctrp
dt =

(
cpepcE

)g µT ctrp

(aT exp(bT t))NT
− µ ctrp

(see footnotes (a)–(d))

g = −0.32
µT = 0.36365, 1/min

aT = 3.9923
bT = 0.017153, 1/min

NT = 0.071515
(a) The adopted modification for the TRP synthesis inhibition replaces the C3 variable of the Bhartiya et al. [81]
model (not displayed here, see [35]) with a modified Contois model, including a power-law inhibition with TRP
growth at the denominator. (b) The nitrogen source in the TRP synthesis is considered in excess and included in
the model constants. (c) To be connected to the glycolysis kinetic model, the PEP species dynamics, generated
by the glycolysis model, was explicitly included in the TRP synthesis rate as a substrate [35]. (d) The initial
concentrations of the TRP operon species (OR, mRNA, E, and TRP) are given in Table 1.

To keep the bilevel hybrid model of Maria [33,35] adapted here with a reasonable
extension, as well as to facilitate estimation of its rate constants, this dynamic model
accounts for only the key species included in four linked cell reaction modules [a–c, X]
responsible for the TRP synthesis. Three modules concern the following cell processes [35]:

Module [a]—glycolysis with a modified GLC uptake system (due to the used modified
E. coli T5 strain);

Module [b]—ATP recovery system;
Module [c]—TRP operon expression.
The fourth kinetic module concerns the biomass [X] growth dynamics in the FBR bulk.

This last module is connected to the cell processes, by influencing the GLC dynamics in the
bulk phase through the X growth rate (Table 2), which, in turn, influences the GLC import
flux V1 into the cell (Table 3). The dynamic model is hybrid (bilevel) because it connects
the macro state variables of the FBR (biomass X, GLC, TRP) with the cell nano-level key
variables (GLC, F6P, FDP, PEP, PYR, and ATP; Tables 2 and 3) of the glycolysis and those
(TRP, OR, OT, and mRNA) of the TRP operon expression (Table 4). All four kinetic modules
are linked to the macroscopic FBR dynamic model through the formulated mass balances
(Tables 1, 2 and 4).
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The thus obtained hybrid extended kinetic model includes a large number (49) of
rate constants. To facilitate the estimation rule and to avoid suboptimal estimates (i.e.,
rate constants, locally valid in the operating parametric space), only (27) independent rate
constants were accounted for in the estimation step [35]. Moreover, a step-by-step esti-
mation methodology was applied by Maria [35], by decomposing the estimation problem
in successive subproblems of smaller dimensions, by taking advantage of the modular
construction of the cell FBR hybrid model. The estimated rate constants by Maria [35] were
validated by fitting the experimental key species kinetic curves of Chen [74] recorded in the
FBR of (Table 1) over a long batch (63 h), using the novel E. coli T5 strain of Chen et al. [73],
as well as by comparison with the literature data reviewed by Maria [34,36,37,48,49]. In
short, the methodology used by Maria [35] to estimate the adopted bilevel modular dy-
namic model consisted of a sequence of trial-and-error steps, by adjusting the literature
information (reaction rate expressions and constants characterizing the dynamics of cell
metabolic species of interest) to fit the available experimental kinetic data recorded from
the above-described FBR. The sequence of computational steps is summarized below.

3.1.1. The Biomass [X] Growth

The cell culture in the bioreactor is considered to be homogeneous and introduced as a
lump “X” in the FBR model (Table 2). A modified Contois model, modified by considering
a power-law inhibition with the first-order growing biomass at the denominator [85], was
proven to be the most adequate vs. the experimental data (Figure 8c). To overcome the
absence, at this modeling stage, of the predicted values of [X] and [GLC] (coming from the
FBR coupled with the glycolysis dynamic models), simulations of the biomass dynamics
over the batch were performed using the experimentally recorded [X] and [GLC] species
trajectories of Chen [74], interpolated with the cubic splines functions (INTERP1 facility of
MatlabTM package). The estimated kinetic model of the biomass is given in Table 2.

3.1.2. The FBR Dynamic Model

The FBR ideal model of Maria [35] was adopted to describe the key species dynamics
during the batch at a macroscopic level (in the liquid bulk phase). The bioreactor initial
conditions and the time stepwise dynamics of the control variables (added GLC substrate
solution concentration, and the feed flow rate FL) were further explored to obtain the
desired optimum operation of the studied FBR.

The bioreactor ideal model main assumptions were as follows [2]: (i) isothermal,
iso-pH, iso-DO operation; (ii) it is self-understood that nutrients, additives, antibiotics,
and pH-control compounds are added initially and during FBR operation to ensure the
optimal grow of the biomass, as indicated by Chen [74]; (iii) oxygenation with pure oxygen
in excess over the batch to ensure an optimal biomass maintenance, and to contribute to the
liquid homogeneity; (iv) perfectly mixed liquid phase (with no concentration gradients, see
Table 1), of a volume increasing according to the liquid feed flow rate time-varying policy;
(v) the limits of the liquid feed flow rate (FL,j in Table 2) are adjusted to not to exceed the
bioreactor capacity (Max(VL) in Table 1); (vi) negligible mass resistance to the transport of
oxygen and compounds into the liquid and biomass flocks (if any); (vii) GLC substrate
is initially added in the bioreactor and during the batch according to an optimal feeding
policy to be determined; (viii) the feed flow rate during the batch FL,j is varied according to
an optimal feeding policy to be determined for every “time-arc” index J in Equation (5).

From a mathematical point of view, in a general form, the FBR dynamic hybrid model
(Tables 1, 2 and 4) translates to a set of 12 differential mass balances (ODE set) written as
below for the key species of the FBR.:

Species in the bulk-phase:

dci
dt

=
FL,j

VL

(
cinlet,i,j − ci

)
± ri(c(t), c0, k) ; ci,0 = ci(t = 0), (1)
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where index “i” denotes species present in the FBR bulk (GLC, TRP, PYR, X); index “j”
denotes the FBR feeding time-arcs; j = 1, . . . , Ndiv.

Key species inside cells:

dci
dt

= ± ri(c(t), c0, k) − µ ci ; ci,0 = ci(t = 0), (2)

where index “i” denotes species inside cells, i.e., GLC, F6P, FDP, PEP, PYR, and ATP for
glycolysis and OR, mRNA, E, and TRP for TRP operon expression.

Biomass in the bulk phase:

dX
dt

= rx(c(t), cx,0, k) ; cx,0 = cx(t = 0). (3)

Liquid volume dynamics:

dVL
dt

= FL,j ; VL,0 = VL(t = 0). (4)

In Equation (1), cinlet,i,j refers to the concentration of the species index “i” in the feeding
solution, constant over the time interval index “j” (j = 1, . . . ,Ndiv). In the present case, only
GLC is fed into the FBR during the batch. The reaction rate ri expressions together with the
associated rate constants and other details are given in Tables 1 and 4. In Equations (1)–(3),
c is the vector of species concentrations, co is the initial value of c (at time t = 0) given
in (Table 1), and is the vector of the model rate constants. The reactor content dilution
(determined by the increasing VL in Equation (4) is due to the continuously added FL term.

In Equation (1), GLC and FL are the control variables. The optimal FL,j to be determined
is given for time stepwise values over j = 1, . . . , Ndiv time-arcs. For instance, for the adopted
Ndiv = 5, j = 1, . . . , Ndiv time-arc switching points given in Equation (5) are T1 = t f /Ndiv
(12.5 h), T2 = 2 t f /Ndiv (25 h), T3 = 3 t f /Ndiv (37.5 h), T4 = 4 t f /Ndiv (50 h), and t f = 63 h.

Feed flow-rate policy:

FL,j =


FL,0 if 0 ≤ t < T1
FL,1 if T1 ≤ t < T2
FL,2 if T2 ≤ t < T3
FL,3 if T3 ≤ t < T4
FL,4 if T4 ≤ t < t f

. (5)

Similarly, for the adopted Ndiv = 5 equal time-arcs, the feeding policy for the GLC
solution concentration is

c f eed
glc,j =



c f eed
glc,0 if 0 ≤ t < T1

c f eed
glc,1 if T1 ≤ t < T2

c f eed
glc,2 if T2 ≤ t < T3

c f eed
glc,3 if T3 ≤ t < T4

c f eed
glc,4 if T4 ≤ t < t f

. (6)

To not complicate the engineering calculus, the main assumption in Equations (5) and (6)
is the following: on each time stepwise “arc”, index j = 1, . . . , Ndiv, the control variables
FL,j and c f eed

glc,j are kept constant. Of course, the values on each time-arc do not have to be
necessarily equal to each other.

The “nominal” FBR nonoptimal operating conditions. Under the conditions of Chen [74],
the control variables FL,j and c f eed

glc,j are kept constant on each time-arc at the nonoptimal values
given in (Table 1). Moreover, they are also the same, i.e., FL,0 = FL,1 = FL,2 = FL,3 = FL,4, and
c f eed

glc,0 = c f eed
glc,1 = c f eed

glc,2 = c f eed
glc,3 = c f eed

glc,4.



Bioengineering 2021, 8, 210 17 of 33

FBR optimal operating conditions. By contrast, under the optimal conditions studied
in this paper, the suitable time stepwise values FL,0 − FL,4 and those of c f eed

glc,0 − c f eed
glc,4 are to

be determined together (simultaneously) to reach the optimum of an objective function
(maximum of TRP production here). Multi-objective FBR optimization is also possible
(see [89,90]) but is beyond the scope of this paper.

3.1.3. Module [a] Glycolysis and Module [b] ATP Recovery System

Once a dynamic model able to predict the biomass dynamics in the FBR was ade-
quately fitted (Section 3.1.1), two other kinetic modules were considered for rate constant
estimation, i.e., glycolysis *module [a]) and ATP recovery system (module [b]). Their
reduced reaction pathways are given in Figure 3, while the reaction rate expressions are
given in Tables 2 and 3. The model of Maria [35] was adapted on the basis of the literature
information [33,34,37,48,52], by performing only a few modifications in the reaction rate
expressions to reflect the modified GLC import system of the modified E. coli T5 strain
schematically represented in Figure 2B. The two cell modules [a] and [b] are interconnected
by sharing the ATP species, while the module [a] and the [X] (kinetic) module are inter-
connected by sharing [X] and [GLC] species concentrations. Thus, the dynamics of species
belonging to the three interconnected modules ([a], [b], and [X] kinetic model]) can be
simulated concomitantly, according to the reduced reaction pathway of Figure 3. At this
point, by adopting the rate constants from the literature for the coupled modules [a], [b],
and [X], as a first guess (self-understood including the approximate PEP consumption),
Maria [35] re-estimated the all rate constants of the ([a], [b], and [X]) kinetic models to fit
the experimental kinetic data (i.e., the species dynamic trajectories recorded by Chen [74]
in the FBR of Table 3) under the “nominal” operating conditions. The results are presented
in Tables 1 and 2. For supplementary details, the reader is referred to Maria [35].

In short, glycolysis module [a] is a determined sequence of 10 enzyme-catalyzed
reactions (see the reduced pathways of Figures 2 and 3 with only six lumped reactions) that
convert glucose (GLC) into pyruvate (PYR). The free energy released by the subsequent
TCA originating from PYR is used to form the high-energy molecules ATP and NADH
that support the glycolysis and several enzymatic syntheses in the cell [91]. Adequate
modeling of the glycolysis dynamics is important because the glycolytic intermediates
provide entry/exit points to/from glycolysis. Thus, most of the monosaccharides, such
as fructose or galactose, can be converted to one of these intermediates, further used in
subsequent pathways. For example, PEP is the starting point for the synthesis of essential
amino acids (AAs) such as tryptophan, cysteine, arginine, and serine [37,52,88,92].

Due to the tremendous importance of glycolysis in simulating the cell CCM, intense
efforts have been made both in its experimental study and in modeling the dynamics of this
process specifically in bacteria (short reviews [33,48,93]). The large number of glycolysis
reduced or extended kinetic models proposed in the literature (review [48]) present a
complexity ranging from 18–30 species, including 48–52 reactions, with a total of 24–300 or
more rate constants. Most of these models are, however, too complex to be easily identified
from (often) few available kinetic data and too complex to be further used for engineering
calculations. Moreover, with a few exceptions, most of them cannot satisfactorily reproduce
the occurrence of glycolytic oscillations on a mechanistic basis [33,36].

The adopted glycolysis kinetic model of Maria [33,48] even if of a reduced form, by
accounting only for nine key species in lumped reactions including 17 easily identifiable
rate constants belonging to V1–V6 metabolic fluxes (Figure 3, and Tables 2 and 3) has
been proven to adequately reproduce the cell glycolysis under steady-state, oscillatory,
or transient conditions according to (i) the defined glucose concentration level/dynamics
in the bioreactor bulk (liquid) phase, (ii) the total A(MDT)P cell energy resources, and
(iii) the cell phenotype characteristics related to the activity of enzymes involved in the
ATP utilization and recovery system (here denoted as module [b]). Detailed discussions
about the operating conditions leading to glycolytic oscillations were extensively presented
by Maria [33,36,37]. For this reason, the FBR and the glycolysis dynamic models have to be
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considered together (Tables 2 and 3) when simulating the dynamics of the [GLC] in the FBR
bulk phase and of the metabolites of interest (F6P, FDP, PEP, PYR, and ATP) into the cell. The
adopted rate expressions for the glycolysis main fluxes V1–V6 presented in Tables 2 and 3
are those of the basic model, except those of the GLC import system (V1), modified to
match the T5 E. coli strain kinetic data [35]. It is worth mentioning that, even if not the
case here, under certain conditions (i.e., external/environmental and internal/genomic
factors), glycolysis and TRP synthesis can become oscillatory processes [34,36,37,48,49].
According to the experimental data, the produced TRP (module [c]) is excreted (Figure 3)
through a process described by Chen [74]. The PYR key metabolite concentration in the
cell is regulated through a complex mechanism [94,95], with the excess being excreted, as
experimentally proven by Chen [74].

As revealed by the reactions in the pink square of Figure 3, the efficiency and the
dynamics of the ATP recovery system are essential for the reaction rates of the whole CCM,
as long as ATP plays a catalytic–chemical energy provider role. As underlined by Maria
et al. [33,36,37], among the involved parameters, an essential factor is the k6 reaction rate
(determined by the ATPase characteristics in Figure 3), included in the glycolysis model
of Tables 2 and 3. The involved enzymes characteristics are directly related to the cell
phenotype (i.e., cell genomic) controlling the [AMDTP] total energy resources level. To
not complicate the simulations, the [AMDTP] level was kept unchanged in the present
analysis at an average value given in Table 1, as suggested by Chassagnole et al. [52]. The
adopted kinetic model for the glycolysis (i.e., the V1–V6 reaction rates of Figure 3 and
Tables 2 and 3) and the equilibrium relationships for the ATP–ADP–AMP system given in
Tables 2 and 3 were imported from the literature [33,35,48]. This kinetic model was proven
by Maria [35], according to experimental checks to fairly represent the dynamics and the
thermodynamics of the internal modules [a,b] in the modified E. coli T5 strain.

3.1.4. Module [c] TRP Synthesis

The adopted in silico evaluation of the TRP synthesis of Maria [35] is based on a
simplified pathway displayed in Figure 3, derived from various studies reviewed by
Maria et al. [37]. Modeling the TRP synthesis using a deterministic (mechanism-based)
approach is difficult because this cellular process is known as being, under certain condi-
tions, a QSS or an oscillatory one [33,81,83]. However, to avoid extended models, difficult
to be estimated and used, most of the reduced dynamic models from the literature do
not distinguish the process components from the regulatory components, and lumped
reactions/species are considered instead, with the regulatory performance being included
via adjustable model parameters and terms. Kinetic models trying to reproduce the TRP
operon expression self-regulation [82,83] are too extended for our engineering evaluation
purposes. Due to the process complexity, some modeling approaches [63] instead focused
on determining correlations among flux distribution, flux control, and the optimized en-
zyme activity distribution, by employing a reduced kinetic model, not able to simulate
most CCM key modules.

For such reasons, in the present analysis, simulations of the TRP synthesis were
performed using the reduced CCM-based kinetic model of Maria et al. [33,37].

The adopted dynamic model of Maria [35] for the TRP synthesis (TRP operon ex-
pression) is given in Table 4. This kinetic model is a modification of those proposed by
Bhartiya et al. [81]. The operon expression regulation terms (C1,C2) were kept unchanged.
Only the TRP mass balance was changed according to the below reasons. The rate constants
of the considered OR, mRNA, TRP, and E key species mass balances were re-estimated
using the experimental data of Chen [74] given in Figures 4–8. The TRP mass balance of
the Bhartiya et al. [81] model was modified and re-estimated step by step as follows:

i. An explicit connection of the TRP module to the glycolysis module [a] pathway was
introduced through the PEP precursor sharing node (in Figure 3). Consequently, PEP
is included as a substrate in the TRP mass balance (dcTRP/dt in Table 4), while the
PEP consumption term is also considered in the PEP balance of the glycolysis model
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according to the recommended fluxes ratios of Stephanopoulos and Simpson [88], as
a first guess (Table 2). Analysis of this model suggests that intensifying TRP synthesis
clearly depends on the glycolysis intensity (average levels of glycolytic species) and
its dynamics (QSS or oscillatory). In fact, as remarked by Li et al. [78] and by Chen
and Zeng [76], the PEP precursor is the limiting factor for TRP synthesis. This is
why intense efforts have been made to increase its production through glycolysis
intensification [33,34]. This can be realized by optimizing the FBR operating policy
(as in this paper) and/or by using (also in this paper) the modified E. coli T5 strain
culture of Chen et al. [73] and Chen [74].

ii. The TRP synthesis model of Bhartiya et al. [81] (Table 4) includes two terms for the
product inhibition, i.e., the C3 term (of allosteric-type) plus a Michaelis–Menten term.
Our tests proved that these terms do not adequately fit the TRP experimental kinetic
data of Figure 4. Accordingly, the product inhibition term in the TRP balance of
Table 4 was replaced by the more adequate Contois-type model, considering a power-
law inhibition of the first-order growing TRP at the denominator. Eventually, the rate
constants of the TRP [c] kinetic module, the PEP consumption stoichiometry, and
the rate constants of the other modules ([a], [b], and [X]) were re-estimated (refined)
simultaneously using the whole (complete) hybrid FBR model, as well as all available
experimental kinetic trajectories of the key-species offered by Chen [74] (Table 1, and
Figures 4–8). The initial guesses of the rate constants of the TRP module [c] were
adopted from the literature.

iii. The required PEP and GLC dynamic trajectories during estimation were transferred
among the modules [a], [b], [c], [X] of the FBR kinetic model, all being available at
this point.

iv. In contrast to the literature, in the TRP balance of Table 4, an activation inhibition term
was considered by bringing together the substrate (PEP) and the first key enzyme
(anthranilate synthase, E) that trigger TRP synthesis [35]. Such an approach was
proven to better fit the experimental data of Figure 4, i.e., ctrp(tu), u = 1, . . . , n (where
n = 17 denotes the number of experimental points) and to confer more flexibility to the
derived model. The estimated negative g constant, of a small negative value, reflects
the slight inhibition of TRP synthesis with the substrate PEP, as also suggested in the
literature [35].

3.2. Rate Constant Estimation by Maria (2021)

In total, the developed hybrid structured kinetic model includes 49 rate constants to
be estimated from the experimental kinetic curves of four observed species (GLC, TRP,
PYR, and X), with each species time trajectory including 17 uniformly distributed recorded
points (Figures 4–8). This estimation problem is equivalent to a nonlinear programming
one (NLP) of high difficulty [41] due to its dimension, the high nonlinearity of the model,
and its associated constraints.

To avoid unfeasible local estimates of the NLP problem, Maria [35] used a sequential
approach. A rough estimate of the kinetic module [a] + [b] + [c] + [X] (Tables 1, 2 and 4)
rate constants was generated using a step-by-step (module-after-module) approach, also
accounting for the shared species (PEP for [a] + [c]; X and GLC for [a] + [b] + [X]). If missing
during simulations, the experimental TRP, GLC, or X time trajectories were taken instead
(interpolated with the cubic splines INTERP1 facility of Matlab™ package [35]).

Finally, the thus obtained rate constants were refined by means of a standard weighted
least square criterion [41] considering the whole FBR hybrid model, including all four
interconnected modules [a], [b], [c], [X]. To reduce the problem size, only 27 independent
model rate constants were accounted during estimation (from the total of 49 rate constants).
A number of rate constants were adopted from the literature [34,37]. Eventually, all rate
constants were refined by Maria [35], as presented in Tables 1, 2 and 4. The thus identified
FBR hybrid structured dynamic model fit the experimental data very well, as indicated by
Figures 4–8.
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The multimodal NLP estimation problem solved by Maria [35] is a difficult one, being
highly nonlinear, including nonlinear constraints defining a nonconvex domain. For such
large nonconvex estimation problems, the usual optimization routines usually encounter
difficulties in reaching the feasible global solution with an acceptable reliability. This is why
a very effective NLP solver was used instead, i.e., the adaptive random search MMA of
Maria [96] implemented on the MatlabTM numerical calculus platform. The NLP solution
was checked using several (randomly generated) initial guesses for the rate constants. A
stiff integrator (ODE15S routine of MatlabTM package) was used to solve the ODE dynamic
model with a high accuracy.

A comparison of the model-estimated rate constants for the modified T5 E. coli strain
using the FBR experimental data of Chen [74] with those of the same model but estimated
from experiments using the wild E. coli strain was presented by Maria [35]. As expected,
most of the estimated rate constants presented similar values for some reaction steps. How-
ever, due to the mentioned modifications of the used E. coli T5 strain in the present kinetic
model, important differences were reported for (i) the rate expression and parameters of
the GLC import system (V1 in Tables 2 and 3, and Section 3.1.3), (ii) the biomass growing
dynamics (Table 2), and (iii) the TRP synthesis module [c], in terms of both parameters
and rate expressions (Table 3). As another observation, for the nominal (nonoptimal) FBR
experimental conditions of Table 1 used by Chen [74], the species dynamics belonging to
inside the cell and to the external liquid phase tend to reach a quasi-steady state (QSS) that
corresponds to a balanced cell growth (homeostasis) in the bioreactor [35].

3.3. Ways to Intensify the TRP Production in the FBR

As revealed by the concerned literature [34–37,74], intensifying the TRP synthesis
strongly depends on (a) the glycolysis intensity (GLC uptake flux, and average levels
of glycolytic species of module [a]), transmitted to the TRP synthesis module [c] via
the shared PEP intermediate, and (b) on the glycolysis dynamics (QSS, or oscillatory
behavior) [33,34,37]. More specifically, as pointed out in the literature by Maria et al. [36]
and Maria [33], the glycolysis intensity is controlled by both cell internal and external
factors, as follows:

i. The GLC import system efficiency (V1 in Figure 3) is regulated and triggered by
the external concentration of glucose and by the subsequent PEP and PYR synthesis
(Tables 2 and 3). The regular GLC uptake system, i.e., the PTS translocation system
in the wild strain (of a complex reaction rate expression discussed by [35,48,52]) was
replaced in the present studied E. coli T5 strain, as mentioned in Section 2, with a
more efficient one (Figure 2B) able to accelerate the GLC uptake flux into the cell at
least twofold [74]. Such a modified GLC import was modeled by simple Michaelis–
Menten kinetics in the model of Table 3 by accounting for the well-known GLC
substrate inhibition.

ii. The quick import of GLC and its conversion to the precursor PEP require important
amounts of regenerable ATP and a rapid enough ATP-to-ADP conversion rate, as well
as its quick regeneration. The re-estimated rate constants of the kinetic module [b]
(pink rectangle in Figure 3, and Section 3.1.3), concomitantly with those of the kinetic
module [a] from the experimental data coming from the FBR operated with modified
E. coli cells implicitly ensure the requirement that the A(MDT)P energy system is
able to support the cell glycolysis (see V2, V4, and V6 expressions in Table 3 and the
ATP mass balance in Table 2). On the other hand, limited A(MDT)P energy resources
which exist in the cell slow down the GLC import if the ATP use/regeneration is not
working fast enough [97]. Such an A(MDT)P resource is linked to the microorganism
phenotype. Here, the total A(MDT)P was adopted (Tables 1 and 3) at the average
level recommended by Chassagnole et al. [52].

iii. Additionally, due to the enzyme ATPase and AKase characteristics related to the bacte-
ria genome and cell phenotype (Figure 3), a limited ATP conversion rate can sustain
the glycolytic reactions, while the ATP recovery rate is limited by the enzymes partici-
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pating in the A(MDT)P interconversion reactions (i.e., the K and k6 rate constants in
the kinetic model of Table 3). This is why the k6 rate constant was re-estimated here
to fit the experimental data, as suggested by Maria et al. [36,49].

iv. At the same time, as glycolysis is a systemic process, with a complex regulatory struc-
ture, its dynamics (oscillatory, transient, or QSS) is also related to the rate constants
of all involved reactions. Consequently, all these rate constants were considered in
the final estimation step of the whole FBR hybrid kinetic model. Similarly, Silva and
Yunes [98] found that glycolysis (QSS or oscillatory) is only possible if the external
concentration of GLC and the maximum reaction rates controlled by the enzymes
PFKase and GKase (which control the V1 and V2 reactions of Figure 3) are within spe-
cific intervals. Due to the same reason, the rate constants related to the GLC uptake
system in the modified E. coli cell (modified V1 flux in Table 3) were re-estimated to
match the experimental kinetic data.

v. As a corollary of the issue (iv), Maria [33,34,36,37] determined the operating condi-
tions leading to glycolytic oscillations or QSS by varying the external factor [GLC]ext
and some internal factors such as the total [AMDTP] level and the k6 rate constant of
Table 3. Such an investigation was not necessary here, because no oscillatory process
was identified in the present operating case.

vi. Simulations by Maria [33,35] revealed that the TRP synthesis efficiency is also strongly
influenced by external factors, related to the FBR operating regime, namely, (a) the cell
dilution (taken into account as “µ” in the approached hybrid kinetic model of Table 2,
(b) the GLC concentration in the external (bulk) phase (cext

glc in Table 2), and (c) the
optimal operating policy for the control variables. In this paper, such an operating
policy will correspond to the time stepwise variation of the feed flow-rate (FL,j in

Equation (5)) and of the GLC feeding concentration (c f eed
glc,j in Equation (6)).

4. Fed-Batch Bioreactor Optimization Problem
4.1. Preliminary Considerations

To support further engineering calculations, a reasonable extended hybrid modular
approach was adapted from literature [35], by expressing the macroscopic main state
variable species dynamics (i.e., biomass X, GLC, and TRP) governing the FBR performance,
as a function of intracellular species dynamics related to the cell CCM metabolic fluxes
responsible for the TRP synthesis. This inner cell environment link is realized by means of
model key species (GLC, X, PEP, ATP) (Section 3.1). The main modification in this paper of
this adopted hybrid dynamic model refers to the introduction of a variable FBR feeding
both in the feed flow rate FL (Equation (5) and Table 2) and in the GLC feeding solution
concentration (Equation (6) and Table 2).

The reasonable compromise between the hybrid model details (number of intracel-
lular species and reaction pathways accounted for) and its predictive value was real-
ized by using only the cell key-modules [a]–[c] of interest (Figure 3, in a lumped form,
Sections 3.1.3 and 3.1.4) linked to bulk phase species (X, GLC) (Sections 3.1.2 and 3.1.3).
The fair adequacy of the resulted dynamic model (Tables 1, 2 and 4) vs. the experimental
data was proven by Maria [35]. Consequently, this hybrid model becomes suitable for
further engineering evaluations of the reactor and process efficiency, as is the case here.

The optimal FBR operation derived in this paper is more complex than the simple
nonoptimal (“nominal”) operation of Chen [74] (Table 1). Mainly, the feed flow rate and
GLC concentration in the feeding solution are no longer kept constant. In contrast, (i) the
batch time is divided in Ndiv (equal “time-arcs”) of equal lengths, and (ii) the control
variables are kept constant only over every “time-arc” at optimal values for each time-
arc determined from solving an optimization problem (i.e., maximization of the TRP
production in this case). The time intervals of equal lengths ∆t = tf/Ndiv are obtained by
dividing the batch time tf into Ndiv parts tj−1 ≤ t ≤ tj, where tj = j∆t are switching points
(where the reactor input is continuous and differentiable). Time intervals for the present
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case study with an adopted Ndiv = 5 are shown in the “liquid volume dynamics” row of
Table 2 and its footnote (a).

4.2. Formulation of the Optimization Problem
4.2.1. Selection of the FBR Control Variables

By analyzing the FBR hybrid model of Table 2, completed by Table 3; Table 4, the
natural option is to choose as control variables those with a high influence on the biological
process, which are easily to handle. In the present case, according to the discussion of
Section 3.3, two control variables were chosen related to the bioreactor feeding:

(a) The substrate c f eed
glc,j (j = 1, . . . , Ndiv) whose concentration plays a major role in the cell

glycolysis and TRP production;
(b) The liquid feed flow rate FL,j (j = 1, . . . , Ndiv), with a GLC solution directly linked to

the GLC feeding, responsible for the reactor content dilution.

In the present optimization strategy, each control variable is kept constant over each
time-arc (index “j”). Of course, they are not necessarily equal between different time-arcs.
For Ndiv = 5, in total there are 5 × 2 = 10 unknowns in Equation (7) to be determined by
optimization, under certain constraints (Table 2):

FL,j; c f eed
glc,j , (j = 1, . . . , Ndiv). (7)

The FBR initial state is given in Table 1 for both inside cell and bulk-phase species.
Those of the control and bulk phase variables, i.e., the initial liquid flow rate and the
substrate initial concentration (as shown in Table 2, and Equations (5) and (6)) are included
as unknown variables in the FBR optimization, i.e.,

FL,0 = FL (t = 0), (8)

in Equation (5), and
[GLC]0 = cext

glc(t = 0) = c f eed
glc,0, (9)

in Equation (6).

4.2.2. Objective Function (Ω) Choice

By considering the mentioned control variables Equation (7), the FBR optimization
consists of determining its optimal initial load simultaneously with its feeding policy for
every time interval during the batch, eventually leading to maximization of the [TRP]
production during the batch.

The control variables values of Equations (7)–(9) to reach Max Ω were identified,
where

Ω = Max [TRP(t)], with (t) ∈ [0, tf]. (10)

The [TRP](t) dynamics in Equation (10) was evaluated in silico by solving the ODE
dynamic model of the FBR (Equations (1)–(6)) over the whole batch time (t) ∈ [0, tf ].

4.2.3. Optimization Problem Constraints

The optimization problem in Equation (10) was subjected to the following multiple
constraints:

(a) The FBR model in Equations (1)–(6) including the bioprocess kinetic model (Tables 1, 2 and 4);

(b) The FBR initial condition from Table 1, except FL,0 and c f eed
glc,0 which were determined

from solving the optimization problem (the initial guess was taken from Table 1);
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(c) To limit the excessive consumption of substrate and to prevent the hydrodynamic
stress due to the limited reactor volume, feasible searching ranges were imposed on
the control/decision variables, i.e.,

[GLC]inlet,min = 1000 (mM) ≤ [GLC]inlet,j ≤ [GLC]inlet,max = 4500 (mM),
FL,min = 0.01 (L/h) ≤ FL,j; FL,0 ≤ FL,max = 0.04(L/h);

(11)

(d) Physical meaning of searching variables:

FL,j > 0; c f eed
glc,j ≥ 0 (j = 1, . . . , Ndiv); (12)

(e) Physical meaning of state variables:

ci (t) ≥ 0 (i = 1, . . . , number of species in the model); (13)

(f) Limit the maximum cell resources in AMDTP:

[ATP] (t) < Total [AMDTP], with [ATP] (t) obtained from solving the FBR
model in Equations (1)–(6).

(14)

As an observation, the imposed ranges for the control variables were related to not
only the implementation facilities, but also economic reasons, achieving minimum substrate
consumption, reduced dilution of the reactor content, and an effective bioreactor control.

4.2.4. Ndiv and Operating Alternatives Choice

The adopted FBR operating policy alternative of Section 4.2.1 is one of the simplest
variable operating modes. It implies a time stepwise variable feeding of the bioreactor, over
an adopted (Ndiv = 5 here) equal time-arc that covers the whole batch time. Each time-arc
“J” (j = 1, . . . , Ndiv) is characterized by optimal levels of the feed flow rate FL,j and of the

GLC concentration c f eed
glc,j (see Equations (7)–(9)).

This type of FBR operation, despite its simplicity and easy implementation, still
includes enough degrees of freedom to offer a wide range of operating facilities that,
in principle, might be investigated, for instance (see also the discussion of Maria [3]),
(a) by choosing unequal time-arcs, of lengths to be determined by the optimization rule,
(b) by considering the whole batch time as an optimization variable, (c), by increasing
the number of equal time-arcs (Ndiv) to obtain a more refined and versatile FBR operating
policy, but keeping the same nonuniform feeding policy (of the two control variables here),
(d) by considering the search min/max limits of the control variables as unknown (to be
determined), or (e) by feeding the bioreactor with a variable feed flow rate, but with a GLC
solution of an uniform concentration over a small/large number (Ndiv) of time-arcs. All
alternatives (a–e) are not approached here for the reasons discussed below.

Alternatives (a–c) are not good options, because, as Ndiv increases, the necessary
computational effort grows significantly (due to a considerable increase in the number of
searching variables), thus hindering the quick (real-time) implementation of the derived
FBR operating policy. Additionally, multiple optimal operating policies can exist for the
resulting overparameterized constrained optimization problem of a high nonlinearity, thus
increasing the difficulty in quickly locating a feasible globally optimal solution of the FBR
optimization problem.

Additionally, as the Ndiv increases, the operating policy is more difficult to implement,
since the optimal feeding policy requires a larger number of stocks with feeding substrate
solutions of different concentrations, separately prepared to be fed for every time-arc of
the FBR operation (an overly expensive alternative). Moreover, the NLP optimization
problem is more difficult to solve because of the multimodal objective function, leading
to multiple solutions difficult to discriminate and evaluate. This is the case, for instance,



Bioengineering 2021, 8, 210 24 of 33

of an obtained infeasible optimal policy requiring a very high [X], difficult to be ensured
due to limitations in keeping the necessary levels of the related running parameters of
the bioreactor (i.e., dissolved oxygen, nutrients, pH-control substances, antibodies, etc.).
Furthermore, FBR operation using a larger number of small time-arcs Ndiv can raise special
operating problems when including PAT (process analytical technology) tools [99].

A brief survey of the FBR optimization literature [100–102] reveals that a relatively
small number Ndiv < 10 is commonly used for such an FBR due to the abovementioned
reasons. In fact, the present numerical analysis does not intend to exhaust all the possi-
bilities of the approached FBR optimization. Thus, an extended analysis of the operating
alternatives (a–d) of the FBR operation or the influence of the parametric uncertainty
deserves a separate investigation, beyond the scope of this paper. To not complicate the
computational analysis, only Ndiv = 5 equal time-arcs are tested here, with equal time-arc
lengths of t f /Ndiv = 63/5 h.

The alternative (d) is unlikely because it might indicate unrealistic results, as explained
in point (c) of Section 4.2.3. In our numerical analysis, carefully documented upper bounds
of control variables were tested to ensure the practical implementation of the optimal
operating policy.

Alternative (e) is also not feasible, even if a larger Ndiv is used. That is because it is well
known that the variability of the FBR feeding over the batch time-arcs is the main degree
of freedom used to obtain FBR optimal operating policies of superior quality [3,6,89,101].
By neglecting the variable feed flow rate and substrate concentration, suboptimal FBR
operating policies will be obtained of low performance.

4.2.5. The Used Numerical Solvers

The prediction of the species concentration time evolution inside the cell and in the
bulk phase was obtained by solving the FBR dynamic model in Equations (1)–(6) with the
initial condition of Cj,0 = Cj (t = 0) of Table 1 for the inside cell species, except the bulk
[GLC]0 to be determined from the FBR optimization, as indicated by Equations (7) and (9).
The imposed batch time tf and the optimal medium conditions are those of Table 1. The
dynamic model solution was obtained with a high precision, using the high-order stiff inte-
grator (“ode15s”) of the MATLAB™ numerical calculus platform, with suitable quadrature
parameters to keep the integration error very low.

Because the FBR hybrid model structure in Equations (1)–(6), its reaction rate terms
(Tables 1, 2 and 4), and the problem constraints from Equations (11)–(14) (Section 4.2.3)
are all highly nonlinear, the formulated problem in Equations (7)–(10) translates into a
nonlinear optimization problem (NLP) with a multimodal objective function and a noncon-
vex searching domain. To obtain the global feasible solution with enough precision, the
multimodal optimization solver MMA of Maria [41,96,103] was used, proven in previous
studies to be more effective compared to the common (commercial) algorithms. The com-
putational time was reasonably short (minutes) using a common PC, thus offering a quick
implementation of the obtained FBR optimal operating policy [96,103].

4.2.6. The Problem Solution Particularities

The obtained optimal operating policy of the FBR, for the optimization problem
formulated in the Section 4.2.2, with the control variables of Section 4.2.1, the constraints
of Section 4.2.3, and adopted Ndiv in Section 4.2.4, is given in Figure 7 for the feeding
policy of the GLC concentration c f eed

glc,j (j = 1, . . . , 5) and in Figure 8a for the feed flow
rate FL,j (j = 1, . . . , 5). It is to be observed that, due to the above formulated engineering
problem, the FBR optimal operating policy is given for every time interval (of equal length)
uniformly distributed throughout the batch time.

Such an optimal time stepwise variable feeding of the bioreactor presents advantages
and inherent disadvantages. The advantages are related to the higher flexibility of the FBR
operation, leading to a higher productivity in TRP, as proven in Section 5. Furthermore,
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the imposed limits of the control variables prevent excessive substrate consumption or an
excessive reactor content dilution.

As a disadvantage, FBRs with such time-variable control are more difficult to operate
than simple BRs, as long as the time stepwise optimal feeding policy requires different
stocks of feeding substrate solutions of different concentrations to be used over the batch.
This is the price paid for achieving the best performance of an FBR. This need to previously
prepare different substrate stocks to be fed for every “time-arc” (i.e., a batch-time division
in which the feeding is constant) is offset by the net higher productivity of FBR compared to
that of BR as discussed below and pointed out in the literature [6,89,90,101,104]. In fact, the
best operating alternative (FBR vs. BR) is related to many other economic factors (operating
policy implementation costs, product cost compared to production costs, product price
fluctuation, etc.), not discussed here.

5. Optimization Results and Discussion

The obtained optimization problem solution (of the type discussed in Section 4.2.6) is
given in Figure 7 (top, curve 2) for the GLC feeding concentrations and in Figure 8a (curve
2) for the feed flow rate. The optimally operated FBR displays the bulk [TRP] dynamics of
Figure 4 (curve 2). The corresponding dynamics of cell glycolytic species during the batch
is presented in Figure 5, while that belonging to the TRP operon expression is presented
in Figure 6. The dynamics of species present in the reactor liquid phase are presented
in Figure 7 for GLC and in Figure 8c for the biomass (X). In these figures, the species
dynamics plotted for the optimal FBR operation (black curve 2, i.e., the model predictions)
are compared to those corresponding to the nominal, nonoptimal FBR operation (blue
curve 1 of Maria [46]) and with the experimental results (blue points) of Chen [71]. Both
operating policies (optimal 1 and nonoptimal 2) are obtained using the same modified E.
coli T5 strain of Chen [70,71].

By analyzing the resulting FBR optimal operating policy (plot no. 2 in Figures 4–8)
compared to the suboptimal (nominal) operation of Chen [71] (plot no. 1 in Figures 4–8),
several observations can be derived, as follows:

By using the same FBR operated under nominal (nonoptimal) conditions of Table 1,
the modified E. coli T5 strain reported a higher GLC uptake rate and a much higher TRP
production compared to the “wild” strain, as revealed by the analysis given in Table 5.

Table 5. Efficiency of the modified E. coli T5 strain for GLC uptake and for the TRP production in the
tested FBR of (Table 3).

E. coli Strain

V1 Flux
(in the Initial FBR

Conditions)
(mM/min)

Total GLC
Consumption over
the Batch Time (g)

TRP-Production of
FBR (mM/min)

Maria et al. [34] (wild
strain) 1.2485 × 102 360 0.001–0.04

(nonoptimized FBR)

Maria [35] (T5 strain)
(Table 1) 1.2526 × 104 567

0.048
(nominal,

nonoptimized FBR)

This paper (T5 strain) 1.2526 × 104 532 0.06 and higher (*)
(optimized FBR)

(*) By following the same optimal feeding policy, a higher productivity can be obtained for larger batch times (not
presented here).

The efficiency of the optimally operated FBR (this paper) in TRP production is signifi-
cantly higher (ca. 20%) compared to the same FBR but suboptimally (nominal) operated
(Table 5), even if the same modified E. coli T5 strain is employed in both cases. The same
conclusion also results by comparing the TRP final concentrations in the FBR bulk given in
Figure 4 for the two operating policies.

The optimal FBR operation reported a similar dilution of the reactor content, as
revealed by (Figure 8b).
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The substrate (GLC) consumption in (Table 5) was computed using the following
relationship:

mGLC =
Ndiv

∑
j=1

c f eed
glc,j FL,j ∆tj ; ∆tj = t f /Ndiv . (15)

As expected, a higher TRP productivity requires a higher GLC consumption, as is the
case when using a modified E. coli T5 strain instead of the “wild” type. As revealed by
(Table 5), the GLC consumption is influenced by the FBR operating mode, even if the same
cell strain is used. As indicated by our present analysis given in Table 5, the GLC overall
consumption for the optimal (variable feeding) FBR operation is roughly similar to that of
a nonoptimal (uniform feeding) FBR operation. Not surprisingly, the optimal operating
mode requires a slightly lower GLC consumption (ca. 6%) because of its better use during
the batch.

The comparative analysis of the glycolytic species dynamics in Figure 5 reveals close
trajectories (even quasi-identical for F6P, FDP species), without any accumulation tendency,
for both nominal (nonoptimal, curve 1) and optimal (curve 2) FBR operation. By contrast,
the intermediate PEP intermediate species is formed in high amounts but then quickly
consumed in the subsequent TRP synthesis, thus tending to reach a QSS. Such a more
intensive GLC import for the optimal FBR operation (curve 2) and its successive transfor-
mation over the glycolysis pathway and TRP-operon expression are reflected by a higher
ATP consumption compared to the nonoptimal FBR operation. The PYR metabolite is
consumed in the TCA cycle and excreted in the bulk phase (fairly predicted by our kinetic
model matching the experimental data).

The comparative analysis of the TRP operon expression species dynamics in Figure 6
reveals very close trajectories, except for the excreted TRP, for both nominal (nonoptimal,
curve 1) and optimal (curve 2) FBR operation. Such a result can be explained by the
operon expression mechanism, involving a tight control via its inhibition terms presented
in Table 4.

The comparative plots of the GLC concentration dynamics in the FBR bulk phase are
presented in Figure 7. They indicate similar decreasing trajectories for both investigated
FBR operating alternatives, i.e., (i) nominal (nonoptimal, curve 1) and optimal (curve 2).
Such a result can be explained by the same GLC uptake mechanism of the modified E. coli
T5 strain. In the optimal case (curve 2), the GLC consumption is higher, due to a higher
TRP productivity. The curve 2 unevenness is linked to the variable feeding with GLC of
the optimally operated FBR (see the feeding plots in the top part of (Figure 7)).

The comparative plots of the biomass dynamics in the FBR bulk phase are presented
in Figure 8c. They reveal similar increasing trajectories for both investigated FBR operating
alternatives, i.e., (i) nominal (nonoptimal, curve 1) and (ii) optimal (curve 2). In the optimal
operation case, the biomass growth is more intense, due to a significantly higher GLC
uptake and a better GLC use during the batch, thus offering more favorable conditions for
the biomass growth.

The TRP concentration dynamics in the bulk phase is plotted in Figure 4 for both
investigated FBR operating alternatives, i.e., (i) nominal nonoptimal operation of Table 1
(curve 1) and the experimental data (•, blue) of Chen [71], and (ii) optimal operation
(curve 2). The TRP higher final concentration leads to a higher productivity for the opti-
mally operated FBR (see observation 2 above). Such a result proves that the optimal time
stepwise FBR feeding (i.e., the GLC feeding curve 2 in Figure 7) and the feed flow rate
policy of Figure 8a) is superior to the nonoptimal uniform feeding, leading to a better GLC
use, even if the overall GLC consumption (see observation 4 above) is similar for both
nominal and optimal FBR operation. The better GLC use for the optimal FBR operation is
also proven by the less produced secondary metabolite PYR in Figure 5 (curve 2) and by the
smaller QSS concentration of the PEP intermediate (Figure 5, curve 2), quickly transformed
into the final product TRP.
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6. Conclusions

The extended bilevel (hybrid) kinetic model adopted in this paper was proven by
Maria [46] to adequately represent the dynamics of an experimentally studied FBR under
a nominal (uniform feeding) operating policy, for both macroscopic state variables and
for the cell key species of the CCM reaction modules related to the TRP production in the
FBR, i.e., [a] glycolysis, [b] ATP recovery system, [c] TRP operon expression, and biomass
[X] growth. The hybrid structured model, linking the macro state variables to the nano
cell-scale variables, was validated using the recorded data from the lab-scale FBR over a
long batch time (63 h).

By adopting this adequate kinetic model, the paper exemplifies how the use of reduced
CCM-based hybrid kinetic models, of modular construction, including the inter-connected
complex metabolic pathways of interest, is a continuously challenging subject when devel-
oping structured cell simulators for various engineering applications, such as (a) metabolic
flux analysis under variable operating conditions, (b) target metabolite synthesis opti-
mization by optimizing the bioreactor operation, and/or by modifying the cell strain,
(c) in silico reprogramming of the cell metabolism to design GMOs (not approached here),
(d) a quick analysis of the cell metabolism, leading to an evaluation of substrate utilization,
oscillation occurrence, and reactor QSS conditions or structured interpretations of the
metabolic changes in modified cells or in direct connection to the bioreactor operation
mode, (e) bioreactor/bioprocess optimization (the present study), (f) to derive simple
lumped models, locally valid (in the operating parameters domain), and (g) to allow more
robust extrapolations of the bioprocess behavior (not tested here).

The engineering evaluations developed in this paper can be further extended, for
instance, by deriving a multi-objective optimization of the FBR operating policy, by ac-
counting for not only maximization of the product (TRP), but also minimization of the
substrate consumption and of the batch time. The engineering evaluations using such
extended bilevel hybrid models present a higher prediction accuracy compared to the
simple global (empirical) dynamic models.

Simulations and the experimental checks proved the advantage of using the modified
E. coli T5 strain culture to improve the TRP production. The obtained results also proved
that, in addition to the cell phenotype characteristics (linked to GLC uptake and glycolysis),
the FBR operation mode is the major factor determining the TRP synthesis efficiency.
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Nomenclature

ci Species (i) concentration
cx Biomass concentration
c f eed

GLC Glucose feeding solution concentration

c f eed
glc,j

Glucose feeding solution concentration over the
time-arc “J”

cext
glc,0 = cext

GLC(t = 0) Initial glucose concentration in the bioreactor
cext

GLC Glucose concentration in the bulk phase
FL Liquid feed flow rate in the bioreactor
k, kj, Kj, K, n, V2m, V4m, rmax

j , ax, bx, Nx,
rmax

uptake, KPTS,a1, KPTS,a2,

KPTS,a3, V2m g„ Kamp
R , Katp

T , µT ,
aT, bT, NT, etc.-

Reaction rates and/or equilibrium constants of the
kinetic model

ri Species (i) reaction rate
t, t f Time, batch time

V1 − V6
Metabolic fluxes in the glycolysis (Tables 2 and 3,
Figure 3)

VL Liquid volume in the bioreactor
ytca , ytrp Stoichiometric coefficients
Greeks
α, β, γ, δ Reaction rate constants

µ
Cell content dilution rate, that is ln(2)/tc, where tc
denotes the cell cycle

Ω FBR optimization objective function, Equation (10)
ρx Biomass density
Subscripts
0,o Initial
cell Referring to the cell (inside)
ext External to cell (i.e., in the bulk phase)
f Final
inlet In the feed
x Biomass
Abbreviations
13dpg, pgp 1,3-Diphosphoglycerate
3pg 3-Phosphoglycerate
2pg 2-Phosphoglycerate
AA Amino acid
Accoa, acetyl-CoA Acetyl-coenzyme A
AC acetate
ADP, adp Adenosine diphosphate
AK-ase Adenylate kinase
ALE Adaptive laboratory evolution
AMP, amp Adenosine monophosphate
ATP, atp Adenosine triphosphate
ATP-ase ATP monophosphatase
CCM Central carbon metabolism
CIT Citrate
CSTR Continuously stirred tank reactor
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DO Dissolved oxygen
DW Dry mass

E
Enzyme anthranilate synthase in TRP synthesis
model

ETOH Ethanol
ext External to the cell (i.e., in the bulk phase)
FBR Fed-batch bioreactor
FDP, fdp Fructose-1,6-biphosphate
F6P, f6p Fructose-6-phosphate
GalP/Glk Galactose permease/glucokinase
G3P, g3p, GAP,
gap, 3PG, 3pg

Glyceraldehyde-3-phosphate

2PG, 2pg 2-Phosphoglycerate
G6P, g6p Glucose-6-phosphate
GLC, glc Glucose
Glc(ex), [GLC]ext Glucose in the environment (bulk phase)
GMO Genetically modified microorganisms
GRC Genetic regulatory circuits
HK-ase Hexokinase
JWS Silicon Cell project of Olivier and Snoep [55]
LAC, lac Lactate
Max (x) Maxim of (x)

MMA
The adaptive random optimization algorithm of
Maria [93]; Mihail and Maria [99]

mRNA
Tryptophan messenger ribonucleic acid during its
encoding gene dynamic transcription and
translation

NAD(P)H
Nicotinamide adenine dinucleotide (phosphate)
reduced

NLP Nonlinear programming
ODE Ordinary differential equations set

OR
The complex between O and R (aporepressor of
the TRP gene)

OT The total TRP operon
P, Pi Phosphoric acid
PEP, pep Phosphoenolpyruvate
13DPG=PGP 1,3-Diphosphoglycerate
PFK-ase Phosphofructokinase
PK-ase Pyruvate kinase

PTS
Phosphotransferase or the
phosphoenolpyruvate–glucose phosphotransferase
system

PYR, pyr Pyruvate
QSS Quasi-steady state
R5P Ribose 5-phosphate
mRNA Messenger ribonucleic acid
SUCC, suc Succinate
TCA, tca Tricarboxylic acid cycle
TF Gene expression transcription factors
TRP, Trp, trp Tryptophan
X Biomass
Wt. Weight
[x] Concentration of species x
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