
bioengineering

Article

Preoperative Planning of Spiral Intestinal Lengthening and
Tailoring: A Geometrical Approach

Riccardo Coletta 1 , Elisa Mussi 2,* , Francesca Uccheddu 2, Yary Volpe 2 and Antonino Morabito 1

����������
�������

Citation: Coletta, R.; Mussi, E.;

Uccheddu, F.; Volpe, Y.; Morabito, A.

Preoperative Planning of Spiral

Intestinal Lengthening and Tailoring:

A Geometrical Approach.

Bioengineering 2021, 8, 20. https://

doi.org/10.3390/bioengineering

8020020

Received: 11 January 2021

Accepted: 28 January 2021

Published: 31 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Pediatric Surgery, Meyer Children’s Hospital, Viale Pieraccini 24, 50141 Florence, Italy;
riccardo.coletta@meyer.it (R.C.); antonino.morabito@meyer.it (A.M.)

2 Department of Industrial Engineering, University of Florence, Via Santa Marta 3, 50139 Florence, Italy;
francesca.uccheddu@unifi.it (F.U.); yary.volpe@unifi.it (Y.V.)

* Correspondence: elisa.mussi@unifi.it; Tel.: +39-055-0552758741

Abstract: Short bowel syndrome is a pathological condition resulting from extensive resection of
the intestine, generally performed due to congenital abnormalities, Crohn’s disease, mesenteric
ischemia, or neoplasms. The main consequence of this syndrome is a reduction of intestinal absorp-
tion, which causes malnutrition and dehydration. In the most severe cases, specific and complex
surgical procedures are requested to manage the syndrome. Such procedures consist of the intestinal
lengthening, with lead to an increase of absorptive mucosal surface and intestinal transit time and
an overall enhancement of intestinal absorption. One of the most promising surgical procedures is
spiral intestinal lengthening and tailoring, which consists of a spiral incision of the intestinal wall
and in the elongation longitudinally of the intestine by sliding one flap over the other. The final
intestinal lengthening is strictly dependent on a series of parameters, some of which are defined by
the surgeon. The present paper proposes a mathematical model, based on patient specific anatomical
data, which aims to help the surgeon in defining the optimal parameters for the intervention and in
foreseeing its outcomes from the preoperative planning phase. Such a tool can assist the physician in
the surgery room by improving the procedure and reducing surgical times.

Keywords: short bowel syndrome; preoperative planning; surgical simulation; pediatric; intestinal
lengthening; intestinal failure

1. Introduction

Short bowel syndrome (SBS) is a severely disabling pathological condition that occurs
in adults or pediatric subjects, resulting from extensive resection of the intestine, a con-
genital defect, infarction, or trauma. It is the most common cause of pediatric and adult
intestinal failure and it is characterized by dehydration and nutrient malabsorption [1].
This disease has a considerable impact on the quality of a patient’s life [2] as well as on the
national health system [3].

To live an acceptable life, SBS patients require intravenous or parenteral support
(PS) that provides adequate fluids, electrolytes, and/or nutrients to ensure the proper
functioning of the digestion, prevent permanent organ damage, avoid malnutrition, and/or
dehydration-related diseases, and maintain one’s life. However, whereas the mortality
of patients affected by SBS can be as high as 40% [4,5], the patient survival rate increases
considerably in centers that offer structured pathways and a variety of surgical procedures
tailored to the patients’ needs [6].

If an SBS patient sees no improvement from medical management, it is mandatory to
consider surgical treatment to increase intestinal absorptive capacity. Surgical techniques
that help these patients can be categorized under autologous gastrointestinal reconstructive
(AGIR) procedures, which aim to provide better bowel physiology (in terms of remnant
small bowel length and shape) and increase transit time.
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The two most common lengthening procedures are [7] the longitudinal intestinal
lengthening and tailoring procedure (LILT), described by Bianchi [8], and the serial trans-
verse enteroplasty procedure (STEP), proposed by Kim [9]. Although both procedures
enable appropriate intestinal length tailoring, they suffer from limitations. LILT is consid-
ered surgically challenging because it involves the mesentery split, which can compromise
the blood supply, whereas STEP modifies the muscle fiber orientation, compromising
physiological intestinal motility. Furthermore, both procedures require significant bowel
dilatation (40 mm and above) to be safely performed [9].

A new AGIR procedure, known as spiral intestinal lengthening and tailoring (SILT),
was proposed by Cserni [10]. The technique does not require difficult mesenteric manipu-
lation (whereas the LILT procedure does) and it minimally alters muscle fiber orientation
compared to the STEP procedure. The ability of SILT to lengthen an intestinal segment
with less bowel dilatation can open new perspectives in the surgical management of SBS
patients. The technique involves a spiral incision along the intestinal tract of interest. Once
the incision is made, by sliding one intestinal flap over the other, the intestine is stretched
and sutured. The maximum achievable lengthening depends on some anatomical factors,
on the incision angle (i.e., the helix angle, which will be described later), and on some
physiological constraints. The procedure is performed by surgeons choosing standard
incision angles that could be optimized with an appropriate study of the patient’s specific
anatomy. To this end, the present work proposes—via the SILT procedure—a unified geo-
metric model for the analysis, planning, and preoperative simulation of bowel lengthening
surgery that allows to design, in detail, the surgery on the specific anatomy of the patient,
according to the personalized medicine approach.

2. Materials and Methods

Even though the intestinal tract, on which a SILT procedure is performed, is non-
rigid, and not perfectly cylindrical, its schematization as a simple cylinder can help with
understanding the surgical manoeuvres. During the surgery time, the exposed intestine
is elongated and closed like a cylinder, and then it is re-positioned in the abdominal area
according to its natural curvature. Such cylindrical schematization allows predicting and
guiding the surgical cuts to obtain optimized lengthening with a known final caliber,
and minimizes risks and complications. In the present study, the authors formalized the
morphology of the the intestinal tract undergoing surgery with the aim of providing the
surgeons with novel mathematical considerations to be used both in the preoperative
planning phase than during the surgery.

2.1. The Geometry of the SILT Procedure

To generate the three-dimensional (3D) geometrical model of the intestinal tract that
undergoes the SILT procedure, such tract is hypothesized and simplified as a cylinder
with a length, Li, and a diameter, Di, which are patient-specific parameters. Such anatomi-
cal parameters can be obtained measuring them: (1) on 3D virtual reconstruction of the
patient specific anatomy (in the preoperative phase) or (2) in vivo (in the surgery room).
Specifically, in the preoperative phase, the 3D reconstruction of the patient-specific bowel
geometry can be obtained acquiring the anatomy with diagnostic image techniques (i.e.,
computed tomography scans) and isolating the region of interest with segmentation soft-
ware, such as Materialise Mimics [11]. On such, 3D model measurements of Li and Di can
be performed; specifically, the diameter of the intestine Di is defined as the average value
of the two diameters measured at the extremities of the dilated intestinal tract involved
in the surgical procedure. Alternatively, Li and Di can be measured in vivo directly on
the patient’s anatomy in the intraoperative phase, by flattening the intestinal tube and
measuring the half of its circumference (as shown in Figure 1) and the presurgical length.
The measured diametric value, herein called Dmed, is related to the actual cylinder diameter
Di, as in the following:

Di =
2·Dmed

π
(1)
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Figure 1. Manual measurement on the intestinal simulator of (a) the diameter 𝐷௠௘ௗ and (b) length 
of the tract to be elongated. 

By longitudinally cutting, the cylinder can be developed into a rectangle, where 
height is equal to the cylinder length (𝐿௜) and where base is equal to the cylinder circum-
ference 𝜋𝐷௜  (see Figure 2). 

 
Figure 2. Geometrical model of the intestinal tract: (a) before and (b) after surgery. 

Figure 2 depicts the geometrical schematization before and after surgery of the intes-
tinal tract. The helicoidal cut is depicted in the figure, both on the cylinder and in the 
corresponding developed rectangle. The spiral intestinal lengthening implies, first, the 
choice of the helix angle 𝛼 that guides the cut to unroll the tissue according to a certain 
helicoidal trajectory. Successively, the tube is elongated and then sutured according to a 
different helix angle β. 

Accordingly, the known pre-surgical system variables are: (i) the patient intestinal 
tract diameter (𝐷௜); (ii) its length (𝐿௜) before surgery; and (iii) the desired diameter at the 
end of the procedure (𝐷௙). As can be observed, theoretically, the intestinal surface is pre-
served, i.e., the surface of the cylinder before surgery corresponds to the surface of the 
cylinder after surgery; thus, it can be derived that the final ideal elongation 𝐿௙௜ௗ௘௔௟ is 
known:  𝜋𝐷௜ ∙ 𝐿௜ ൌ 𝜋𝐷௙ ∙ 𝐿௙௜ௗ௘௔௟ ⟹ 𝐿௙௜ௗ௘௔௟ ൌ 𝐷௜𝐷௙ ∙ 𝐿௜ (2)

 

Figure 1. Manual measurement on the intestinal simulator of (a) the diameter Dmed and (b) length of
the tract to be elongated.

By longitudinally cutting, the cylinder can be developed into a rectangle, where height
is equal to the cylinder length (Li) and where base is equal to the cylinder circumference
πDi (see Figure 2).
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Figure 2. Geometrical model of the intestinal tract: (a) before and (b) after surgery.

Figure 2 depicts the geometrical schematization before and after surgery of the in-
testinal tract. The helicoidal cut is depicted in the figure, both on the cylinder and in the
corresponding developed rectangle. The spiral intestinal lengthening implies, first, the
choice of the helix angle α that guides the cut to unroll the tissue according to a certain
helicoidal trajectory. Successively, the tube is elongated and then sutured according to a
different helix angle β.

Accordingly, the known pre-surgical system variables are: (i) the patient intestinal
tract diameter (Di); (ii) its length (Li) before surgery; and (iii) the desired diameter at
the end of the procedure (D f ). As can be observed, theoretically, the intestinal surface is
preserved, i.e., the surface of the cylinder before surgery corresponds to the surface of the
cylinder after surgery; thus, it can be derived that the final ideal elongation L fideal

is known:

πDi·Li = πD f ·L fideal
⇒ L fideal

=
Di
D f
·Li (2)

Although the theoretical elongation L fideal
is not influenced by the helix cutting angle

α, such parameter results are relevant during the intervention since it is directly related
to the number of coils to be cut Ni, and to the number of coils to be then sutured N f .
Therefore, its choice becomes critical for the success of the surgical procedure. By adjusting
the number of coils to be cut (Ni), the helicoidal cutting angle α can be derived, and a more
performant surgery can be delivered in terms of surgical time. In other words, the surgeon
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plans and performs the surgery by optimizing the number of coils to be unrolled of the
intestine wall and, afterwards, the ones to be sutured.

Practically, by leveraging the basic trigonometric formulas the number of initial spiral
loops, Ni, (before surgery) is:

Li = Ni·πDitanα⇒ Ni =
Li

tanα·πDi
(3)

After defining the initial number of coils (Ni), the cylinder is cut along the resulting
spiral path (black dotted line in Figure 3a). Once cut, it is worth noting that, if the cylinder
were completely unrolled, a parallelogram would be obtained, which base is equal to
πDi (see Figure 3a). In practice, once the cylinder is cut, it is stretched and re-wrapped
with the new desired diameter (D f ). In order to match the bowel flaps, physically, the
parallelogram has to be re-wrapped with a new angle (β) on the base πD f (as shown in
Figure 3b). In other words, if the parallelogram in Figure 3b is re-wrapped by matching
P1 with P′1 the original cylinder is obtained, while if the parallelogram is re-wrapped by
matching Pknot with P′1 it results in the final cylinder. In this case, it is worth it to note that,
at the extremities, two triangles will result in excess (as shown in Figure 3c).
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The trigonometric relationships among the triangles ∆ P1P′1Pknot and ∆ Pknot P′1 P⊥
(see Figure 4) allow the calculation of the angle β as reported in the following formulas:{

P⊥ P′1 = πDi·sinα

P⊥ P′1 = πD f ·sinβ
⇒ sinβ = sinα

Di
D f

(4)

and the calculation of the length P1Pknot:{
P1P⊥ = πDi·cosα

PknotP⊥ = πD f ·cosβ
⇒ P1Pknot = (πDi·cosα− πD f ·cosβ) (5)
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The definition of the length P1Pknot is crucial to identify the point Pknot, key point to
re-wrap the intestine during surgery, as explained in the Results section.

Figure 5 shows the unrolled cylinder, highlighting some geometrical relationships
useful to calculate the elongation obtainable after re-wrapping.
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The spiral length Si is related to Li and α according to the following equation:

Si =
Li

sinα
(6)

However, taking into account the triangle that must be removed for a correct re-
wrapping of the cylinder with the new diameter (as shown above in Figure 4b), the total
final spiral length, defined as Ŝ f , results as:

Ŝ f = Si − P1Pknot (7)

Therefore, the achievable intestine length, according to Equations (2) and (7) will be:

Ŝ f = Si − P1Pknot (8)

Similar to Equation (3), the resulting final loops N f is equal to:

N f =
L̂ f

tanβ·πD f
(9)
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2.2. Surgical Feasibility

The surgical feasibility of the SILT technique imposes other geometric limits that
must be respected and taken into account during the preoperative planning and during
the surgery. In other words, the aim of the surgery is to lengthen the intestinal tract
affected by the surgery as much as possible; however, previous studies, and some physical
considerations, lead to the definition of some constraints. In fact, Cserni et al [10] tested the
technique on animal models, which showed that it is not possible to reduce the intestinal
lumen below a certain threshold (<20 mm) as this can contribute to bowel obstruction.
Moreover, the cutting angle cannot be too acute; in fact, this would mean the handling of a
large number of coils, which could make the surgery more complex and longer. In addition,
the SILT procedure provides that, at the points where the spiral meets the mesentery,
an incision in the mesentery be made. These incisions are parallel to the vessels, not
compromising blood supply to the intestine, and are essential to allow the mesentery to roll
over the SILT segment, allowing the intestinal wall to slide along the spiral path. However,
a high number of incisions (due to a high number of coils) could lead to the cutting of the
vessels of the mesentery and determine the collapse of the intestine. For these reasons,
it is necessary that the cutting angle is not too acute, resulting in a high number of coils.
Finally, the spiral cut could start on the mesenteric or antimesenteric flap. However, from a
physical point of view, it is useful that the flap on which Pknot is placed and which then
moves on P1 is antimesenteric because it has greater mobility not being directly connected
to the mesentery. Hence, the cut must begin on the mesenteric side.

3. Results

With such a mathematical framework at hand, and taking into account the described
considerations on surgical feasibility, it is possible to set up the cutting angle α, to achieve
the longest final length, by guarantying the desired intestinal diameter and a manageable
number of coils to be cut and sutured. In fact, starting from the mathematical framework, a
graph that supports the surgeon in the choice of the cutting angle can be create for each
clinical case. The graph is patient-specific as it is based on the patient’s anatomical data
(see Figure 6).
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path on the intestinal tract to be treated with a surgical skin marker. Specifically, starting 
from the extremity of the intestinal tract, points 𝑃ଵ ,…, 𝑃௡  and the helicoidal path are 
marked, considering that the segment 𝑃ଵ𝑃ଶതതതതതത corresponds to the pitch of the helix i.e. 𝑝௜ =௅೔ே೔ (see Figure 7a,b). Then, the bowel is turned upside down to access the posterior wall, 
and the helical path, traced in the previous phase, is continued (Figure 7c,d). The bowel is 
then cut along the spiral path and perpendicular incisions are made on the mesentery to 
allow the subsequent stretching. Another point 𝑃௞௡௢௧ is marked along the spiral path on 
the antimesenteric flap is at a specific distance from point 𝑃ଵ (see Equation (5)); this seg-
ment defines the intestinal triangle (see Figure 4b), which must be invaginated or re-
moved. Point 𝑃௞௡௢௧ is moved until it matches the point 𝑃ଵ on the mesenteric flap and the 
first knot is placed (Figure 4g), which allows the intestine to roll up with the correct angle 𝛽. Finally, the flaps of the intestine are sutured following the rolling angle that comes out 
of the first suture point. 

The proposed mathematical framework plays a fundamental role in the simplifica-
tion of the surgical procedure since it guides the surgeon in rewrapping the bowel after 
the cut, providing the exact point at which the first suture point (𝑃௞௡௢௧) must be placed to 
achieve the planned surgical result. 

Figure 6. Trend of the theoretical final length and number of coils ranging the α cutting angle.

The graph plots the trends of the initial and final coils as a function of the final length,
after fixing the values of initial length, initial diameter, and final diameter of the patient’s
bowel. The graph shows a diverging behavior of the curve; thus, suggesting to keep the
achievable length slightly lower than the theoretical one to significantly save surgical time
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and complexity. Therefore, the surgeon, based on surgical feasibility, can decide Ni and,
thus, predict the final achievable length.

Surgical outcome, thus, arises from a trade-off between the maximum lengthening of
the intestine and the number of coils. The outcome of the final intestine can be predicted
in the preoperative phase through a combination of 3D anatomical reconstruction from
diagnostic images and the mathematical theorization of the anatomy, as described in
this work.

Specifically, preoperative planning is a key step of this surgery as, in this phase, the
surgical team analyzes the clinical case, taking into account all anatomical aspects and
surgical feasibility, studying the patient-specific surgical treatment.

To obtain a precise cut and to execute it in a simple way, the surgeon traces the spiral
path on the intestinal tract to be treated with a surgical skin marker. Specifically, starting
from the extremity of the intestinal tract, points P1, . . . , Pn and the helicoidal path are
marked, considering that the segment P1P2 corresponds to the pitch of the helix i.e. pi =

Li
Ni

(see Figure 7a,b). Then, the bowel is turned upside down to access the posterior wall, and
the helical path, traced in the previous phase, is continued (Figure 7c,d). The bowel is
then cut along the spiral path and perpendicular incisions are made on the mesentery to
allow the subsequent stretching. Another point Pknot is marked along the spiral path on the
antimesenteric flap is at a specific distance from point P1 (see Equation (5)); this segment
defines the intestinal triangle (see Figure 4b), which must be invaginated or removed. Point
Pknot is moved until it matches the point P1 on the mesenteric flap and the first knot is
placed (Figure 4g), which allows the intestine to roll up with the correct angle β. Finally,
the flaps of the intestine are sutured following the rolling angle that comes out of the first
suture point.

The proposed mathematical framework plays a fundamental role in the simplification
of the surgical procedure since it guides the surgeon in rewrapping the bowel after the cut,
providing the exact point at which the first suture point (Pknot) must be placed to achieve
the planned surgical result.

To test the proposed mathematical framework, a surgical procedure was simulated on
a bowel physical replica. The simulator was manufactured by T3Ddy Lab and it reproduces
a bowel tract, where length (Li) is equal to 270.00 mm and diameter (Di) is equal to 65 mm.
Fixing the value of the final diameter to 32.5 mm, the graph (as in Figure 6) was created.
The surgeon chose, based on the graph, to cut along a spiral path with an Ni equal to four
coils, predicting a final bowel length equal to 36.4 mm. The simulation of the surgery led
to an intestinal tract length equal to 37.3 mm; thus, resulting in a 2% error with respect to
the predicted value. This can be explained by the fact that our model does not take into
account the elasticity of tissue that may have been stretched during the surgical simulation.
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4. Discussion and Conclusions

The present work proposes a planning tool for bowel lengthening surgery performed
using the SILT surgical technique in subjects affected by SBS. The surgery, first described
in [12], involves the spiral incision of the intestinal wall at an angle of 45◦ to 60◦, the
longitudinal stretching, and rotation of the two intestinal flaps until they meet, and the
suturing of them. The surgery is nowadays performed manually by surgeons without any



Bioengineering 2021, 8, 20 9 of 10

instrument that could assist in the selection of the optimal incision angle of the spiral that
defines the achievable final bowel length. In this study, a tool is presented which, taking
into account the patient’s specific anatomy, has the ambition to assist the surgeon during
the preoperative and intraoperative phase in selecting the best angle incision, allowing the
optimization of intestinal lengthening and predicting the final lengthening achievable.

The developed tool, based on a simplification of the patient-specific intestinal anatomy,
and a mathematical model describing the surgical procedure, allows for simplification of
the surgical procedure by giving the physician accurate measurements to assist him during
the surgical procedure.

In the previous reported publications on SILT, either an intestinal double layer simula-
tor or animal model were used, but in both these studies, no clear indication about where to
cut the bowel spirally was described [12,13]. The main limits of the previous publications
on the SILT technique regards the lack of a clear description on how the surgeon decides
where to cut the bowel in order to reshape it in a spiral fashion. This lack of clarity can
reduce the expansion in the use of this novel surgical procedure. This study tries to sort out
the limitation behind the SILT procedure by creating and validating a mathematical model
that can be easily used. Using the indication proposed by the tool, taking into account
the patient specific anatomy, the surgeon can easily pick how much of the bowel segment
needs to be lengthened, but most importantly, the surgeon can improve the surgery results
by optimizing the incision and obtaining greater precision. Among the strengths of this
study is that it allows the simplification of a particularly complex procedure, making it
accessible to a wider range of surgeons and, thus, enables a broader spectrum of patients
to benefit from such a treatment. Future studies are envisaged 1) to validate the proposed
tool by testing the surgical procedure on animal models, and 2) to improve the simplified
model of the intestinal anatomy, that, to date, does not take into account, for example,
potential changes in the diameter along the intestinal tract involved in the surgery.
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