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Abstract: While Deep Neural Networks (DNNs) and Transfer Learning (TL) have greatly contributed
to several medical and clinical disciplines, the application to multivariate physiological datasets
is still limited. Current examples mainly focus on one physiological signal and can only utilise
applications that are customised for that specific measure, thus it limits the possibility of transferring
the trained DNN to other domains. In this study, we composed a dataset (n = 813) of six different
types of physiological signals (Electrocardiogram, Electrodermal activity, Electromyogram, Pho-
toplethysmogram, Respiration and Acceleration). Signals were collected from 232 subjects using
four different acquisition devices. We used a DNN to classify the type of physiological signal and
to demonstrate how the TL approach allows the exploitation of the efficiency of DNNs in other
domains. After the DNN was trained to optimally classify the type of signal, the features that were
automatically extracted by the DNN were used to classify the type of device used for the acquisition
using a Support Vector Machine. The dataset, the code and the trained parameters of the DNN are
made publicly available to encourage the adoption of DNN and TL in applications with multivariate
physiological signals.

Keywords: multivariate data; physiological signals; signal processing; artificial intelligence; deep
neural networks; transfer learning

1. Introduction

In medicine and other medical sciences, physiological recordings are widely employed
to monitor and assess the health status of patients [1,2]. Since physiological signals are
directly controlled by the Autonomic Nervous System, they are also less influenced by social
inferences and explicit behavioral responses [3]. The analysis of multivariate physiological
signals allows the investigation of psycho-physiological regulatory mechanisms of the
individual from different perspectives and enables researchers to study how humans react
to external stimuli and adapt to environmental changes [2,4,5].

However, employing multivariate physiological signals in the research process comes
at a cost: first, physiological measurements are highly sensitive to the presence of noise
and artifacts; second: each type of physiological signal requires specialized hardware
and tools for data collection and processing. For these reasons, the typical approach
to multivariate signals analysis involves some steps of visual inspection to assess the
quality of the recordings (e.g., to discriminate between usable and unusable samples),
and select the most appropriate tools and procedures for analysis [6]. In an attempt to
reduce the subjectivity of these steps, Artificial Intelligence (AI) methods have been recently
introduced. AI was employed to automatize the phases of preprocessing and analysis
of recorded signals, therefore increasing the reproducibility and reducing the likelihood
of human errors. In Gabrieli et al. [6], different Machine Learning models proved to be
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able to efficiently discriminate between usable and unusable samples in multiple infants’
fixation time studies, while numerous studies employed AI models on preprocessed
physiological signals, for instance, to identify ventricular hypertrophy [7], arrhythmia [8],
muscle fatigue [9], and stress [10].

One of the most promising AI methods is the use of Deep Neural Networks
(DNN) [11,12]. DNNs are a family of Machine Learning methods that rely on the use
of modular architectures, based on multiple nonlinear processing units (layers), to extract
high-level patterns from data. Thanks to the hierarchical structure of the layers, DNN
progressively obtains high-level features from low-level representations [13], thus trans-
forming input data into a multi-dimensional representation useful to solve the classification
task [14]. However, optimally training DNN typically requires a much larger amount of
data than statistical Machine Learning models: the Transfer Learning (TL) approach over-
comes this issue partially. The key idea of TL is leveraging on DNN which were already
trained on different domains or datasets, and adapting them to the new task, by partially
re-trained using data from the new task [15]. Thanks to the availability of large-scale data
and pre-trained architectures [16,17], the TL approach boosted the adoption of DNN in
several disciplines and out-performed previous state-of-art Machine Learning models and,
in some cases, human expertise [18].

DNNs based on Convolutional Neural Networks (CNN) are currently the state-of-
the-art models in several image classification applications that adopt an “end-to-end”
paradigm: i.e., images are directly processed by the CNN without prior processing (e.g.,
feature extraction). The adoption of DNN and CNN in applications based on medical
data (bio images and physiological signals) is rapidly growing, with a wide range of
applications [19–23].

DNN and CNN have also been applied to physiological signals. For instance, a DNN,
was successfully employed to design a biometric identification signal based on Electrocar-
diogram (ECG) [24], or to identifyventricular and supraventricular ectopic beats [25]. In a
work by Xu et al. [26], a DNN was effectively employed to classify the type of heartbeat
patterns (e.g., normal beat, arrhythmia) from raw ECG. Similar procedures were employed
on other physiological signals: Yu and Sun [27] used a DNN to classify emotions from pha-
sic and tonic components of the Electrodermal Activity (EDA), while Mukhopadhyay and
Samui [14] employed DNN to classify limbic movements from Electro-myogram (EMG) sig-
nals. A recent review by Rim et al. [28], surveyed the application of DNN on four different
Physiological signals (EMG, ECG, Electro-oculogram, and Electro-encephalogram) in both
single- and multivariate datasets. The datasets were drawn from both public and private
repositories and were identified based on the methodology employed to analyze the data.
Inclusion criteria for being reviewed included the employment of DNN for clinical applica-
tions and emotion recognition. The use of DNN on physiological signals can effectively and
efficiently support clinicians in their work, for example by identifying heart diseases [29,30]
or brain disease [31–33]. However, the majority of DNN employed in physiological signals
analysis target only a specific type of physiological signal. As a consequence, they are not
appropriate for analyzing multivariate datasets, which are rapidly becoming the standard
in medicine and neuroscience [34], and are application-specific, meaning trained models
cannot be easily used for TL [35].

1.1. Aim of This Study

The aim of this study is to obtain a DNN to classify multivariate data and extract
physiological patterns. From the clinical perspective, we aim at setting the base for the
development of computer-assisted diagnostics based on physiological signals, to keep pace
with other clinical disciplines based on imaging.

This study provides three main practical contributions to facilitate the adoption of
DNNs for multivariate physiological signals: (i) We apply a DNN to classify six types of
physiological signals: Electrocardiogram, Electrodermal activity, Electromyogram, Pho-
toplethysmogram, Respiration, and Acceleration. Signals were composed into a dataset
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of 813 physiological signals collected from 232 subjects using four different acquisition
devices. (ii) We test the efficacy of the TL approach. Based on high-level features extracted
from the trained DNN, we applied a standard Machine Learning method to classify the
type of device. Although standard TL approaches based on re-training of weights might be
more effective, our example demonstrates that the DNN extracts signal patterns that can
be ported to other domains. (iii) We make available the training dataset as well as the DNN
architecture with the pre-trained weights, with the aim of encouraging and facilitating the
adoption of DNN with multivariate physiological signal datasets.

2. Materials and Methods
2.1. Peripheral Physiological Signals

In this study, we consider six peripheral physiological signals that are commonly used
in multivariate experimental settings.

The Electrocardiogram (ECG) and Photo-plethysmogram (PPG) are both recorded
to measure the cardiac activity. ECG employs surface electrodes to detect the electrical
potential of cardiac cells, PPG is based on optical sensors, and it measures blood volume
changes in the microvascular bed of tissue [36]. Both signals can be used to investigate
the Heart Rate Variability: how the heart rate changes in response to physiological needs
and external stimuli, under the control of the Autonomic Nervous System. EDA is the
measurement of changes in the electrical properties of the skin that occur in response to
sweat secretion. Since the sweat glands are under the control of the sympathetic nervous
system, EDA is used to investigate emotional arousal [37,38]. EMG is the study of the
muscles’ electrical signals, which are generated by the contraction and relaxation of muscles.
Analysis of the EMG is used for both clinical and research purposes since it can be used
in biomechanics, motor, and neuromuscular physiology, and emotion recognition [39–41].
Information about individuals’ respiration patterns can provide researchers with details
about the status of both the central and peripheral nervous system [42]. A respiratory
signal (RESP) can be recorded using an elastic band positioned around an individual’s
chest to measure the relative volumetric expansion. Finally, we consider the acceleration
signals (ACC) used to detect body movements which are used in clinical settings, not
only to study conditions associated with impaired movement but also stereotypical motor
movements in children with autism spectrum disorders [43–45].

2.2. Multivariate Signals’ Datasets

Physiological signals used in this study were obtained from four publicly available
datasets of multivariate signals: the Database for Emotion Analysis using Physiological
signals (DEAP, reference [46], available at http://www.eecs.qmul.ac.uk/mmv/datasets/
deap/, accessed on 5 March 2021), the Wearable and Clinical Signals dataset (WCS, ref-
erence [47], available at https://doi.org/10.21979/N9/42BBFA, accessed on 5 March
2021), a dataset used to investigate Synchrony In Dyads (SID, reference [48], available
at https://doi.org/10.21979/N9/O9ADTR, accessed on 5 March 2021), and a dataset used
to investigate the Perception of Implicit Aesthetic Pleasure (PIAP, reference [49], available
at https://doi.org/10.21979/N9/YCDXNE, accessed on 5 march 2021).

The DEAP dataset was created to investigate the association between physiological
response and emotional stimuli and provide data for Machine Learning applications aimed
at emotion recognition. From the list of peripheral signals included in the DEAP, we
selected the EDA and the PPG. All signals were collected with the same sampling rate of
512 Hz using the Biosemi ActiveTwo acquisition unit. The DEAP dataset provides signals
of 32 subjects.

The WCS dataset was created to compare signals collected with clinical-grade and
wearable devices and to test and validate algorithms to assess the quality of the data.
Specifically, in this study, we consider five different types of signals, collected with 2
different devices: (i) the FlexComp acquisition unit, operating at a sampling rate of 2048 Hz,
used to collect four physiological signals: ECG, EDA, PPG, and RESP; and (ii) the Empatica

http://www.eecs.qmul.ac.uk/mmv/datasets/deap/
http://www.eecs.qmul.ac.uk/mmv/datasets/deap/
https://doi.org/10.21979/N9/42BBFA
https://doi.org/10.21979/N9/O9ADTR
https://doi.org/10.21979/N9/YCDXNE
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E4, a wrist-band used to collect PPG (64 Hz), EDA (4 Hz), and ACC (32 Hz). The WCS
dataset provides signals of 18 subjects in two experimental conditions: at rest (n = 18) and
while performing an in-place walking (n = 18).

The SID dataset was used to investigate the physiological synchrony between members
of dyads with different levels of relationship. We considered three types of physiological
signals (ECG, EDA, EMG) provided by the SID dataset, all collected with the FlexComp
acquisition unit, operating at a sampling rate of 2048 Hz. The SID dataset provides signals
of 124 subjects (62 dyads).

The PIAP dataset was used to investigate the perceived aesthetics of web-pages and
images and it contains several physiological signals of young adults (N = 59, 33 females,
Mean age = 21.52 years) while they were asked to assess the aesthetic appeal of websites
and of emotional pictures. Specifically, for this dataset, we consider three types of physio-
logical signals: ECG, EDA, EMG (corrugator supercilii), recorded with a sampling rate of
1000 Hz using an open-source biosignal acquisition platform [50]. In this study, a subset of
22 participants has been selected.

Overall (Table 1), for this study, we composed a dataset with 6 types of signals from
4 acquisition devices and 232 subjects, totaling 813 samples of physiological signals. The
dataset was divided into two partitions, preserving the percentage of samples for each
class. The first partition (n = 609, 75% of the dataset) was used for training the AI models,
the second partition (n = 204, remaining 25% of the dataset) was uniquely used for testing.
Using separate partitions for training and testing AI models is a common practice to ensure
unbiased evaluations of the predictive performances.

Table 1. Number of samples per type of signal and source dataset, with sampling frequency (in Hz) and devices.

Dataset ECG EDA EMG PPG RESP ACC N. of Samples Device

DEAP - 32 (512 Hz) - 32 (512 Hz) - - 64 Biosemi

WCS 36 (2048 Hz) 36 (2048 Hz) - 36 (2048 Hz) 36 (2048 Hz) - 144 Flexcomp
- 36 (4 Hz) - 36 (64 Hz) - 36 (32 Hz) 108 E4

SID 128 (2048 Hz) 128 (2048 Hz) 128 (2048 Hz) - - - 384 Flexcomp
PIAP 44 (1000 Hz) 26 (1000 Hz) 43 (1000 Hz) - - - 113 Bitalino

Total 208 258 171 104 36 36 813

2.3. Pre-Processing

To reduce the memory size of the dataset, the original signals were cropped into
segments with a maximum length of 300 s. The selected segment corresponded to the first
300 s when the signal was shorter than 600 s; otherwise, to the portion between 300 to
600 s. This was to avoid the initial portions of the signal, where noise and artifacts are more
frequent because the preparation of the subject or the experiment is still ongoing.

In line with the end-to-end approach, only two pre-processing steps were performed:
normalization and resampling. Both steps were required to comply with the DNN archi-
tecture. The normalization was necessary to uniform the range of the input signal: all
signals were standardized by subtracting the mean value and dividing by the standard
deviation. The resampling was performed to overcome the heterogeneity of sample rates of
the different signal acquisition devices. Signals were resampled with a resampling rate of
100 Hz, which was empirically selected as a trade-off: while higher sampling rates would
allow for more informative signals, lower sampling rates would increase the speed of the
training and processing.

A key step to improve the performance of DNN is data augmentation, the procedure
of enriching an existing dataset, by randomly modifying its datapoints. Data augmentation
prevents the network from relying on instance-specific patterns, thus preventing overfitting
and improving generalizability [51]. In our implementation, every time a signal is used to
train the network, we randomly select the 10 s length portion of the signal that is actually
used as input to the DNN. When used to test the network performance, the central 10 s
length portion is selected instead.
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2.4. Deep Learning Architecture

The DNN architecture used in this study has three sequential components (Figure 1): (i)
a convolutional branch; (ii) a Long Short-Term Memory (LSTM) module; a Fully Connected
Head (FCH).

Figure 1. Diagram representing the architecture of the Deep Neural Network (DNN) used in this
study. Left: the complete network with the three components (the Convolutional Branch, the Long
Short-Term Memory module, and the Fully Connected Head) and parameters used for each layer.
The input signal is processed by the DNN to output the probability of belonging to each of the six
signal types considered in the study. Right: structure of a general Convolutional Block with Nin input
channels Nout output channels.

The convolutional branch is composed of 4 convolutional blocks, each composed of a
convolutional layer (with kernel size set to 3), a normalization layer (using batch normal-
ization [52]), a Rectified Linear Unit [53], and a pooling layer based on maximum (with
kernel size set to 2). The convolutional layer of each block expands the number of channels:
the first expands from 1 to 32 channels, the second to fourth blocks duplicate the number of
channels up to 256 channels for the fourth block. The structure of the convolutional branch
is directly inspired by Convolutional Neural Networks that are largely used on images and
videos. The main difference is that, in our study, we use a one-dimensional, layer—which
is more appropriate to process signals—instead of two-dimensional layers which are used
for images. After the 4 convolutional blocks, an additional pooling layer is used to compute
the average of the convoluted (multichannel) signal at 10-time points, thus obtaining a
temporal sequence of 10 elements, each with 256 values (one for each channel).

The LSTM module [54,55] is a recursive layer that is used in Neural Networks to
leverage the specific properties of sequential data. In the implementation used in this study,
the LSTM module has an output size set to 100 and a single layer. The LSTM processes the
output of the convolutional layer one element at a time: each time, the output of the LSTM
is updated considering the new element in the sequence and the output obtained from the
previous element. The output of the LSTM module is a vector with 100 elements, which is
the result of the recursion on the last element of the sequence.
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The final component of the DNN is the FCH, which linearly combines the 100 elements
from the LSTM module to output a vector of 7 elements, on which a Softmax is finally
applied to compute the probability of belonging to any of the 6 types of signals.

The first two components (the convolutional branch and the LSTM module) are used
as automated feature extractors in the TL experiment. Each signal is sequentially processed
by both components, and the vector with 100 elements resulting from the LSTM module is
the vector of the extracted features.

2.5. Analytic Plan

This study is composed of two separate Machine Learning experiments: the first
focuses on training the DNN to classify the type of signals, the second uses the trained
DNN as a feature extractor and uses a Support Vector Machine (SVM) to classify the type
of device used to collect the signals. Both experiments are based on the same dataset and
use the train partition to train the model, and the test partition to assess the performance of
the trained model.

In the first experiment, the signals in the train partition are used to optimize the
parameters of the DNN. The DNN adopts an end-to-end pipeline: the signals are directly
processed by the sequence of the three components to output the probability that the
signal belongs to each type of signal. The type with higher probability is considered the
result of the classification. The training was iterated for 400 epochs; in each epoch, all
the signals in the training dataset are used, randomly divided into batches of 32 signals.
The DNN parameters are optimized to minimize the Cross-Entropy Loss [56] between
the true and predicted types of signal. For the optimization of the DNN parameters, we
used the Adam optimizer [57], with an initial learning rate of 0.001 which was divided
by 10 every 50 epochs. The performance of the DNN was evaluated using the multi-class
Matthew Correlation Coefficient (mMCC) and the Confusion Matrix for both the train and
test partitions [58].

In the second experiment, we provide a demonstrative example of how the previously
trained DNN can be useful for TL approaches. TL relies on the fact that many of the features
that are automatically extracted by the DNN can be useful for other applications. All signals
in the dataset were then processed by the convolutional branch and LSTM module to obtain
100 features for each signal. These features, which are expected to synthesize patterns
useful to classify the type of signal, are transferred to classify the type of device that was
used to collect the signal. A SVM model, with linear kernel and regularization parameter
C = 1, was trained on the features extracted from the signals of the train partition and
evaluated on features from signals of the test partition. The performance of the SVM
was evaluated using the mMCC and the Confusion Matrix for both the train and test
partitions [58].

The implementation of the mMCC and SVM models and training of the SVM model
were based on the scikit-learn Python package (v0.23.2, reference [59]). The implementation
of the DNN and training methods, including the loss function and optimizer, were based
on pytorch (v1.3.1, reference [60]).

2.6. Code and Data Availability

The code, the dataset with pre-processed signals, and the parameters of the trained
DNN are available at https://gitlab.com/abp-san-public/dl-signal-classification (accessed
on 5 march 2021).

3. Results

The network trained to classify the type of signal achieved a mMCC of 0.931 on the
train partition and 0.938 on the test partition. The confusion matrices (Figure 2) showed a
high class accuracy (>96.2%) for all types of signals, except RESP.

https://gitlab.com/abp-san-public/dl-signal-classification
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Figure 2. Confusion Matrices that show the result of the classification of the type of signal, on the
train (left) and test (right) partitions. On the diagonal (green), the numbers of correctly classified
samples for each type of signal. Out of the diagonal, in red, the numbers of mis-classified samples.

Overall, the reported performances were similar in both the train and test partitions,
suggesting that the training process was able to efficiently detect and extract characterizing
patterns and avoid over-fitting. However, we observed that the model was not able to
correctly classify the RESP signals, which were confounded with EDA.

The first two components of the trained network were used to extract the features for
the classification of the type of device. To visualize the results of the feature extraction,
we apply a dimensionality reduction on the extracted features, based on two-dimensional
Principal Component Analysis (PCA). We observed (Figure 3) that the features generated
by DNN efficiently separate the type of signals; however, we also recognized the lack of
separation between RESP and EDA signals, which motivates the low-class accuracy for the
RESP type.

Figure 3. Representation of the input samples in the two-dimensional space defined by the Principal
Component Analysis (PCA) of the extracted features. Left: colored by type of signal; Right: colored
by type of device.

The SVM model, trained on the extracted features to predict the type of device,
achieved a mMCC of 0.638 on the train partition and of 0.609 on the test partition; the
confusion matrices reported similar performances in both partitions (Figure 4).

Figure 4. Confusion Matrices that show the result of the classification of the type of device, on the
train (left) and test (right) partitions. On the diagonal (green), the numbers of correctly classified
samples for each type of device. Out of the diagonal, in red, the numbers of mis-classified samples.
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The device with the lowest class accuracy was the Biosemi (13.7% on train, 7.7% on
test), while the most frequent classification error was attributing a signal to the FlexComp
device. Again, the motivation can be found by observing the results of the PCA analysis
(Figure 3): since the same device is used to collect multiple types of signals, the extracted
features, which well separated the types of signals, are not as optimal to discriminate
the devices.

4. Discussion

In this study, we demonstrated the use of DNN in the classification of multivariate
physiological data. In particular, a key aspect of our study is that it focuses on six different
types of physiological signals, instead of a limited number of physiological signals like
similar studies have done [61–63].

We successfully employed DNN to classify the type of physiological signal, with a
very good overall performance, demonstrated by the high mMCC on both the train and test
partitions. Only one type of signal, the respiratory signal (RESP), was incorrectly classified,
possibly due to the low number of samples available in the dataset. Future studies should
focus on having a richer and more balanced dataset. Notably, the Convolutional branch
and the LSTM components automatically learned to synthesize features that encode the
relevant patterns to allow for discriminating the type of signals, as shown by the results of
the PCA analysis.

Moreover, we provided a proof of concept to show how multivariate analysis can
benefit from the TL approach, enabled by the use of DNN. The trained DNN was used
to obtain generalized features of the signals: although created to encode signal patterns
relevant to discriminate the type of signals, the extracted features were also useful to
classify the type of device. Specifically, we adopted one of the simplest TL approaches:
the extracted features were used to train a SVM model, achieving an overall mMCC of
0.638 on the train partition and of 0.609 on the test partition. We did not investigate how
the achieved performance depends on the partitioning of signal types into the different
devices in the original dataset; as well as it was out of the scope of this study to improve
the performance of the TL task. We posit that, by adopting more specialized TL approaches,
for instance, re-training only the FCH component, will allow better performance. The
ability to classify the type of device itself may not be of immediate use. Instead, our
TL implementation aimed at providing an example of how the approach facilitates the
adoption of DNN in different and transversal applications based on multivariate data.

Drawbacks of using TL should be considered as well, especially when applied to
biological or physiological data. If features learned by DNN usually outperform hand-
crafted features, they are usually harder to interpret in biological terms [64–67]. When the
emphasis on interpretability is a key factor, the use of TL and DNN, in general, should be
paired with more standard approaches.

To be efficiently transferred to other domains, DNN should extract generic patterns.
This is the reason we believe that existing examples of DNN applied to physiological
signals, being trained on specialized tasks, would not allow transfer learning. Our DNN,
being trained on a more generic task and on a multivariate dataset, would a better candidate
to be transferred to other domains. However, more studies are needed to clarify this aspect:
in the literature, only a few examples made use of DNN on multivariate physiological
signals, and even fewer adopt TL.

Finally, the DNN can be easily improved by adding more physiological signals from
other databases and by considering new types of signals, for instance, brain signals such as
from Electro-encephalogram [46] and functional Near Infra-Red Spectroscopy [68,69].

4.1. Limitations

This study has some methodological issues, motivated by constraints and limitations
due to the exploratory nature of the study and characteristics of the dataset.
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First, in the preprocessing steps, we resampled all signals to a sampling rate of
100 Hz. While for some signals this rate is well above the one required to obtain significant
physiological information (e.g., RESP, EDA), for other signals (e.g., ECG, EMG), this likely
caused information losses. However, since the purpose of the network was to classify
the type of signal, not to extract clinical or physiological evidence, we deem that the
potential loss of information is acceptable, considering the gain in terms of increased
processing speed. However, approaches targeting diagnostic tasks should consider higher
sampling rates.

Second, we demonstrated the TL approach on the same dataset used for the main
DNN, to reduce the overall complexity of the study. In reality, TL applications usually
consider not only a different task or target but also different datasets.

Third, compared to networks used for medical images, the neural network used in this
study is not very deep: it is composed of 20 layers (including normalization and activation
layers), for a total number of 274,366 parameters. As a reference, the VGG-16 network [70]
contains 39 layers, for a total of 138.4 M parameters. Using a relatively low number of layers
was motivated by the fact of having a low number of samples (VGG-16 was originally
trained on a dataset with 1.3 M images). If required in future applications, our architecture
can be properly improved, provided that a dataset with an adequate sample size is used.

4.2. Implications

With a specific focus on multivariate physiological signals, the DNN approach adopted
in this study can be easily adapted to simultaneously process multiple types of signals:
convolutional branches can be used to extract a set of features from each type of signal that
are then merged by the FCH [19].

The trained DNN has its immediate application with novel signal processing platforms
(e.g., https://datagrok.ai, accessed on 5 March 2021), where the recognition of the type of
signal is the key step to initiate or recommend the correct processing procedure.

In turn, we highlight the importance of sharing the weights of trained networks and
benchmark datasets; these two practices have largely contributed to the adoption of DNN
in other disciplines. However, compared to other medical fields (e.g., Nuclear Medicine,
Histology and Pathology, Microscopy), the use of DNN on multivariate physiological
signals is still quite unexplored. This is probably due to the lack of extended datasets and
paucity of foundational applications, which, as in the case of medical imaging, could then
be adapted to the specific use cases and improved. By providing a benchmark dataset
and a working generalized DNN, we aim at providing a significant contribution to the
development and diffusion of DNN for multivariate physiological signals.

The use of multivariate data in clinical applications mostly pertains to diagnostic and
monitoring tasks (for instance in Intensive Care Units), where the efficacy of AI approaches
can be fully exploited. It should be noted, however, that, to be reliably applied in real-time
clinical applications, AI models require a delicate and demanding phase of training, where
the availability of good datasets and computing resources are the key. The availability
of general datasets and pre-trained models that can be adapted to more specific tasks
using TL represents therefore a fundamental resource. Regarding the dataset used in this
study, having different tasks and subjects from different populations is a key feature of
our approach, since it allows for obtaining a more general model. In the case of clinical
applications, this model can be further improved using a specialized dataset with subjects
from the same population while executing the same task. While we believe the dataset and
the pre-trained model developed in this study represent a key contribution to the adoption
of AI for clinical applications, further studies are required to provide reliable guidelines
and examples about how AI and TL should be efficiently applied to achieve reliable results.

https://datagrok.ai
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