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Abstract: Blood plasma is the most commonly used biofluid in disease diagnostic and biomedical
analysis due to it contains various biomarkers. The majority of the blood plasma separation is still
handled with centrifugation, which is off-chip and time-consuming. Therefore, in the Lab-on-a-chip
(LOC) field, an effective microfluidic blood plasma separation platform attracts researchers’ attention
globally. Blood plasma self-separation technologies are usually divided into two categories: active
self-separation and passive self-separation. Passive self-separation technologies, in contrast with
active self-separation, only rely on microchannel geometry, microfluidic phenomena and hydrody-
namic forces. Passive self-separation devices are driven by the capillary flow, which is generated due
to the characteristics of the surface of the channel and its interaction with the fluid. Comparing to
the active plasma separation techniques, passive plasma separation methods are more considered
in the microfluidic platform, owing to their ease of fabrication, portable, user-friendly features. We
propose an extensive review of mechanisms of passive self-separation technologies and enumerate
some experimental details and devices to exploit these effects. The performances, limitations and
challenges of these technologies and devices are also compared and discussed.

Keywords: passive self-separation; microfluidics; microfiltration; sedimentation; Dean vortex; hy-
drophilicity

1. Introduction

Many recent advancements are developed in the Lab-on-a-chip field. However, the
promotion of point-of-care (POC) technology is still an issue. POC devices take advan-
tage of LOC technology and have a more comfortable, cheap, lab-free and convenient
diagnosis process instead of the traditional laboratory process [1–7]. In the development
of LOC technology, sample preparation is always an obstacle, especially in microfluidic
platforms [8–17]. Blood is the most commonly used biofluid sample in LOC devices. There
are many commercial applications that existed; lateral flow immunoassay applications;
sandwich assays and competitive assays, vertical flow immunoassay application; antibody
conjugation and screening, and paper microfluidic implementation; glucose detection,
3D devices for glucose detection and environmental and food safety tests [18–23]. Hu-
man whole blood comprises all blood components: red blood cells (RBCs), white blood
cells (WBCs), platelet and plasma. Healthy human blood is around 55% plasma and 45%
RBCs [8]. The sizes of each blood components are shown in Figure 1 [24–26]. When the
blood sample is the analyte of LOC devices, which component of blood is desired should be
considered. In many LOC applications, plasma is the desired analyte that contains the tar-
get biomarkers to be detected. For example, in ovarian cancer detection, CA-125 and HE-4
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antigens are usually suspended in the plasma and are used as biomarkers in ovarian cancer
diagnostics [27–36]. Furthermore, the viscosity of the blood sample affects the design of the
microfluidic devices. The viscosity of blood varied with the patients’ sex, health conditions
and diet. The viscosity of the whole blood mainly depends on the hematocrit. The higher
the hematocrit of the whole blood, the more viscous the whole blood is. Temperature
is another factor that affects the viscosity of the blood. There should be a temperature
difference between the blood in the microchannel and blood in vivo. Additionally, the
viscosity of the whole blood affects the flow rate of blood samples in the microfluidic
channel. Therefore, the viscosity variation of different patients should also be considered in
the microfluidic device design. The separation of plasma is the first step in most biomedical
analysis assays. The standard separation process is centrifugation, as it is time-consuming
and off-chip. It is not an ideal technique for microfluidic LOC devices [37]. Therefore, an
effective and capillary-scale volume delivery system is expected to separate blood plasma
and be integrated into the microfluidic sensing platform. Various separation technologies
such as size-based particle sorting [38,39], active self-separation with external devices
were concluded and discussed in many papers [40–42]. This paper is mainly focusing on
the passive blood-plasma self-separation during capillary-driven flow in a microfluidic
platform, Figure 2 shows the passive self-separation techniques discussed in this paper. In
contrast with active self-separation techniques, passive blood-plasma self-separation does
not need external forces or functionalities but is only driven by capillary flow enabled by a
microchannel with hydrophilic walls [43–50]. Even though much research is carried out on
developing passive blood-plasma self-separation systems in recent years, capillary-scale
plasma preparation is still the bottleneck to the LOC technology.
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Figure 1. Schematic drawing of blood components and corresponding volumetric percentages in the
whole blood.

Various challenges are considered when developing a passive blood-plasma self-
separation system. First of all, volume is limited in LOC devices. To ensure the comfort
of patients, 1–2 µL of blood is the suggested volume of a finger prick [51]. With this
small-scale blood sample, microchannel size is also limited. Due to this limitation, many
hydrodynamic methods cannot have full effects on the plasma separation, such as the
Dean vortex effect is limited by the low flow rate and low Reynolds number of the blood
flow. A short separation time is also expected in the blood delivery systems. Usually,
plasma is ideally separated and collected from whole blood in few minutes in the POC
applications. With the long-time separation process, the whole blood has an increased risk
of coagulation [52]. Clogging is another challenge, especially in the microfluidic channel
with micro-filtration [53]. With continuous blood flow passing through the micro-filtration,
blood cells accumulate in the filters and gradually block the micro-structures and stop the
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self-separation process. The throughput and purity of separated plasma are also included
in the consideration [54]. Lastly, the integration of the blood delivery system and the
sensing platform is a challenging problem. Numerous studies have been performed on
sample preparation and integration and have been discussed for many years [55,56]. The
integration process itself has its own difficulties, such as leakage problems, the complexity
of disparate materials, etc.
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Figure 2. Schematic representation of the passive self-separation techniques discussed in this re-
view paper.

The fabrication processes of the microfluidic devices are mostly included in nanofab-
rication and have been mentioned by many papers. However, to have a capillary-driven
flow in the microchannels, surface treatments are needed when the channel materials are
naturally hydrophobic. There are many methods to change the hydrophilicity of the mate-
rial surface. 1. Oxygen plasma treatment. The reactive species generated by oxygen plasma
attacks the siloxane backbone of PDMS to form oxygen-rich SiOx silica-like layer and
Si–OH surface structures [3]. 2. Nano particle deposition. There are many ways to deposit
nano particles onto the material surface: Deposition by Electro-spinning, Spontaneous
Growth on Surfaces, Deposition by Spray Coating, etc. For example, this paper mentioned
that Lee et al. sprayed a layer-by-layer (LbL) nano-assembly layer on the top surface [57].
3. Chemical etching. Immersion into the particular chemical can form a nanostructured
layer on the material surface, changing the surface’s wettability [58].

Many reviews have focused on the micro-scale particle separation and overview of
blood plasma separation [59–63]. This article focuses mainly on the passive blood plasma
separation during the capillary-driven flow in the microfluidic platforms. This paper
intends to critically review the recently developed advancements of the blood plasma self-
separation mechanisms and applications in the self-driven flow. In the next sections, the
mechanisms of passive self-separation with/without micro-structures will be categorized
and discussed. Followed by a review of the currently available applications of passive
blood-plasma self-separation technologies will be investigated. In this section, a compar-
ison analysis is made to provide a better view of recent advances in the passive blood
plasma self-separation technology in the LOC field. Subsequently, we will conclude and
provide possible future directions for passive blood plasma self-separation in microfluidic
applications.
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2. Passive Self-Separation with Filtration Using Micro-Structures
2.1. Basic Mechanisms

The blood plasma microfiltrations are usually categorized into four design types:1.
Weir-type filtration 2. Dead-end pillar filtration 3. Cross-flow filtration, and 4. Membrane
filtration [64]. A weir filter consists of obstacles that can obstruct the blood cells, and
blood plasma can pass through the narrow slot on the top of the barrier [65,66]. The
dead-end pillar microfiltrations involve a row of pillar structures with a critical spacing
dimension to block the blood cells in the blood flow direction and extract blood plasma [67].
However, the clogging issues should always be considered in this type of microfiltration.
In contrast with dead-end filtration, in cross-flow pillar microfiltration, the pillars are
located perpendicular to the main blood flow, and the trapped blood cells will be flushed
out of the filters by the main blood flow and avoid most clogging problems [68]. In the
membrane microfiltrations, pores are located on a planar layer substrate. Feed blood flow
is introduced into one side of the membrane, and the blood plasma will be extracted out to
the other side of the membrane [69–71]. In the membrane filtration technique, pore sizes
are more flexible but increase the complexity in the fabrication process. Figure 3 shows the
schematic diagrams of four types of microfiltrations.
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Figure 3. Schematics of the microfiltration types, (1) weir filtration (side view), (2) dead-end filtration
(top view), (3) cross- flow filtration (top view), (4) membrane filtration (side view).

2.2. Applications
2.2.1. Weir-Type Filtration

Chen et al. [72]. Designed cross- flow filtration microfluidic chips involved a PDMS-
glass compounded cover and a silicon substrate, shown in Figure 4a. This device consisted
of one inlet for introducing blood sample, and two outlets for collecting WBCs and RBCs,
weir-type and pillar-type filtration barriers were designed in the microchannels, weir-type
filtration is shown in Figure 4a and pillar-type filtration is shown in Figure 4a. The diluted
blood samples were introduced into the device inlet in the experiments, and a variety of
channel lengths were used as the separation length. As a result, 82.3% RBCs and 8% WBCs
could be removed from the blood sample by the pillar-type filtration chip with 160 mm
separation length, while 91.2% RBCs and 27.4% WBCs by weir-type filtration chip. A
weir-based micro-filter using capillary action was designed by Crowley et al. [73]. In this
device, human whole blood was introduced into a main blood flow channel connected
with two lateral channels used for extracting plasma. Between main channel and lateral
channels, weir-type barriers were evenly distributed to prevent blood cells flow into the
lateral channels, shown in Figure 4b. Recently, multiple combinations of channel shapes
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and weir filtration structures were investigated to improve the separation yield and the
purity of the extracted plasma [74,75].
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Figure 4. Applications of weir-type filtration, (a): schematic view of the silicon substrate, “a” is the
inlet, “b” is the outlet for WBCs, “c” is the outlet for RBCs (1); cross-section of the weir-type barrier
(2); SEM micrograph of the channel close to the outlet (3); (b) microfiltration design of Crowley
et al. [72,73]. (a) reprinted from Sensors and Actuators B: Chemical, Volume 130, Issue 1, Xing Chen,
Da Fu Cui, Chang Chun Liu, Hui Li, Microfluidic chip for blood cell separation and collection based
on crossflow filtration, 216–221, Copyright (2007), with permission from Elsevier. (b) republished
with permission of The Royal Society of Chemistry, from Lab on a Chip, Isolation of plasma from
whole blood using planar microfilters for lab-on-a-chip applications, Timothy A. Crowley and Vincent
Pizziconi, 5, 2005; permission conveyed through Copyright Clearance Center, Inc.

2.2.2. Dead-End Filtration

Dead-end filtrations are usually used to process small amounts of blood samples to
avoid clogging issues. Hauser et al. [76]. developed a dead-end membrane microfiltration
device contains: a porous filtration membrane for blood plasma separation, a capillary
microchannel for extracting plasma and a filtration chamber connecting membrane and
capillary channel, details are shown in Figure 5a. 13–21 µL of plasma was extracted from
50 µL of blood sample within the hematocrit range of 35–55%, and a high extraction yield
of 65% was achieved within less than 10min. Son et al. [77]. Reported a microfluidic blood
plasma separation device with commercially used track-etched polycarbonate membrane
filters with 4 µm pores for plasma separation, the schematic illustration of the device
is shown in Figure 5b. The membrane filtration was placed on the top of the vertical
up-flow channel, and gravity prevented the clogging of the filtration. By using this device,
up to 4 µL of separated blood was extracted from the 30% hematocrit feeding blood.
Both these two devices had limitations in separating plasma from high hematocrit blood
samples effectively.

2.2.3. Cross-Flow Filtration

Cross-flow filtration technology can effectively avoid clogging issues and be widely
studied in the POC field. Tachi et al. [78]. Demonstrated a cross-flow filtration micro-device
consisted of two main parallel microchannels connected by multiple shallow channels.
Shallow channels were 12 µm wide and 1 µm deep. A schematic diagram is shown in
Figure 6a. Using this device, plasma could be extracted from whole blood then be metered
and diluted simultaneously without hemolysis. Yeh et al. [79]. Presented a cross- flow
filtration chip for extracting plasma from whole blood, which includes a cross- flow layer,
a Ni-Pd alloy micro-porous membrane and a reservoir layer, shown in Figure 6b. The
comparative experiments were completed using various diluted blood samples, membranes
with different pore sizes and different flow rates. 96.2% separation efficiency was finally
achieved as the best result from the 10× diluted blood sample with 2 µm pore size Ni-Pd
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alloy micro-porous membrane. Some researchers utilize the deformability of the RBCs
and separate RBCs in the cross-flow filtration [80]. To additionally avoid rapid irreversible
clogging, a reversal flow was applied in the crossflow filtration [81].
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Figure 5. Applications of the dead-end filtration, (a) top-view and cross-section of Hauser et al.’s
design, (I) a porous filtration membrane, (II) a filtration chamber and (III) the capillary channel;
(b) microfiltration device integrated into a vertical-up flow channel, a membrane filter was positioned
on the top of the vertical-up flow channel for filtration [76,77]. (a) reprinted with permission from
Analytical Chemistry, High-Yield Passive Plasma Filtration from Human Finger Prick Blood, Janosch
Hauser, Gabriel Lenk, Jonas Hansson, Olof Beck, Göran Stemme, and Niclas Roxhed, 2018, 90, 22,
13393–13399. Copyright (2018) American Chemical Society. Figure 5b republished with permission
of the Royal Society of Chemistry, from Lab on a Chip, Hemolysis-free blood plasma separation, Jun
Ho Son, Sang Hun Lee, Soongweon Hong, Seung-min Park, Joseph Lee, Andrea M. Dickey and Luke
P. Lee, 14, 2287, 2014; permission conveyed through Copyright Clearance Center, Inc.
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Figure 6. Cross-flow filtration, (a) principle of plasma separation from whole blood in the microchan-
nel; (b) schematic of Yeh et al.’s cross-flow filtration method [78,79]. (a) reprinted with permission
from Analytical Chemistry, Simultaneous Separation, Metering, and Dilution of Plasma from Human
Whole Blood in a Microfluidic System, Tomoya Tachi, Noritada Kaji, Manabu Tokeshi, and Yoshi-
nobu Baba, 2009, 81, 3194–3198. Copyright (2009) American Chemical Society. (b) republished with
permission of IOP Publishing, Ltd, from Journal of Micromechanics and Microengineering, Using
the developed cross-flow filtration chip for collecting blood plasma under high flow rate condition
and applying the immunoglobulin E detection, Chia-Hsien Yeh, Chia-Wei Hung, Chun-Han Wu and
Yu-Cheng Lin, 24, 095013, 2014; permission conveyed through Copyright Clearance Center, Inc.

2.2.4. Membrane Filtration

Aran et al. [82]. reported a membrane micro-filtration device using cross-feeding
blood flow, the membrane filtration was sandwiched between two PDMS microchannels
as Figure 7a. Two PDMS layers were adhered by surface modification of the polymer
membrane via 3-aminopropyltriethoxysilane (APTES). They experimented with the sheep
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blood with various HCT levels (42%, 34%, 30% and 20%), the results showed that the
separation rate decreased with experiment time when using the 42% HCT sheep blood.
However, over the duration of the experiments using 20% to 34% HCT blood samples, the
blood plasma separation was effective. Thorslund et al. [83]. reported a device with hy-
drophilic polypropylene (PP) membrane filter integrated between two PDMS slabs, shown
in Figure 7b. The membrane filter had 0.4–0.45 µm pores. As addressed by Thorslund,
the limitation of this device is the RBCs leakage caused by too high lid structure, and the
leakage issue could not be significantly improved by sealing. Therefore, the best solution to
improve this microsystem is to handle as large blood volumes as possible. Devices with the
high lid design would face the same issues. Only diluted blood under 20% hematocrit (Hct)
could be used to avoid this problem. This device ran on a PP device to prevent hemolysis
and blood cell leakage in the separation process.
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compartment. (b) diagram of the hybrid filtration device consists of a lid, a 13 mm diameter polymeric membrane filter and
a bottom substrate with 40 parallel microchannels that collect filtrate and lead it into the reservoir [82,83]. (a) republished
with permission of the Royal Society of Chemistry, from Lab on a Chip, Microfiltration platform for continuous blood plasma
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Berlin Heidelberg 2006 (2006).

3. Passive Self-Separation without Filtration
3.1. Mechanisms
3.1.1. Dean Flow Fractionation

Due to the complicated balance of hydrodynamic forces, particles suspended in the
microfluidic flow could be sorted by their sizes and densities. In a spiral microchannel,
the flow experiences a centrifugal force when passing through the curved channel. The
fluid on the outer side of the channel has a relatively higher pressure and forms a pressure
gradient toward the center of the curvature of the curved channel. In a viscous flow, the
velocity profile is not uniform. The velocity near the channel wall is lower than in the
center of the channel and causes a lower centrifugal force on the outer channel wall. This
will cause a secondary flow from the channel center to the outer channel wall. Meanwhile,
due to the pressure gradient from the outer side to the curvature center, a flow will flow
along the channel wall from the convex wall to the concave wall. These secondary flows
formed a pair of the symmetric vortex is called Dean vortices [84,85].

Particles suspended in the spiral microchannel experience the inertial lift force caused
by the microchannel cross-section and the dean drag force due to the Dean vortices, shown
in Figure 8. Inertial lift force:

FL = ρG2CLa4
p (1)
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where ρ is the fluid density, G is the shear rate, CL is the lift coefficient, ap is the diameter of
the particle. The Dean drag force:

FD = 3πµUD ap (2)

where µ is the viscosity of the fluid, UD is the average Dean velocity UD = 1.8 × 104 De1.63

(De is Dean number De = Re(Dh/2R)0.5, Re is Reynolds number, Dh is hydraulic diameter, R
is the radius of the curvature of the convex channel wall). The particles or cells will migrate
to a focus position when the dean drag force and the inertial lift force are balanced [86].
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Figure 8. Schematic illustrating the effect of the curvature, the larger particles focus on the position
closer to the inner channel wall due to the dean vortex.

3.1.2. Mechanisms and Limitations of Sedimentation Technology

Sedimentation is one of the oldest separation approaches based on the gravity and
the density differences between plasma and blood cells (ρRBCs=1100 kg/m3, ρWBCS= 1050–
1090 kg/m3 and ρplasma=1030 kg/m3), the principle is shown in the Figure 9. Sedimentation
velocity of blood cells in the whole blood is varied with patients’ sex and health condi-
tions [87]. The biggest limitation of sedimentation technology is the low separation velocity,
and it is out of consideration when facing a large volume of the blood sample. However,
with a small amount of blood, such as finger prick, it is still a popular technology. Hy-
bridizing the sedimentation technique with filtration advantageously minimizes clogging
issues inherent to microfiltration [88,89]. Most blood cells sediment before reaching the
filtration region, the plasma could be continuously extracted and a few suspension blood
cells are separated away by the filter.
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Figure 9. Schematic of sedimentation technique.

3.1.3. Bifurcation Law (Zweifach-Fung Effect)

Bifurcation law also called the Zweifach-Fung effect, describes when the blood flowing
in the capillary and passing through a bifurcating region, the RBCs in the blood flow into
the higher flow rate daughter vessel. In contrast, only a few RBCs flow into the lower
flow rate daughter vessel [90]. This effect will occur when the flow rate ratio between
two daughter channels is above the critical ratio: 2.5:1. The diameter of the channel wall
should not be too much larger than the diameter of cells [91]. As Figure 10 shows, at the
bifurcation region, the asymmetric shear forces are applied on the cell’s surface due to the
flow rate difference and produce a torque to pull it into the high flow rate channel [92].
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Figure 10. Zweifach-Fung effect schematic diagram, when the flow rate ratio is more than 2.5, and
the cell-to-vessel diameter ratio is of the order of 1. Red blood cells tend to flow into the higher flow
rate daughter vessel instead of, the lower flow rate daughter vessel due to the pressure difference and
shear forces acting on the cell [91]. Republished with permission of the Royal Society of Chemistry,
from Lab on a Chip, A microfluidic device for continuous, real time blood plasma separation, Sung
Yang, Akif Ündar and Jeffrey D. Zahn, 6, 871-880, 2006; permission conveyed through Copyright
Clearance Center, Inc.

3.1.4. Microchannel Surface Control of Wettability

The passive self-separation microfluidic channel’s blood flow is driven by capillary
force induced by hydrophilic channel walls [93]. Researchers designed a microchannel
with different hydrophilicity patterns to separate plasma based on this principle, as can
be appreciated in the Figure 11 that shows. Asymmetric channel with 3 sides hydrophilic
in the front part of the channel and a hydrophobic patch with all walls hydrophobic is
applied followed with the hydrophilic part. When the blood sample is introduced into the
channel inlet, with the hydrophilic channel walls and Young-Laplace pressure, the blood
flow into the microchannel as a capillary-driven flow. With the large contact angle and the
inverse direction Young-Laplace pressure, the blood flow is impeded at the hydrophobic
region. Since the viscosities of blood plasma and blood cells are different, the plasma has
a higher velocity in the hydrophobic patch than the blood cells and passes through the
hydrophobic region. Meanwhile, the blood cells stop and accumulated. In this technique,
the asymmetric hydrophilic channel walls provide a gentler velocity decrease when the
whole blood flow downstream [94], and the velocity could be controlled by the contact
angle of the channel walls [95].
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3.2. Self-Separation of Blood Plasma during the Self-Driven Flow in Micro-Devices
3.2.1. Sedimentation Applications

Zhang et al. [96]. reported a continuous plasma extraction microfluidic device, their
method is to keep the sedimentation of erythrocytes unperturbed in the glass capillary and
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microchannel, shown in Figure 12a. The innovative part of this design is the orientation
changing of the connector, which enhanced the separation efficiency. The purity of this
design could achieve 99% with 1:5 diluted blood (8% Hct) within the feed flow rate
of 30 µL/min. As the feed flow rate increases, more sample consumption is caused
by the shorter sedimentation time and more turbulence at the connector and decreases
the separation efficiency. There is no clogging observed in 4 hours separation time. A
double layer PDMS microchannel blood-plasma separator with wettability gradient and
sedimentation effect was demonstrated by Maria et al. [97]. shown in Figure 12b. A vertical
cylindrical well connected the top microchannel and the bottom microchannel with a
wettability gradient, the center portion of the well is more hydrophobic, and the two sides
of the well are more hydrophilic, which can enhance the plasma separation by the velocity
difference between blood cells and plasma when the blood sample passing through the
well. By this combined gravity and capillarity, the plasma was separated from the whole
blood. In this experiment, 2.0 µL of plasma was separated from less than 10 µL whole
blood in 15 min with 99.9% purification efficiency. Forchelet et al. [98]. have recently
developed a micro-device to separate plasma from whole blood using capillary flow and
sedimentation effect shown in Figure 12c. The blood cells sediment toward the bottom
of the microchannel due to the gravity, and the blood delamination occurred based on
the viscosity differences between blood cells and plasma. In this design, there was an
ejection area following the separation portion of the channel. With this area, the volume
of the cell-free blood sample can be measured. This device achieved a 99.987% purity in
plasma separation. Sedimentation technology can advantageously avoid clogging issues
when it is in combination with micro-filtration, Park et al. [99]. demonstrated a passive
blood separator with a combined design strategy including micro-filtration, sedimentation
and wettability gradient. This device was composited by an etched glass hydrophilic
microchannel bottom layer and a hydrophobic natural PDMS top layer with a micropillar
array, shown in Figure 12d. The separation efficiency was near 100%, and a small volume
of blood (<15 µL) was required in this device.

3.2.2. Curved Channel Applications

In the spiral microchannel, the cross-section of the channel is found to be another
factor that could enhance the Dean vortex effect in the blood plasma separation pro-
cess [100]. Some researchers advantageously used the trapezoidal cross-section of the
spiral microchannel to make the cores of Dean vortices migrate to the longer side of the
channel and trap larger particles in the center of the Dean vortices additionally sort out
suspended particles by their sizes. Rafeie et al. [101]. demonstrated a spiral microchannel
with the trapezoidal cross-section by which can enhance the cells focusing abilities in the
microchannel. With low concentrated blood samples (0.5% and 1% Hct), they achieve
the 100% purity of separated plasma under a 1.5 mL/min flow rate. However, with the
input blood concentration increasing, the separation efficiency of this device significantly
decreases. They additionally designed an innovative multiplexing spiral channels device
for ultra-fast blood plasma separation, and each microchannel has the same design as
the proposed one, shown in Figure 13a. This multiplexing spiral channel can process
1mL of whole blood within 1min and is expected as a continuous and high throughput
blood plasma separator. Warkiani et al. [102]. demonstrated a spiral microchannel with
trapezoidal cross-section consists of one inlet and two outlets to separate the WBCs and
the circulating tumor cells (CTCs), shown in Figure 13b. Their works improved the sorting
purity (100%) for CTCs from patients with advanced-stage metastatic breast and lung
cancer in the rapid blood processing speed. The two devices above were using different
flow directions. With the radius of the microchannel’s curvature increased, Dean’s number
decreased exponentially, weakening the separation efficiency.
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Figure 12. Sedimentation Applications, (a) schematic for the principle of the plasmapheresis device;
(b) schematic of the device structure, plasma extraction due to the sedimentation and self-build-
in filter; (c) two device structures: separation and ejection, and the illustration of the separation
principle; (d) top view (top) and 3D schematics (bottom) of Park et al.’s blood separator [96–99].
(a) reprinted with permission from Analytical Chemistry, Gravitational Sedimentation Induced
Blood Delamination for Continuous Plasma Separation on a Microfluidics Chip, Xian-Bo Zhang,
Zeng-Qiang Wu, Kang Wang, Jie Zhu, Jing-Juan Xu, Xing-Hua Xia, and Hong-Yuan Chen, 2012, 84, 8,
3780–3786. Copyright (2012) American Chemical Society. (b,c) reprinted from [96,97] under the terms
of the Creative Commons CC BY license. (d) reprinted by permission from Springer Nature Customer
Service Centre GmbH: Springer, Microsystem Technologies, 22, 2077–2085 (2016), On-chip whole
blood plasma separator based on microfiltration, sedimentation and wetting contrast, Sanghoon Park,
Roxana Shabani, Mark Schumacher, Yoon-Seoung Kim, Young Min Bae, Kyeong-Hee Lee, Hyoung
Jin Cho, Springer-Verlag Berlin Heidelberg 2015, (2015).

Nivedita et al. [86]. developed a spiral microchannel with four outlets to sort the WBCs
and the RBCs based on their sizes difference, shown in Figure 14a. Due to the larger size, the
WBCs were closer to the inner side of the channel wall, and the RBCs were focusing near the
outer wall when introducing the 500× diluted blood into the channel inlet. With the highly
diluted blood, the separation process could avoid the strong cell to cell interaction and
experience a larger effect of Dean vortices. Still, it was also a limitation when this device
was applied to commercial use. They successfully received around 95 ± 2.2% of WBCs and
6 ± 2.4% of RBCs in the first outlet, and around 95% RBCs in the second and third outlets.
The fourth outlet only had the plasma and the platelets. Further experiments were also
accomplished using multiple inlet blood samples with various blood cells concentration.
Instead of changing the cross-section of the microchannel, adding channel downstream
length is also considered by researchers. Robinson et al. [103]. reported a micro device
contains the main spiral microchannel followed by two secondary spiral microchannels.
The function of the two secondary microchannels is to additionally filter out the blood cells
with a similar flow velocity as the main microchannel, shown as Figure 14b. They finished
the experiments with 2% Hct diluted blood and received 99% separation efficiency with
the device with secondary spiral microchannels and 55% efficiency with the single main
spiral microchannel. A recent beehive-like blood plasma separator with a separation unit



Bioengineering 2021, 8, 94 12 of 20

contains many sub-spiral channels were designed to separate plasma based on the same
principle [104].
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Figure 13. Spiral microchannel with trapezoidal cross-section, (a) schematic of the blood plasma
separation using a spiral channel with a trapezoidal cross-section, blood cells concentrated near the
inner channel wall around the vortex cores; (b) The operating principle of blood cells separation by a
spiral channel with a trapezoid cross-section, CTCs focused near the inner channel wall and WBCs
are trapped closer to the outer channel wall [101,102]. (a) republished with permission of the Royal
Society of Chemistry, from Lab on a Chip, Multiplexing slanted spiral microchannels for ultra-fast
blood plasma separation, Mehdi Rafeie, Jun Zhang, Mohsen Asadnia, Weihua Li and Majid Ebrahimi
Warkiani, 16, 2791–2802, 2016; permission conveyed through Copyright Clearance Center, Inc. (b)
reprinted from [101] under the terms of the Creative Commons CC BY license.
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Figure 14. (a) Brightfield images of the microchannel, the flow boxed in red shows the cells passing
the first bifurcation and to be filtered again in the second spiral channel, and the bottom right figure
shows the second bifurcation and blood cells collected in the waste outlet; (b) schematic of the
3 outlets spiral channel, larger particles are collected in the inner outlet while most smaller particles
flow into the middle outlet, and plasma are extracted into the outer outlet [86,103]. (a) reprinted
from Biomicrofluidics, Continuous separation of blood cells in spiral microfluidic devices, Nivedita
Nivedita and Ian Papautsky, 7, 5, 054101 (2013) with the permission of AIP Publishing. (b) reprinted
from Biomicrofluidics, Rapid isolation of blood plasma using a cascaded inertial microfluidic device,
M. Robinson, H. Marks, T. Hinsdale, K. Maitland, and G. Cotéwiththe, 11, 024109 (2017) with the
permission of AIP Publishing.

3.2.3. Applications of Bifurcation Law

Yang et al. [91]. took advantage of the Zweifach-fung effect to develop a microfluidic
device consists of the main blood channel (width is 15 µm) and multiple plasma skimming
channels (width is 9.6 µm), shown in Figure 15a. In their experiments, 10–35% Hct sheep
blood samples were infused into the channel inlet, and 100% purity of extracted plasma
was received with 4 µl/min extraction rate in the outlets. The volume of extracted plasma
percent out of total plasma varied from 15% to 25% dependent on the hematocrit values
of the inlet blood. Shatova et al. [105]. reported a constriction-expansion microfluidic
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blood plasma separator which can extract 100% pure plasma from whole blood at 9%
yield. As shown in Figure 15b, blood flow first went through the constricted portion of
the microchannel, then went downstream to the expansion area, which has two plasma
skimming channels on both sides. Due to the Zweifach-fung effect, blood cells stayed in the
main blood flow and plasma went into the two daughter microchannels at the bifurcation
region. They also experimented with blood samples with various blood cells concentration
in the microchannels with various expansion angles. Details were discussed in their article.
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Figure 15. Bifurcation law applications, (a) A zoomed-in view of the blood plasma separation re-
gion, the main blood channel width is 15 mm, while all plasma skimming channels have widths of
9.6 mm; (b) Schematic of Shatova’s blood plasma separation device design [91,105]. (a) republished
with permission of the Royal Society of Chemistry, from Lab on a Chip, A microfluidic device for
continuous, real time blood plasma separation, Sung Yang, Akif Ündar and Jeffrey D. Zahn, 6,
871–880, 2006; permission conveyed through Copyright Clearance Center, Inc. (b) reprinted with
permission from Analytical Chemistry, Portable, Constriction–Expansion Blood Plasma Separation
and Polymerization-Based Malaria Detection, Tatyana A. Shatova, Shefali Lathwal, Marissa R. En-
gle, Hadley D. Sikes, and Klavs F. Jensen, 2016, 88, 15, 7627–7632. Copyright (2016) American
Chemical Society.

3.2.4. Microchannel Wettability Control Separation Methodologies

In self-driven flow microfluidic devices, modified channel surfaces could provide
a velocity gradient of blood flow due to their viscosity difference, separating the blood
cells and the plasma. Maria et al. [95]. designed a passive self-separation microfluidic
channel with different hydrophilicity on its surface. As shown in Figure 16a, they added a
hydrophobic patch after the hydrophilic surface-treated microchannel. Since the viscosities
difference of plasma and the blood cells are significant, plasma had a higher flow velocity
than the blood cells in the hydrophilic channel. Therefore the plasma could pass through
the hydrophobic region meanwhile the blood cells stopped. Thus, plasma successfully
separated from the whole blood. In their approach, 450 nL plasma could be extracted
in 15 min and the purity of the plasma was comparable with that obtained using the
centrifugation process. They also provided experimental data for the microchannels with
various surface contact angles. They finished the comparison experiments on the all-wall
hydrophilic and asymmetric (bottom is hydrophobic and other walls are hydrophilic)
microchannel. Lee et al. [57]. used the microfluidic channel driven by asymmetric capillary
flow. The microchannel was made of cyclic olefin copolymer (COC), which was naturally
hydrophobic. To control the asymmetric capillary flow in the microchannel, a spray layer-
by-layer (LbL) nano-assembly layer was sprayed on the top surface, which was supposed
to be super hydrophilic but left a hydrophobic region. All other three walls (the bottom
and two sides walls) were untreated and kept hydrophobic, as shown in Figure 16b. By
comparing the microchannels with different hydrophobic patch lengths and channel widths,
a maximum of 100 nL plasma was separated from the device with the 100 µm width and
10 mm hydrophobic patch.



Bioengineering 2021, 8, 94 14 of 20

Bioengineering 2021, 8, x FOR PEER REVIEW 14 of 21 
 

reprinted with permission from Analytical Chemistry, Portable, Constriction–Expansion Blood 

Plasma Separation and Polymerization-Based Malaria Detection, Tatyana A. Shatova, Shefali 

Lathwal, Marissa R. Engle, Hadley D. Sikes, and Klavs F. Jensen, 2016, 88, 15, 7627–7632. Copyright 

(2016) American Chemical Society. 

3.2.4. Microchannel Wettability Control Separation Methodologies 

In self-driven flow microfluidic devices, modified channel surfaces could provide a 

velocity gradient of blood flow due to their viscosity difference, separating the blood cells 

and the plasma. Maria et al. [95]. designed a passive self-separation microfluidic channel 

with different hydrophilicity on its surface. As shown in Figure 16a, they added a 

hydrophobic patch after the hydrophilic surface-treated microchannel. Since the 

viscosities difference of plasma and the blood cells are significant, plasma had a higher 

flow velocity than the blood cells in the hydrophilic channel. Therefore the plasma could 

pass through the hydrophobic region meanwhile the blood cells stopped. Thus, plasma 

successfully separated from the whole blood. In their approach, 450 nL plasma could be 

extracted in 15 min and the purity of the plasma was comparable with that obtained using 

the centrifugation process. They also provided experimental data for the microchannels 

with various surface contact angles. They finished the comparison experiments on the all-

wall hydrophilic and asymmetric (bottom is hydrophobic and other walls are hydrophilic) 

microchannel. Lee et al. [57]. used the microfluidic channel driven by asymmetric 

capillary flow. The microchannel was made of cyclic olefin copolymer (COC), which was 

naturally hydrophobic. To control the asymmetric capillary flow in the microchannel, a 

spray layer-by-layer (LbL) nano-assembly layer was sprayed on the top surface, which 

was supposed to be super hydrophilic but left a hydrophobic region. All other three walls 

(the bottom and two sides walls) were untreated and kept hydrophobic, as shown in 

Figure 16b. By comparing the microchannels with different hydrophobic patch lengths 

and channel widths, a maximum of 100 nL plasma was separated from the device with 

the 100 μm width and 10 mm hydrophobic patch. 

 

Figure 16. Wettability gradient effect applications, (a) Schematic of the capillary flow-driven blood 

plasma separation microchannel with a hydrophobic patch; (b) design of the microfluidic blood 

plasma separation channel with hydrophilicity gradient (top) and experimental magnified view of 

the separated plasma (bottom) [57,95]. Figure 16a reprinted from Biomicrofluidics, Capillary flow 

of blood in a microchannel with differential wetting for blood plasma separation and on-chip 

glucose detection, M. Sneha Maria, P. E. Rakesh, T. S. Chandra, and A. K. Sen, 10, 054108 (2016) with 

the permission of AIP Publishing. Figure 16b republished with permission of the Royal Society of 

Chemistry, from Lab on a Chip, A new on-chip whole blood/plasma separator driven by asymmetric 

capillary forces, Kang Kug Lee and Chong H. Ahn, 13, 3261–3267, 2013; permission conveyed 

through Copyright Clearance Center, Inc. 

Figure 16. Wettability gradient effect applications, (a) Schematic of the capillary flow-driven blood
plasma separation microchannel with a hydrophobic patch; (b) design of the microfluidic blood
plasma separation channel with hydrophilicity gradient (top) and experimental magnified view of
the separated plasma (bottom) [57,95]. (a) reprinted from Biomicrofluidics, Capillary flow of blood in
a microchannel with differential wetting for blood plasma separation and on-chip glucose detection,
M. Sneha Maria, P. E. Rakesh, T. S. Chandra, and A. K. Sen, 10, 054108 (2016) with the permission of
AIP Publishing. (b) republished with permission of the Royal Society of Chemistry, from Lab on a
Chip, A new on-chip whole blood/plasma separator driven by asymmetric capillary forces, Kang
Kug Lee and Chong H. Ahn, 13, 3261–3267, 2013; permission conveyed through Copyright Clearance
Center, Inc.

From Table 1, sedimentation and bifurcation effect techniques could deal with undi-
luted whole blood samples and achieved good separation efficiencies, but the separated
plasma amounts are limited [106–114]. Dean vortex effect methods could only process the
diluted blood samples due to the limitation of viscosity and velocity of the fluid in the spiral
microchannel, although they have good efficiencies and short separation times [115–122].
In wettability control technologies, pure plasma could be extracted from whole blood
successfully, but separation time is comparably long, and surface modification is a complex
process in microchannel fabrication [123–127].

Table 1. Provides the features of various passive self-separation devices developed by different
researchers.

Research Group Design Principle Blood Sample Separation
Efficiency %

Zhang et al. [96] Sedimentation 8% Hct blood 99
Maria et al. [97] Sedimentation whole blood 99

Forchelet et al. [98] Sedimentation whole blood 99
Park et al. [99] Sedimentation whole blood 100

Rafeie et al. [101] Dean vortex effect 0.5 and 1% Hct blood 100
Robinson et al. [102] Dean vortex effect 2% Hct blood 99

N. Nivedita et al. [86] Dean vortex effect Diluted blood 95
Warkiani et al. [103] Dean vortex effect 20–25% Hct blood 85

Yang et al. [91] Bifurcation effect Sheep whole blood 100
Shatova et al. [105] Bifurcation effect whole blood 100

Maria et al. [95] Wettability control whole blood N/A
Lee et al. [57] Wettability control whole blood N/A

4. Discussion and Future Direction

This review has primarily focused on the passive blood-plasma self-separation tech-
niques, emphasized the basic mechanisms of passive separation methods without micro-
filtration and introduced novel applications based on these theories. The passive blood-
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plasma self-separation technique is a possible candidate for LOC applications and over-
comes many blood plasma separation challenges. For instance, the passive self-separation
techniques can effectively avoid complex fabrications and easy to use in combination to
overcome each other’s limitations. However, in the POCT applications, the exact sample
provided by patients will restrict the separation methodologies. For example, the tech-
niques based on the dean vortex are hard to satisfy the situation which required finger-prick
amount of blood sample because the channel volumes are usually larger than finger-prick
blood sample volumes. However, sedimentation technology with capillary flow actuation
is fit for this application. To separate capillary volumes of blood, slow separation rates
could be negligible compared to their performance. Additionally, the micro-filtration
structures integrated into the sedimentation device could improve the clogging issue and
increase the volumes of extracted plasma.

Even though numerous novel devices have been developed based on various tech-
nologies, nearly none has been considered commercially. The LOC community has been
searching for effective and efficient microfluidic plasma separators in the past years, espe-
cially which could process undiluted blood. Yet, they have not been very successful until
now. The viability of commercialization of microfluidic separation devices is affected by
many aspects, such as the material choice for the microfluidic platform, the difficulty of the
large scale of fabrication with PDMS, the reliable surface treatment process, commercial
packaging should also be considered. Another limitation of the POC device commercial-
ization is the patient’s operation of the devices. As a non-professional, patients are hard
to precisely acquire the required amount of blood from finger prick as instructed. In the
at-home sampling process, anti-coagulation of blood should also be considered [128]. Non-
medical trained individuals usually do not know the coagulation process of the extracted
blood. The anticoagulants should be precoated in the blood collection devices depending
on the purpose of the POC devices. Additionally, they often lack an understanding of
quality control. The misoperation may lead to inaccurate results. The sample volumes
of blood plasma separation are categorized depending on the different purposes. For the
small amount of blood from finger-pricks, sedimentation with micro-filtration could be first
considered, but hydrodynamic techniques may not have a good performance. In contrast,
to process a large sample volume of hundreds of micro liters, hydrodynamic techniques
could address multiple challenges of other methods. Furthermore, a non-diluted blood
sample is desired in commercial use, especially in POCT applications. However, most
current techniques use diluted blood samples and the separation efficiency increases with
the blood dilution level. Therefore, to use undiluted blood in microfluidic devices, a better
understanding of blood flow in the microchannel is needed. The designers can have a better
overview and abilities to improve the current technologies and promote the commercial
use of the passive plasma separation platform. The future of the field of blood plasma
separation is in the trend of hybridization of technologies. By combining techniques and
taking advantage of distinct effects, designers can overcome challenges based on their
design purposes.
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