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Abstract: Microbial proteases, especially aspartic proteases, are an essential group of enzymes
produced from different microorganisms. Microbial proteases have several applications, mainly in
the food, beverage, cosmetic, and pharmaceutical industries, due to their efficiency in the processing
and in the manufacturing stages. The yeast Rhodotorula mucilaginosa CBMAI 1528 was isolated from
the Antarctic environment and was previously reported to have higher extracellular aspartic protease
production. In addition, advances in the operational conditions of bioreactors for enzyme production
are important to reduce the gap associated with scaling—up processes. This is the first study that
evaluates the influence of oxygen transference (k;a) on the protease production of R. mucilaginosa
yeast. To that end, batch cultures were created in a stirred tank bioreactor using Sabouraud dextrose
broth at 25 °C for 72 h under kra values from 18 to 135 h~!. The results show that k;a (121 h™1)
obtained at 500 rpm and 1.5 vvm plays an important role in protease production (124.9 U/mL) and
productivity (6.784 U/L.h) as well as biomass (10.4 g/L), pmax (0.14 h™1) and Y, (0.484 g/g). In
conclusion, R. mucilaginosa showed high yield production in aerobic culture with the efficiency of
protease expression and secretion influenced by kra. In this sense, our results could be used for
further industrial investment.

Keywords: extremophilic; psychrophilic; proteinase; proteolytic; bioreactor; oxygen transference

1. Introduction

Proteases, proteinase, or proteolytic enzymes (E.C. 3.4) are widely used for the catalytic
hydrolysis of peptide bonds and for breaking down proteins whose specificity is related
to the amino acid sequence and position of the peptide bond. Despite being present in
plants, animals, and humans, native proteases are predominantly sourced from microbial
species [1]. Proteases have numerous biotechnological applications, including in detergent
and cleaning products, in leather and textile, in biofuel, in bioremediation, in pulp and
paper, in food and beverages, and in forage and animal feed, as well as in chemical,
cosmetic, and pharmaceutical fields [2,3]. The global market of enzymes was valued at
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USD 11.47 billion in 2021 and is projected to expand at a compound annual growth rate of
6.5% until 2030. This market is represented by carbohydrate, protease, lipase, polymerase,
and nuclease. The demand for protease is growing significantly across the North American
region (37.5% of the global revenue in 2021), mainly due to the growth in pharmaceutical
and food and beverage industries [4].

Microbial proteases represent two-thirds of commercial proteases worldwide [5].
Microorganisms are preferred over the others for the large-scale production of many
enzymes for the following reasons: they are present everywhere in nature; they can be
produced in relatively higher quantities than in plants and in animals; they grow quickly
and simply; they have unique physiological and biochemical properties, as well as simple
culture conditions; they are produced by cells of easy manipulation [6,7]; and they are
secreted from microorganisms, facilitating the down streaming stages. Moreover, the
proteolytic enzymes found in microbes are small, dense, and structurally spherical and
have many applications in various industrial sectors [5].

Several microorganisms have been investigated in the search for new isolates that
are good producers of proteases [6]. Among the extremophilic microbial community,
cold-adapted microorganisms (i.e., psychrophilic and psychrotolerant) comprise the most
explored groups for biotechnological and industrial applications. Diverse cold-active
proteases have been isolated from bacteria [8], but, to date, only a few fungal proteases
have been reported, such as Vanrija humicola [9] and Glaciozyma antarcticum [10].

Unique environments, such as Antarctica, are ecological niches for taxonomically,
physiologically, and phylogenetically uncommon microorganisms. Thus, microorganisms
that inhabit cold environments must adapt to harsh conditions (e.g., low temperatures,
osmotic stress, and high UV radiation). They have been used in the bioprospecting of
enzymes, such as proteases. Considering their unique properties, cold-active enzymes
could be applied to industrial and environmental processes carried out at low or mild
temperatures (i.e., 10—70 °C) [11], thus reducing energy consumption and the wear and
tear of bioprocesses compared to mesophilic and thermophilic enzymes [8,12].

Hence, our group isolated Rhodotorula mucilaginosa CBMAI 1528 (= L7 and CRM 669)
from the Antarctic continent, which was shown to be a great producer of extracellular
protease [13]. Chaud et al. evaluated the effect of nutrient medium components (e.g.,
peptone and rice bran extract), pH, and temperature on the extracellular proteolytic ac-
tivity of R. mucilaginosa cultured in a rotary shaker [14]. The protease was purified using
liquid-liquid extraction [15] and CM-Sepharose cation exchange chromatography, and then
characterized as a monomeric 34.5-kDa protein with optimal catalytic activity at pH 5.0
and 50 °C stable with NaCl [16]. In addition, amino acid sequencing by mass spectrome-
try revealed that this enzyme is an aspartic protease belonging to the pepsin family and
peptidase Al subfamily, once proteolytic activity decreases 95 % by pepstatin A, a specific
inhibitor of aspartic acid proteases [16].

Aspartic proteases (EC 3.4.23), aspartyl proteinases, or acidic proteases are endopepti-
dases with two aspartic acid residues within their active site that are vital for their catalytic
activity. Hence, enzymes from microbial sources are categorized, such as pepsin-like
enzymes and rennin-like enzymes [17]. Aspartic proteases present well-established applica-
tions in the development of traditional and novel food products. They are also extensively
used in cheese manufacturing (e.g., milk-clotting agents), beverage processing (e.g., clarifi-
cation and preservation) [18], and in the pharmaceutical industry (e.g., in digestive aids
and the treatment of certain lytic enzyme deficiency syndromes) [19].

The genus Rhodotorula includes species belonging to the Basidiomycota division, in
particular, the pink-pigmented species found and isolated from different sources. Extensive
literature can be found on their natural ability to produce enzymes in the rotatory shaker;
nevertheless, there are few reports on enzyme production by R. mucilaginosa strains in
bioreactorsusing different processes such as aeration, agitation, oxygen transfer, carbon
and nitrogen sources, temperature, and pH. Furthermore, the production of lipids [20-22]
and carotenoids [23] in bioreactors has been reported.
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As a matter of fact, the species R. mucilaginosa has received increasing attention due
to its ability to grow in extreme ecosystems and its natural capability to produce valuable
compounds of industrial interest such as lipids [20-22], carotenoids [23], acetylxylan es-
terase [24], epoxide hydrolase [25], serine protease [26], neutral and acid proteases [27],
esterase [28], lipases [29-31], phenylalanine ammonia-lyase [32], pectinases [33,34], cuti-
nase [35], phytase [36], glycosidase [37], and aldolase [38]. Optimal bioprocess conditions
are crucial for the production of each enzyme in commercial practice. In this sense, aerobic
bioprocess development using R. mucilaginosa should be carried out to avoiding oxygen
limitation. The evaluation of constant volumetric mass transfer coefficient (k;a) is an im-
portant step in order to supply adequate oxygen transfer, mixing/sparging operation, and
scaling-up criterion [39,40] due to effects in physical and biological characteristics related
with metabolic pathways for growing and product formation [41,42]. Thus, the aim of this
work was to investigate the effect of the volumetric oxygen mass transfer coefficient (k;a)
on aspartic protease production during the cultivation of marine Antarctic R. mucilaginosa
CBMAI 1528 in a stirred tank bioreactor.

2. Materials and Methods
2.1. Microorganism and Growth Conditions

R. mucilaginosa (original code L7) was isolated from a marine alga collected in the
Antarctic continent and identified through the similarity of the partial 26S rDNA gene [13].
The strain was deposited in the Brazilian Collection of Environmental and Industrial
Microorganisms (CBMAI) under the acronym CBMAI 1528 and in the UNESP Microbial
Resources Center (CRM-UNESP) under the acronym CRM 669. The strain was grown on
Sabouraud dextrose broth (40 g/L dextrose, 10 g/L peptone, pH 5.6) (BD Biosciences, San
Jose, CA, USA) at 25 °C, under orbital shaking (150 rpm) for 24 h. The yeast strain was
stored in Sabouraud dextrose broth with glycerol (20% wt) at —70 °C [16].

2.2. Inoculum and Culture Conditions

The inoculum was obtained by transferring 1 mL of stock culture to 250 mL Erlenmeyer
flasks containing 50 mL of Sabouraud dextrose broth followed by incubation at 25 °C,
180 rpm, for 18 h under orbital shaking [43]. Batch cultures were created in 3.0 L bench-top
stirred tank bioreactors (BioFlo 110 and 115, New Brunswick, Edison, NJ, USA) witha 2.0 L
working volume. Thus, 200 mL of the inoculum was added to 1.8 L Sabouraud dextrose
broth (previously autoclaved at 121 °C for 20 min) with 0.002% Y-30 antifoam emulsion
(Sigma-Aldrich, Saint Louis, MO, USA). The bioreactor was equipped with a thermometer,
pH sensor, dissolved oxygen sensor, tachometer, air-flow meter, internal pressure sensor,
and foam-sensing probe.

During the experiments, the temperature was maintained constant at 25 °C by a
heating system in the bottom and cooling water. The dissolved oxygen concentration and
pH were measured by electronic probes (Mettler Toledo, Greifensee, Switzerland), and
filtered air was continuously bubbled into the medium through a multipoint sparger. The
yeast was cultivated for 72 h without pH control. The cultures were carried out in different
agitation (rpm) and aeration (vvm), and six k;a values were obtained according to Table 1.

Table 1. Agitation (rpm), aeration (vvm) conditions, and experimental results of the volumetric
oxygen transfer coefficient (kya) for R. mucilaginosa CBMAI 1528 cultivation in bioreactor.

Experiment Agitation (rpm) Aeration (vvm) kra (h—1)
1 100 1.0 18
2 300 1.0 49
3 500 1.0 99
4 500 1.5 121
5
6

500 2.0 135
500 2.5 102
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2.3. Quantification of Biomass, Glucose, Total Protein, and Proteolytic Activity

The samples of 5 mL were collected from each culture for quantification. The biomass
concentration was gravimetrically determined, the cell was removed by centrifugation
at 4000x g for 10 min, and the pellet was dried at 60 °C in an oven until it reached a
constant weight. The biomass concentration was expressed in grams of dry cells per liter of
cultivation medium (g/L).

The glucose concentration was determined by spectrophotometry by measuring the
absorbance at 500 nm according to the glucose oxidase method (Laborclin, Pinhais, PR, Brazil).

The total protein content was measured by the bicinchoninic acid (BCA) (Sigma-Aldrich,
Saint Louis, MO, USA). The samples were collected, centrifuged, and diluted in phosphate-
buffered saline (PBS) at 1:20 (sample:buffer). The diluted samples were incubated with BCA
solution in a 96-well microplate, with 25 pL of sample to 200 pL of the reagent. The plate was
incubated at 37 °C for 30 min. The UV /Vis measurements were performed in a microplate
spectrophotometer at 562 nm.

The proteolytic activity was determined by the digestion of azocasein (Sigma-Aldrich,
Saint Louis, MO, USA). Culture supernatant (150 uL) was incubated with 150 mL of 0.5%
azocasein (Sigma-Aldrich, Saint Louis, MO, USA) in 50 mM of sodium acetate buffer
(pH 5.0) for 40 min at 37 °C. The reaction was stopped by adding 150 uL of 10% (w/v)
trichloroacetic acid. After centrifugation of the reaction mixture, 100 uL of the supernatant
was mixed with 100 uL of 0.5 M KOH, and the absorbance at 430 nm was measured. The
samples were assayed in three independent measurements, and the activity was expressed
as units of enzyme activity (U). One U was defined as the amount of enzyme leading to a
0.001 increase in the absorbance under the assayed conditions.

2.4. Determination of Volumetric Oxygen Transfer Coefficient (kpa)

The values of the initial volumetric oxygen transfer coefficients (kra) were determined
in distilled water at 25 °C, using the static gassing-out method described by Pirt [44]. This
method estimates k;a values based on the oxygen dissolution rate as a function of agitation
and aeration conditions. Nitrogen gas was injected through the air sparger until it reached
a deoxygenated state. Then, the air supply began to replace the nitrogen, and the increase
in the rate of dissolved oxygen concentration in the water was measured [45]. The mass
balance for the dissolved oxygen in the well-mixed liquid phase can be described through
the conventional Pirt’s mathematical model as:

é—f =kra(Cs —C) 1)
where dC/dt is the rate of O, accumulation in the liquid phase, k4 is the volumetric mass
transfer coefficient (h~1), (Cs — C) is the driving force causing the mass transfer, and Cs
and C refer to the liquid-phase oxygen concentration at saturation at any time, respectively.

2.5. Kinetic Parameters Calculation

The maximum specific growth rate (#qx) (2) and the substrate-to-cell conversion
factor (Yx/s) (3) were calculated according to equations reported by Pillaca-Pullo et al. [46]:

1 X5
Wmax = (tf - to) In Xo (2)
L. (x—x) o
©(5r-%0)

where X is the cell concentration during the exponential phase, X is the initial cell con-
centration, and tr and fg are the final and initial time, respectively. X;;sy is the maximum
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cell concentration, X is the initial cell concentration, and Sy and Sf are the initial and final
glucose concentration, respectively.
The enzyme productivity (PrP) (4) was calculated according to the following equation:

(tep — to) @)

where Py and Py are proteolytic final and initial activities, respectively, tgp is the time
corresponding to the cultivation at Pr, and ¢ is the initial time (zero).

3. Results

Bioprocesses for protease production were carried out in stirred tank bioreactors under
agitation ranging from 100 to 500 rpm and aeration ranging from 1.0 to 2.5 vvm. To better
evaluate the influence of the oxygen supply, the k;a was determined, as shown in Table 1,
ranging from 18 to 135 h~1.

Figure 1 and Table 2 summarize the final values of the cell growth (biomass), substrate
(glucose and total proteins), pH, and proteolytic activity of all bioprocesses. Experimental
runs 1, 2, and 3 were conducted using aeration of 1.0 vvm, and agitation varied at 100, 300,
and 500 rpm. Proteolytic activity increased (37.7, 67.6, and 97.2 U/mL, respectively), while
agitation also increased. For the subsequent experiments, the agitation was set at 500 rpm,
and the aeration was varied. Experimental runs 4, 5, and 6 were performed with 1.5, 2.0,
and 2.5 vvm, respectively. However, the proteolytic activity found for run 4 (k.2 121 h™1)
seems to be on the same level as the values for runs 5 and 6 (124.9, 110.8, and 121.4 U/mlL,
respectively). This fact suggests that the supply of oxygen, which results from agitation
and aeration, becomes indifferent to the value of the proteolytic activity, i.e., the medium
appears to be saturated with oxygen. As greater amounts of air volume are added, there is
little difference in the values for activity.
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Figure 1. Representation of biomass concentration (a), glucose consumption (b), pH (c), and prote-
olytic activity (d) curves of R. mucilaginosa CBMAI 1528 in bioreactor under different kra conditions:
18 h~! (purple, run 1), 49 h~! (orange run 2), 99 h~! (green, run 3), 121 h~! (yellow, run 4), 135 h-1!
(blue, run 5), and 102 h-1 (red, run 6).
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Table 2. Experimental values of biomass concentration, glucose, total proteins, pH, and proteolytic
activity of R. mucilaginosa CBMAI 1528 cultivation in bioreactor for 72 h.

Experiment (kg a)

Parameter 1 2 3 4 5 6
(18h~1) (49h1) (99h~1) (121h71) (135h-1) (102h-1)
Agitation (rpm) 100 300 500 500 500 500
Aeration (vvm) 1.0 1.0 1.0 1.5 2.0 2.5
Biomass (g.L ') & sd 80=£03 112+ 05 12.6 £0.2 10.4 £ 0.6 128 £ 04 125+ 0.8
pH 43 3.8 3.8 4.1 4.0 43
Proteolytic
activity (UmL 1) + sd 377+71 67.6 £5.3 972+1.3 1249 £5.1 110.8 £ 3.4 1215 +25
Glucose (g.L7') & sd 69 +£0.3 9.0£0.8 9.3£05 105+£1.2 9.7 £0.7 95+1.1
Total protein (g.L‘l) +sd 3.8+0.1 36+03 34+0.1 40402 46+04 42402

R. mucilaginosa is an aerobic microorganism, therefore it requires the provision of
oxygen [47]. Aeration and agitation of the growth medium are essential for successful
fermentation and could be beneficial to the growth and performance of microbial cells
by improving mass transfer characteristics concerning substrate, product, and oxygen.
The yeast produces carotenoids located in the cell wall [48], hence the pink color that
characterizes the yeast, which becomes a visual indicator of cell growth (data not shown).
The results showed that the maximum biomass accumulation (12.8 g.L~1) was observed
at run 5 (k;a 135 h™1); however, there was not much difference in the growth at different
aeration rates in experimental run 3 (kra 99 h™1) and run 6 (k;a 102 h~1).

The data obtained from the calculation of the productivity related to protease pro-
duction with culture time are presented in Table 3. Experimental run 4 achieved higher
proteolytic activity (124.9 U.mL ') at 72 h, but the highest productivity occurred at 12 h,
when the activity reached 94.8 U.mL~! (data not shown). From the industrial viewpoint, in
order to reach a shorter time for production, it becomes more advantageous to conduct six
sequential or simultaneous processes over 12 h, instead of a single batch for 72 h, consider-
ing that the proteolytic activity will be ~4.5-fold higher in the first scenario. Therefore, it is
crucial to find an experimental condition that promotes increased production and is also
industrially advantageous.

Table 3. Productivity in protease activity &= SD during R. mucilaginosa CBMAI 1528 cultivation in
bioreactor up to 72 h.

Experiment (kg a) / Productivity (U/L.h—1)

Time (h) 1 2 3 4 5 6
(18h-1) 49h1) 99h-1) (121hY) (135h-1) (102h-1)

4 nc nc nc nc 0.813 £+ 0.033 0.519 £+ 0.031
8 nc nc nc 4.784 + 0.012 4.144 + 0.010 4.598 + 0.014
12 0.977 4+ 0.023 3.764 4+ 0.031 5.488 + 0.012 6.784 + 0.023 5.327 +0.010 5.535 + 0.019
15 1.009 + 0.020 2.781 +0.019 4.639 + 0.014 6.132 + 0.019 4,967 + 0.021 5.378 + 0.010
18 1.139 + 0.011 2.411 4+ 0.020 3.699 4+ 0.023 4.861 + 0.010 4.394 + 0.024 4.563 4+ 0.022
21 1.039 + 0.019 2.255 4+ 0.022 3.728 + 0.021 4.377 + 0.010 3.884 + 0.011 4.299 4+ 0.020
24 0.960 + 0.038 2.049 + 0.012 3.131 + 0.011 3.841 4+ 0.034 3.494 + 0.023 3.776 + 0.011
33 nc nc nc 3.030 4+ 0.024 2.663 4+ 0.012 2.902 4+ 0.010
36 0.782 4+ 0.021 1.414 + 0.011 2.138 +0.028 nc nc nc
42 0.765 + 0.014 1.244 + 0.028 2.081 + 0.024 nc nc nc
48 nc nc nc 2.016 + 0.011 1.989 + 0.026 2.035 + 0.012
72 0.447 4+ 0.030 0.820 4+ 0.019 1.223 £ 0.014 1.549 £ 0.010 1.417 £ 0.020 1.565 £ 0.023

nc = no calculated.
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For conversion yields (Y), the variables must be in the same unit of measurement (in
this case, g.g~1). The factor Yx/s is the substrate conversion cells. The pi,y values (i.e., the
maximum specific growth rate) and Yx/s for each experiment are reported in Table 4.

Table 4. Parameter values of R. mucilaginosa CBMALI 1528 cultivation carried out in bioreactor under
different ky a values.

Experiment (ka)

Parameter 1 2 3 4 5 6
(18 h~1) 49hY 99hh  (121h!)  @35hT)  (102hY)

Homax (A1) 0.06 0.08 0.12 0.14 0.12 0.13

Yy (2870 0.29 0.52 0.61 0.48 0.54 0.63

The cell growth rate becomes a determining factor for the efficiency of the process
when there are problems with oxygen transfer to the culture medium. Ideally, the growth
rate reaches desirable levels to obtain high cell concentrations and increase the amount of
product formed. The highest value for 1,5, was found in run 4 (kza 121 h=1), with 0.14 h 1,
between 4 and 15 h of cultivation. The lowest value was found in run 1, with 0.06 h—!. In
practical terms, this means that experimental runs 3, 5, and 6 have the same biomass after
72 h of cultivation (12.56, 12.83, and 12.52 g.L.~!, respectively). A higher Yx/s 0.63 g.g !
was found for run 6 (k;a 102 h~1), which means that 63% of glucose was used to form
the biomass. The lowest value was obtained for run 1 (kza 18 h~!), in which only 29% of
glucose was converted to the cells, showing that k;a influenced Yx/s positively.

4. Discussion

Bioprocesses can be carried out in three scales (bench, pilot, and manufacturing). In the
case of enzyme production, large-scale production is preferred using bioreactors. However,
this production is first established at the laboratory level to reach a larger scale under equal
or improved yield [46]. The stage for establishing conditions can be carried out in shake
flasks or bioreactors, despite the fact that the physical and biological factors would be
different in these systems. The selection of design conditions and operational procedures is
very important to expand the process and to ensure that the effect of the variables on the
process are the same [40]. The scaling up of the fermentation processes from the laboratory-
scale to commercial units is challenging due to the difficulty in assessing the factors of
influence during cultivation [49]. It is well known that microorganisms are more susceptible
to large-scale environmental variables. According to Mussagy et al. [50], several factors
such as medium composition, pH, temperature, aeration, and agitation influence microbial
metabolite production and cell growth. The genus Rhodotorula includes species belonging
to the Basidiomycota division, in particular the pink-pigmented species found and isolated
from different sources. Extensive literature can be found on their natural ability to produce
enzymes in the rotatory shaker, as shown in Table 5. Nevertheless, there are few reports on
the enzyme production by R. mucilaginosa strains in bioreactors, including phenylalanine
ammonia-lyase [32], lipase [30], and esterase [28], carried out under parameters such as
aeration, agitation, k;a, carbon and nitrogen sources, temperature, and pH, as summarized
in Table 6. Furthermore, the production of carotenoids [23] and lipids [20-22] in bioreactors
has been reported. Notwithstanding, the scarcity of specific literature relating to the
influence of kja on growth and protease production by R. mucilaginosa using bioreactors
limits the direct comparison of the present results.
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Table 5. Enzyme production by Rhodotorula mucilaginosa strains in agar plate or rotatory shaker.
Enzyme Strain Maximum Time (h) rpm T (°C) Main Nutrients X (gL Initial Final pH Ref
Y Activity P u 8 pH p ef.
Acetylxylan esterase NRC 211003 2.1 pumol/mL.h 120 200 30 (NHy4)»504, glycerol nr 5.5 nr [24]
Epoxide hydrolase MO002 nr nr nr nr nr nr nr nr [25]
. Dextrose, peptone,
Serine protease nr nr 24 nr 28 nr 5.5 nr 26
P (NH),50;, 6]
Aspartic protease  CBMAI 1528 11.1U/mL 120 150 25 Dextrose, animal peptone, nr 55 nr [13]
casein peptone
Aspartic protease CBMAI 1528 ~65U/mL 48 150 25 Dextrose, peptone ~70 Log CFU/mL 5.6 ~3.6 [16]
Aspartic protease CBMALI 1528 33.4U/mL 120 150 25 Dextrose, peptone 3 x 108 cells/mL 5.5 nr [14]
Neutral protease KKU-M12¢ 140.3 U/mL 48 120 30 Yeast extract, peptone, nr nr nr [27]
dextrose, casein
. Yeast Extract, peptone,
Acid protease KKU-M12¢ 175 U/mL 48 120 30 . nr nr nr [27]
dextrose, casein
. Dextrose, malt extract,
Lipase MTCC-8737 299U/L 120 150 28 0.14 nr nr [30]
yeast extract, peptone
. Palm oil, yeast extract,
Lipase P11189 272.7U/L 60 200 30 NH;NO; 11.2 nr nr [31]
Pectinase CRUB138 nr nr na nr Dextrose, pectin, yeast nr 7.0 nr [33]
extract, peptone, agar
. Malt extract, peptone, pectin,
Pectinase PT1 400 U/L nr 150 12 KoHPO,, citrate nr 5.0 nr [34]
Cutinase Pink 9.5U/mL 96-120 160 30 Lactose, yeast extract, nr 6.5 nr [35]
Dextrose, peptone,
Phytase MUY14 205.5U/mL 168 150 15 nr 55 nr 36
y J (NH,)250; 6]
Glycosidase nr 042 U/mL 72 nr nr nr nr nr nr [37]

nr = not reported; rpm = agitation; pH = final pH; T = temperature; X = final biomass.
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Table 6. Biomolecules production by Rhodotorula mucilaginosa strains in bioreactor.

. . Maximum Time . kra o . . X Initial Final
Biomolecules Strain Production ) Bioreactor rpm vvm (h-1) T (°C) Main Nutrients (gL1) pH pH Ref.
Aspartic protease  CBMAI1528 1249 U/mL 72 STR 500 15 135 25 Glucose, animal peptone, 104 55 41 This

casein peptone study
Aspartic protease = CBMAI 1528 111.2U/mL nr STR 500 2.0 92 20 Glucose, casein tryptone 6.7 5.6 nr [43]
Dibenzoyl-tartrate, yeast
Esterase saarl 19.5U/mg 20 nr 300 25 nr nr extract, KNOj, (NH,),SOy, nr 74 7.7 [28]
NH4Cl

. Dextrose, malt extract,

Lipase MTCC 8737 72U/mL 96 STR 200 2.0 nr 30 6.6 7.0 7.0 [29]
yeast extract, peptone

Phenylalanine Dextrose, peptone,

ammonia-lyase nr 41U/g 50 STR 200 1.0 nr 30 yeast extract, (NHy)pSO4 34 6.0-7.0 6.0-7.0 [32]

Lipids 1IPL32 8.6% w/w 12 igllﬁfommn nr 15 0894 32 Sugarcane bagasse 1.6 45 45 [20]

. Xylose rich corn cob
Lipids 1IPL32 1.83g/L nr STR 180 nr nr 32 nr 5.5 5.5 [21]

hydrolysate

.. Glucose, malt extract,

Lipids nr 025¢g/g 50 STR 300 1.0 nr 28 15.0 6.0 6.0 [22]
peptone
Carotenoids MTCC-1403 819.23 ug/g 84 STR 120 1.0 nr 26 Onion peel, mung bean husk  nr 6.2 6.2 [23]

nr = not reported; rpm = agitation; pH = final pH; T = temperature; vvm = aeration; X = final biomass; STR = stirred tank reactor.
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Assessing the 11.25-fold increase in proteolytic activity, from 11.1 U.mL~! in the rotary
shaker [13] to 124.9 U.mL~! on the bioreactor scale at kza 121 h~!, the supply of oxygen to
the production was essential to increase the extracellular protease production of the yeast
R. mucilaginosa CBMAI 1528, since the protease production increased considerably in the
bioreactor. According to Fenice et al. [51], considering a single parameter, agitations was
more effective than aeration for enzyme production because the relative growth curve under
agitation was steeper. In fact, high agitation generates bubbles that increase the gas-liquid
interface area and the residence time in the medium culture, which causes a higher rate of
dissolved oxygen [52]. The k;.a measures the oxygen transfer performance from the gaseous
to the liquid phase. Thus, oxygen is essential for synthesizing biomass and enzymes,
since it is involved in the metabolism of the microorganism [53]. Aeration supplies the
necessary oxygen for cell growth and eliminates the exhausted gas generated during the
bioprocess [54]. In the present study, the biomass values increased when aeration was
fixed (1.0 vvm), whereas cell growth decreased (run 4, kza 121 h™!) or remained constant
(runs 5 and 6, kza 135 and 102 h— 1, respectively) when the aeration values increased. In
fact, shear stress, as oxygen supply, can be very harmful and plays an important role in the
organism’s morphology/physiology and, consequently, in biomass formation and enzyme
production [55,56].

The highest value of protease production at k;a 121 h™! can be attributed to the
increased oxygen availability in the culture medium. However, higher aeration rates can
increase the oxygen system pressure without increasing production. Several studies show
that aeration and agitation affect the dissolved oxygen concentration in the culture medium,
thus enhancing the biological and physical characteristics associated with both growth and
enzyme production [57,58]. For aerobic processes, oxygen transfer is a key variable and is
a function of aeration and agitation. These parameters not only affect the productivity of
the microbial process, but also the overall energy required by the production process [29],
since the metabolic fluxes correlated to product formation can be influenced by the oxygen
level [41,42]. For example, oxygen transfer was a critical parameter for maximum lipase
production by R. mucilaginosa MTCC 8737, which can be achieved by combining aeration
and agitation in a bioreactor [30].

Proteolytic activity increases with agitation, but is indifferent to higher aeration. This
result was expected, because stirred tank bioreactors provide the efficient mixing associated
with a high transference of heat, substrates, and oxygen [42]. To describe the oxygen supply
condition of a fermentation system, k;a is commonly used as a parameter implied in the
bioreactors” mixing-sparging equipment [39]. The kra is the most significant parameter to
measure transfer phenomena, including oxygen transfer, inside a bioreactor [53]. Its values
are affected by many factors, such as the bioreactor design, medium formulation, medium
strength, aeration with sparger, and agitation [59].

Abdella et al. [60] reported that a high k; a was preferred in the xylanase production by
a recombinant Aspergillus nidulans strain. Notwithstanding, a high agitation rate harmed
enzyme production due to high shear stress on the production organism. Fenice et al. [51]
also correlated the reduction of chitinolytic activity to the increase of aeration: the lowest
activity (92 U.L~1) was obtained at 0.5 vvm both at 200 and 500 rpm (kza 18 and 51 h~1,
respectively), whereas the highest enzyme activity (383.7 U.L~!) was achieved at 1.0 vvm
and 300 rpm (kza 151 h1).

5. Conclusions

Reports on aspartic proteases from cold-adapted yeasts are scarce. Based on our
results, the production of an aspartic protease by R. mucilaginosa CBMAI 1528 depends
on oxygen transference in stirred tank bioreactor. Higher proteolytic activity was found
atakza 121 h~!. Hence, this yeast followed an aerobic culture, which makes parameters
such as aeration and agitation essential for growth and protease expression and secretion.
Further assays should focus on the scaling-up process using the k;a criterion.
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