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Abstract: Cardiovascular system abnormalities can result in serious health complications. By using
the fluid–structure interaction (FSI) procedure, a comprehensive realistic approach can be employed
to accurately investigate blood flow coupled with arterial wall response. The hemodynamics was
investigated in both the coronary and carotid arteries based on the arterial wall response. The hemo-
dynamics was estimated based on the numerical simulation of a comprehensive three-dimensional
non-Newtonian blood flow model in elastic and rigid arteries. For stenotic right coronary artery
(RCA), it was found that the maximum value of wall shear stress (WSS) for the FSI case is higher
than the rigid wall. On the other hand, for the stenotic carotid artery (CA), it was found that the
maximum value of WSS for the FSI case is lower than the rigid wall. Moreover, at the peak systole
of the cardiac cycle (0.38 s), the maximum percentage of arterial wall deformation was found to be
1.9%. On the other hand, for the stenotic carotid artery, the maximum percentage of arterial wall
deformation was found to be 0.46%. A comparison between FSI results and those obtained by rigid
wall arteries is carried out. Findings indicate slight differences in results for large-diameter arteries
such as the carotid artery. Accordingly, the rigid wall assumption is plausible in flow modeling for
relatively large diameters such as the carotid artery. Additionally, the FSI approach is essential in
flow modeling in small diameters.

Keywords: FSI; CFD; stenosis; coronary artery disease (CAD); cardiovascular diseases

1. Introduction

The cardiovascular system warrants blood to transport oxygen and nutrients through
the body. The heart’s left side receives and pumps the oxygenated blood to the rest of the
body through the aorta. The cardiovascular system includes the aorta, coronary, carotid
arteries, and others. The coronary arteries emerge from the ascending aorta and supply
blood to the heart. Small coronary branches go through the heart muscle to provide it with
the necessary oxygenated blood. Additionally, the neck’s main blood vessels, the carotid
arteries, carry blood to the brain, neck, and face. Every carotid artery in the neck splits into
two branches: the external carotid artery (ECA), which delivers blood to the face and neck,
and the internal carotid artery (ICA), which supplies blood to the brain [1].

Cardiovascular disease (CVD) is collectively referred to as a condition affecting the
heart and the blood vessels. It’s usually characterized by the thickening and hardening
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of the vessel walls due to endothelial dysfunction and plaque development, defined as
atherosclerosis. Atherosclerosis is a significant arterial disease associated with the accu-
mulation of cholesterol and other lipids beneath the internal layer of the artery and causes
stenosis, which is a reduction in the cross-sectional area of the lumen [2].

Endothelial dysfunction is a primary precursor to atherosclerosis leading to a dis-
turbance in hemodynamics [3]. The plaques accumulate over distorted endothelial cell
regions due to low wall shear stress and associated descriptors (flow circulation) [4]. Low
wall shear stress (WSS) leads to plaque susceptibility and initiation. Once the plaques are
formed, an increase in WSS value is observed. Accordingly, high WSS leads to a rupture
of the plaques and potentially even thrombosis [5]. Eshtehardi et al. [6] epitomized the
clinical data associating high WSS with prospective endothelial cell damage as a putative
etiological mechanism underpinning high-risk plaque formation. Endothelial shear stress is
associated with plaque development characteristics with low defined as <1 Pa, physiologic
(intermediate) of 1–2.5 Pa, and high WSS >2.5 Pa [7,8].

Understanding the mechanisms underlying the initiation and progression of atheroscle-
rosis requires a thorough knowledge of blood flow. Several clinical methods have been used
for the in vivo investigation of blood flow-related variables, such as the use of phase con-
trast magnetic resonance imaging (MRI), Doppler ultrasound, and particle-based methods
such as particle image velocimetry (PIV) [9,10]. Doppler ultrasound can be used for early
diagnosis of internal carotid artery (ICA) stenosis through extracranial hemodynamics [11].
Thereby, computational simulation emerges as a more efficient alternative to predict blood
behavior and hemodynamics [12]. The hemodynamics was numerically investigated in
symmetrical and asymmetrical bifurcating of pulsatile flow in simplified geometries [13].
Mekheimer et al. [14] presented numerically that mixing the blood with the synovial fluid
can change the rheological properties of the blood and the mechanical characteristics of the
formed stenosis. Accordingly, computational fluid dynamics (CFD) has been extensively
used in the investigation of hemodynamics [15]. Additionally, CFD can lead to non-invasive
procedures for diagnosing different diseases, such as atherosclerosis before they proceed to
severe instances [16,17]. Taebi [18] presented recent deep-learning approaches integrated
with CFD for computational hemodynamics.

The vascular arterial wall has an extremely intricate structure with various mechanical
properties. The derivation of accurate comprehensive models for such a complicated
structure is highly difficult and continues to be a challenging point of active research.
High-complexity models are essential in capturing detailed features of the material’s
mechanical behavior. However, simpler models are less accurate but more practicable
from mathematical and computational standpoints. Accordingly, a proper balance between
high-complexity and simpler models is necessary to obtain the mechanical features with
appropriate computational simulation.

The arterial behavior was approximated to be a rigid body using fluid flow model-
ing [19]. Further studies considered fluid domain simulations coupled with finite element
analysis of the arterial wall response through two-way fluid–structure interaction (FSI). FSI
is a multiphysics coupling of fluid dynamics and structural mechanics regulations. This
phenomenon, which can be steady or oscillatory, is characterized by interactions between a
deformable or moving structure and a surrounding or interior fluid flow. This multiphysics
coupling is a more realistic approach for simulating the influence of the blood flow on the
artery vessel and vice versa [20]. However, FSI necessitates additional modeling assump-
tions regarding the vessel’s mechanical properties and significantly more computational
effort. Several researchers investigated the hemodynamics of arteriosclerosis diseases using
the FSI procedure in stenosed vessels [21,22]. Dong et al. [23] presented a correlation
between the angulation of the coronary artery branches and the local mechanical and hemo-
dynamic stresses at the artery bifurcation using FSI analysis. Additionally, Failer et al. [24]
investigated the impact of using FSI to simulate blood flow in simple stenotic geometry.
Zouggari et al. [25] investigated the influence of plaques on the WSS distribution using FSI
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analysis and CFD simulations. The obtained results showed attenuation of WSS values
only at the plaque region.

The morphologic features of plaques can be classified based on how the artery is
narrowed as asymmetric (eccentric stenosis) and axisymmetric (concentric stenosis) [26].
Different stenosis morphologies were investigated, including oval, bean-shaped, and
crescent, either with or without eccentricity [27]. Eccentric lesions are frequently common
in patients with partially occlusive thrombus or ruptured atherosclerotic plaques [28].
Additionally, according to Poepping et al. [29], flow patterns varied amongst stenoses of
various eccentricities, with the salient changes reflected in the circulation regions’ size
and position.

Based on a review of the literature, several studies investigated the influence of wall
compliance on the hemodynamics of stenotic arteries. However, to the authors’ knowledge,
no reported research has assessed the rigid wall assumption of patient-specific arteries
based on hemodynamics. Therefore, the originality of the current work is to investigate
the hemodynamics in coronary and carotid arteries and compare the obtained results
with the corresponding values obtained using rigid wall assumption. The hemodynamics
was estimated based on the numerical simulation of a comprehensive three-dimensional
non-Newtonian blood flow model in elastic and rigid arteries. Accordingly, the two-way
FSI approach is considered when coupling the blood flow model with the finite element
analysis of wall elasticity in the case of eccentric stenoses with a moderate degree of severity.
Lastly, a comparison between predicted results of coronary and carotid arteries with those
obtained under rigid wall assumption is reported and discussed.

2. Problem Definition and Modeling
2.1. Physical Model

In the present study, three-dimensional patient-specific geometries of the fluid domain
of the carotid and right coronary arteries are considered, as shown in Figure 1. The anatomic
data of two healthy patient-specific geometries were detected with the carotid artery (CA)
and right coronary artery (RCA), which were obtained from a clinically indicated computed
tomography (CT) angiogram. The CT technology allows non-invasive visualization inside
the human body, giving more capability for a more accurate diagnosis. Moreover, the CT
provides clear images of the vessels’ anatomy and the presence or absence of vascular
disorders. The CT technique develops digital DICOM (Digital Imaging and Communication
in Medicine)-formatted two-dimensional images. Each image represents a layer of the
arterial vessel. The 3D geometries of the CA and RCA were imported to a trial version
of 3-Matic software to reduce the imperfections and abnormalities that resulted from the
segmentation process. Moreover, eccentric stenosis is imported to the RCA at 10 mm
before the bifurcation (model A), as shown in Figure 1a. Additionally, eccentric stenosis
is imported to the healthy geometry of the CA at the internal carotid artery (ICA) 5 mm
downstream of the artery bifurcation (model B), as shown in Figure 1b. Additionally,
eccentric stenosis is imported to the CA at the common carotid artery (CCA) 8 mm before
the bifurcation (model C), as shown in Figure 1c. The selected location for each artery is at
the most common potentially stenotic region in the CA and RCA, as reported [30,31]. The
selected locations are mainly due to the fact that the cardiovascular system is exposed to
atherosclerosis around the bifurcation. At each location, a reduction percentage in hydraulic
diameter

(
dartery−dthroat

dartery
× 100

)
is 60%, representing moderate stenosis according to the

North American Symptomatic Carotid Endarterectomy Trial (NASCET) method [32] and
the Society of Cardiovascular Computed Tomography (SCCT) guidelines [33]. Furthermore,
the healthy CA has a geometry of 7.82 mm hydraulic diameters for the CCA and 4.52 mm
and 6.41 mm hydraulic diameters for ECA and ICA, respectively. Additionally, the healthy
RCA has a geometry of 3.77 mm hydraulic diameter for the main artery, 2.4 mm at the
outlet (1), and 1.9 mm at the outlet (2). Moreover, the structure domain for the FSI analysis
is investigated with a thickness 0.66 mm in the CA geometry [34] and 0.55 mm in the RCA
geometry [35]. The physical models’ dimensions are summarized in Table 1.
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Figure 1. Physical model schematic diagram: (a) stenotic RCA—model A, (b) stenotic ICA—model B,
and (c) stenotic CCA—model C.

Table 1. Physical model dimensions.

Nominal Hydraulic Diameter Throat Diameter Wall Thickness

Main Branch Outlet (1) Outlet (2)

Stenotic RCA—model A 3.77 mm 2.4 mm 1.9 mm 1.51 mm 0.55 mm

CCA ECA ICA

Stenotic ICA—model B 7.82 mm 4.52 mm 6.41 mm 3.13 mm 0.66 mm

Stenotic CCA—model C 7.82 mm 4.52 mm 6.41 mm 3.13 mm 0.66 mm

2.2. Theoretical Analysis

Modeling the blood flow in the arterial geometries is three-dimensional, laminar,
unsteady, and fluctuating. To predict the hemodynamics of the investigated geometries of
the carotid artery and right coronary artery, 3D Navier–Stokes equations are developed
based on a non-Newtonian relation between the shear stress and the rate of shear strain.
The cellular blood components include leukocytes (white blood cells), which are a part
of the immune system; thrombocytes (platelets), which are crucial for blood clotting; and
erythrocytes (red blood cells), which carry oxygen and carbon dioxide to and from the
organs. About 55% of blood is made up of plasma, and the remaining 45% is made up of
erythrocytes. The blood’s leukocyte and thrombocyte populations are incredibly minimal.
When erythrocytes are present, the density of the plasma, which is 1025 kg/m3, rises to
1050 kg/m3 [1]. Therefore, the following assumptions are considered:

1. The flow is incompressible.
2. The value of the Reynolds number does not exceed 2000. Accordingly, it is reasonable

to assume the flow is laminar. Such an assumption agrees with the previous study
of Peacock et al. [36], which stated that the coronary arteries flow’s waveforms were
unlikely to be disturbed, and the blood flow in the carotid arteries is usually laminar.

3. Approximately 55% of blood is made up of plasma. As is well known, blood is a non-
Newtonian fluid when red blood cells are present, even though plasma is a Newtonian
fluid [37].
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The vascular walls consist of three layers: adventitia, media, and intima, with various
thicknesses and mechanical properties. However, in this study, a linear elastic model has
been used with Young’s modulus averaged value equal to 1.08 MPa, Poisson ratio 0.49, and
artery wall density 1120 kg/m3 [38].

2.2.1. Governing Equations

The fluid–structure interaction procedure concerns fluid and arterial wall domains,
interface, and the relevant boundary states. Modeling the blood flow inside the arterial
geometries is three-dimensional, non-Newtonian, laminar, unsteady, and fluctuating.

For a non-Newtonian incompressible fluid, the mass and momentum conservation
equations can be expressed as follows:

∇.
→
Vf = 0, (1)

ρ f
D
→
Vf

Dt
= ρ

→
g +∇.τij, (2)

where Vf is the fluid velocity vector, ρ f is the fluid density, g is the vector acceleration of
gravity, and τij is the stress tensor. The body force can be neglected [39]. The stress tensor
can be represented as follows:

τij =

τxx τxy τxz
τyx τyy τyz
τzx τzy τzz

, (3)

The volume fraction of erythrocytes in plasma is the primary determinant of blood
characteristics. The precise composition of the blood is the critical factor to consider when
selecting an appropriate non-Newtonian model [40,41]. In the present study, the Carreau
model is considered, representing the relation between the dynamic viscosity (µ) and strain
rate (

.
γ) as [42]

µ = µ∞ + (µo − µ∞)×
[
1 +

(
λ

.
γ
)2
] n−1

2 , (4)

The coefficients for the Carreau model could be written as follows: the value of zero
shear rate viscosity, µ0 = 0.056 Pa·s, the infinite shear rate viscosity, µ∞ = 0.00345 Pa·s,
time constant, λ = 3.131 s, and the power index, n = 0.3568 [43]. Consequently, the shear
stress is expressed as follows:

τij = −pδij +

(
µ∞ + (µo − µ∞)×

[
1 +

(
λ

.
γ
)2
] n−1

2
)(

∂ui
∂xj

+
∂uj

∂xi

)
, (5)

Hemodynamics such as wall shear stress (WSS), time-averaged wall shear stress
(TAWSS), and the velocity field are described as the following [44,45].

The WSS can be written as follows:

τwij =

µ∞ + (µo − µ∞)×

1 +

(
λ

(
∂ui
∂xj

+
∂uj

∂xi

))2
 n−1

2
×(∂ui

∂xj
+

∂uj

∂xi

)
, (i 6= j), (6)

where τw is the wall shear stress.
The TAWSS is calculated by integrating WSS magnitude over the cardiac cycle as

shown in Equation (7).

TAWSS =
1
T

∫ T

0

∣∣∣→τw

∣∣∣ dt, (7)

where T is the cardiac cycle.
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The governing equation for vessel wall deformation is based on the linear momentum
conservation principle.

ρs

(
∂Vs

∂t
+ Vs.∇Vs − g

)
−∇σs = 0, (8)

where s refers the structure domain, ρs is the density of the solid, V is the velocity field
represents the solid displacements (Vs =

∂us
∂t ), and σ the Cauchy stress tensor.

For the arbitrary Lagrangian–Eulerian (ALE) framework the conservation equation
can be written as follows:

ρ f

(
∂Vf

∂t
+
[
Vf −Vc

]
.∇Vf

)
−∇.τf = 0, (9)

where ρ f is the density of the fluid, Vf is the fluid velocity, Vc refers the mesh velocity, and
τf is the fluid shear stress.

Boundary and initial conditions:
To numerically simulate the governing equations, boundary and initial conditions

must be known:

2.2.2. Boundary and Initial Conditions

At inlet, the aortic pulsatile pressure was considered at the inlet as shown in Figure 2.
This pressure profile was implemented into the numerical simulation using the transient
table [40].
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At outlet, the mean pressure is considered at the outlet for all numerical simulations.
The CA outlet mean pressure is assumed to be 75 mmHg, and the outlet mean pressure for
RCA is considered 60 mmHg [46].

For the solid domain, the velocity of the fluid domain is coupled to the elastic structure
along with the solid wall boundaries where Vf = Vc.
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The pressure and all velocity components are set initially to be zero.

2.3. Numerical Simulation

The governing equations are discretized using the finite volume method. Then, an en-
tirely implicit scheme with second-order spatial differences is used to solve the discretized
equations. For the coupling of pressure and velocities, the SIMPLE algorithm is employed.
A Dell Precision T7500 workstation with an Intel Xeon® processor of 3.75 GHz, 48 cores,
and 64 GB installed memory is used to implement parallel computing of the discretized
equations.

2.3.1. Grid and Time Step Independent Tests

To select an optimum mesh and time step for the FSI simulation, a grid independence
test is conducted for the fluid domain to investigate the influence of grid refinement on
the solution. Five different 3D model meshes with cell sizes 0.25, 0.3, 0.4, 0.5, and 0.6 mm
correspond to 2,317,041, 1,343,685, 568,121, 292,527, and 170,171 cells, respectively. In these
meshes, tetrahedral and prismatic types of elements were used. A cell size of 0.3 mm is
selected for the numerical simulation, as the time-averaged wall shear stress (TAWSS) value
did not change with respect to 0.25 and 0.3 mm cell size.

2.3.2. Fluid–Structure Interaction (FSI)

FSI methodology is used to capture the deformation and hemodynamics of the vascu-
lar vessel. The two-way FSI procedure is coupled by the fluid and structure domains using
ANSYS Fluent and Transient structural modules, respectively, and the data is transferred
iteratively between them by the implicit scheme. In the two-way FSI coupling procedure,
the fluid and structural domains are solved in parallel, which converge together. Accord-
ingly, each fluid and structural domains need to converge before moving to the next time
step. Furthermore, the fluid and structure domains are coupled through the arbitrary
Lagrangian–Eulerian (ALE) scheme. It captures the fluid and the structure behavior where
the structural mesh deforms to adhere to the fluid boundaries, and this movement is
transferred to the fluid by adding body forces to the motion equation.

2.3.3. Model Validation

In this study, the developed model was validated using the available experimental
data by Shimizu et al. [47]. The measurements of the deformation of a Poly (vinyl alcohol)
Hydrogel (PVA-H) stenotic model were used to validate the numerically calculated defor-
mation. Figure 3 compares the current numerically predicted results of the deformation
at the narrowest segment of the cross-section and those measured by Shimizu et al. [47].
The PVA-H model was subjected to different pressures from 0 to 100 mmHg. Accordingly,
the deformation values were evaluated and compared for all pressures. Based on Figure 3,
the current predicted deformation values agree with those of Shimizu et al. [47]. However,
the maximum deviation between the current predicted results and the measured exper-
imental values was 15.4%. This variation is mostly related to the data extraction from
the study, device accuracy, and experimental measurements and limitations. In addition,
it was found that at 20 mmHg, the deformation change at the narrowest segment was
approximately 0.106 mm and slightly overpredicted. In the same context, at 50 mmHg, the
deformation change at the narrowest segment was 0.165 mm compared to 0.148 mm from
the measured data.
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Figure 3. Validation of current calculated deformation changes with those of Shimizu et al. [47] at the
narrowest segment of a stenotic model.

3. Results and discussion
3.1. Wall Shear Stress (WSS)

The WSS induced due to the arterial blood flow system influences the deposition of
cholesterol beneath the internal layer of the arteries. Accordingly, the WSS is considered
to be an indication of atherosclerotic plaque formation in the vascular system [42]. Fur-
thermore, high shear stresses near the stenotic throat can activate platelets and thus cause
thrombosis and complete blockage of the blood flow to the heart or the brain [42]. An
exciting piece of evidence from different studies suggests that wall shear stress is associated
with the plaque’s development characteristics with low defined as less than 1 Pa and high
WSS values greater than 2.5 Pa, which are frequently associated with high-risk plaque
features [7,8].

The local allocation of the WSS for the stenotic RCA and CA at the peak systole of the
cardiac cycle is presented in Figures 4–6. For stenotic RCA—model A, it was found that the
maximum value of WSS is located at the stenosis throat, where it reached 508.8 Pa in case
of including the arterial compliance compared to 456.7 Pa for the rigid wall assumption, as
shown in Figure 4. Additionally, the artery bifurcation is considered as the region of interest
where the value of WSS reached 64.4 Pa by considering the wall elasticity and 61.9 Pa for the
rigid wall assumption. Furthermore, as shown in Figure 4, it was found that the region of
WSS contours for the stenotic RCA changed by including the wall compliance. Accordingly,
the high WSS region downstream of the stenosis was smaller for the arterial elasticity effect
than the rigid wall assumption, which agrees with Failer et al. [19]. Moreover, the side
branch of outlet (2) faces a low WSS of less than 1 Pa, as shown in Figure 3; hence a high
risk of plaque initiation appeared to locate in this region.
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On the other hand, for the stenotic ICA—model B, it was found that the maximum
value of WSS located at the stenosis throat, which reached 116.9 Pa in case of considering
the wall elasticity compared to 118.8 Pa for the rigid wall assumption, as shown in Figure 5.
Additionally, at the artery bifurcation, the value of WSS reached 16.3 Pa by considering
the wall elasticity and 16.2 Pa for the rigid wall assumption. It can be noticed that the
values of WSS at the stenotic throat and the artery bifurcation are almost the same by
including the arterial wall compliance and the rigid wall assumption, which agrees with
De Wilde et al. [48]. Moreover, it was found that the region of contours for the stenotic CA
did not change by using the wall compliance compared to the rigid wall assumption.



Bioengineering 2022, 9, 708 10 of 21

Bioengineering 2022, 9, x FOR PEER REVIEW 10 of 21 
 

Moreover, for the stenotic CCA—model C, it was found that the maximum value of 
WSS located at the stenotic region reached 63.01 Pa in case of considering the wall elas-
ticity compared to 61.52 Pa for the rigid wall assumption, as shown in Figure 6. Addi-
tionally, at the artery bifurcation, the value of WSS reached 27.3 Pa by considering the 
wall elasticity and 25.9 Pa for the rigid wall assumption. It can be noticed that the values 
of WSS at the stenotic throat and the artery bifurcation are almost the same by including 
the arterial wall compliance and the rigid wall assumption which agrees with De Wilde 
et al. [48]. Moreover, it was found that the region of contours for the stenotic CCA did not 
change by using the wall compliance compared to the rigid wall assumption. 

 
Figure 6. WSS contours for stenotic CCA (model C) of the CA at the peak systole of the cardiac cycle: 
(a) elastic wall, (b) rigid wall. 

Furthermore, Table 2 compares the WSS values at the peak systole of the cardiac cycle 
between the stenotic RCA and CA arteries with FSI and those obtained under rigid wall 
assumption. Therefore, it can be concluded that considering the wall elasticity is not sig-
nificant in simulating large arteries such as the carotid artery, as the WSS values were 
found to be close by including the arterial wall compliance and the rigid wall. However, 
for the stenotic RCA, it was found that the rigid wall assumption underestimates the WSS 
values at the stenosis throat by 10.24% compared to including the arterial elasticity. Ad-
ditionally, it was found that the rigid wall assumption underestimates the WSS values at 
the RCA bifurcation by 3.8% compared to considering the wall elasticity. 

Table 2. WSS for the stenotic RCA and CA at the peak systole of the cardiac cycle elastic and rigid 
wall. 

WSS (Pa) 

 
Stenosis Throat Artery Bifurcation 

Elastic Wall Rigid Wall Elastic Wall Rigid Wall 
Stenotic RCA—model A 508.8 456.7 64.4 61.9 
Stenotic ICA—model B 116.9 118.8 16.3 16.2 
Stenotic CCA—model C 63.01 61.5 27.3 25.9 

3.2. Time-Averaged Wall Shear Stress (TAWSS) 
The TAWSS is defined as the mean value of WSS as presented in Equation (7). For 

the stenotic RCA—model A, the TAWSS values at the stenotic throat were found to be 295.1 Pa in the case of considering the wall elasticity compared to 267.4 Pa for the rigid 
wall assumption. Additionally, at the artery bifurcation, the TAWSS values were 30.3 Pa 
in case of including the arterial wall elasticity compared to 28.9 Pa for the rigid wall as-
sumption. 

Figure 6. WSS contours for stenotic CCA (model C) of the CA at the peak systole of the cardiac cycle:
(a) elastic wall, (b) rigid wall.

Moreover, for the stenotic CCA—model C, it was found that the maximum value of
WSS located at the stenotic region reached 63.01 Pa in case of considering the wall elasticity
compared to 61.52 Pa for the rigid wall assumption, as shown in Figure 6. Additionally, at
the artery bifurcation, the value of WSS reached 27.3 Pa by considering the wall elasticity
and 25.9 Pa for the rigid wall assumption. It can be noticed that the values of WSS at the
stenotic throat and the artery bifurcation are almost the same by including the arterial wall
compliance and the rigid wall assumption which agrees with De Wilde et al. [48]. Moreover,
it was found that the region of contours for the stenotic CCA did not change by using the
wall compliance compared to the rigid wall assumption.

Furthermore, Table 2 compares the WSS values at the peak systole of the cardiac
cycle between the stenotic RCA and CA arteries with FSI and those obtained under rigid
wall assumption. Therefore, it can be concluded that considering the wall elasticity is not
significant in simulating large arteries such as the carotid artery, as the WSS values were
found to be close by including the arterial wall compliance and the rigid wall. However,
for the stenotic RCA, it was found that the rigid wall assumption underestimates the
WSS values at the stenosis throat by 10.24% compared to including the arterial elasticity.
Additionally, it was found that the rigid wall assumption underestimates the WSS values
at the RCA bifurcation by 3.8% compared to considering the wall elasticity.

Table 2. WSS for the stenotic RCA and CA at the peak systole of the cardiac cycle elastic and
rigid wall.

WSS (Pa)

Stenosis Throat Artery Bifurcation

Elastic Wall Rigid Wall Elastic Wall Rigid Wall

Stenotic RCA—model A 508.8 456.7 64.4 61.9

Stenotic ICA—model B 116.9 118.8 16.3 16.2

Stenotic CCA—model C 63.01 61.5 27.3 25.9

3.2. Time-Averaged Wall Shear Stress (TAWSS)

The TAWSS is defined as the mean value of WSS as presented in Equation (7). For
the stenotic RCA—model A, the TAWSS values at the stenotic throat were found to be
295.1 Pa in the case of considering the wall elasticity compared to 267.4 Pa for the rigid wall
assumption. Additionally, at the artery bifurcation, the TAWSS values were 30.3 Pa in case
of including the arterial wall elasticity compared to 28.9 Pa for the rigid wall assumption.
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On the other hand, it was found that for the stenotic ICA—model B, the values of
TAWSS at the stenosis throat were 56.8 Pa in the case of considering the arterial wall
elasticity and 57.3 Pa for the rigid wall. Furthermore, the values of TAWSS at the CA
bifurcation were found to be 9 Pa in the case of including the arterial wall docility and
8.5 Pa by using the rigid wall.

Additionally, it was found that for the stenotic CCA—model C, the values of TAWSS
at the stenosis throat were 37.9 Pa in the case of considering the arterial wall compliance
and 34.65 Pa for the rigid wall. Furthermore, the values of TAWSS at the CA bifurcation
were found to be 15.5 Pa in the case of including the arterial wall docility and 14.2 Pa by
using the rigid wall.

Regarding the WSS, the TAWSS is known to be an indicator of the formation of plaques
in the cardiovascular system. Accordingly, the depositions of plaques beneath the internal
layer of the artery influence the artery that appeared to be at risk due to high and low
values of TAWSS, which exceed 2.5 Pa and less than 1 Pa.

Furthermore, Table 3 compares the TAWSS values between the stenotic RCA and CA
arteries with FSI and rigid wall assumption. From the values of TAWSS, it can be concluded
that the vessel segments appear to be at high risk for thrombogenicity and damage to
endothelial cells. Moreover, including the arterial wall elasticity is not significant in
simulating large arteries such as the carotid artery, as the TAWSS values were close by
including the arterial wall elasticity and the wall rigidity assumption. However, for the
stenotic RCA, it was found that the rigid wall assumption reduces the TAWSS values at the
stenosis throat by 9.39% compared to those obtained by the FSI approach. Additionally, it
was found that the wall rigidity assumption underestimates the TAWSS values at the RCA
bifurcation of 4.64% compared to wall compliance.

Table 3. TAWSS for the stenotic RCA and CA for elastic and rigid wall.

TAWSS (Pa)

Stenosis Throat Artery Bifurcation

Elastic Wall Rigid Wall Elastic Wall Rigid Wall

Stenotic RCA—model A 295.1 267.4 30.3 28.9

Stenotic ICA—model B 56.8 57.3 9 8.5

Stenotic CCA—model C 37.9 34.65 15.5 14.2

3.3. Velocity Field and Streamlines

The streamlines demonstrate the flow velocity direction inside the artery, the stagna-
tion points, and the eddies’ locations.

Figure 7 shows the flow field streamlines for the stenotic RCA—model A. It was found
that the peak value of the velocity at the stenotic throat reached 4.77 m/s by including the
wall elasticity compared to 4.34 m/s for the rigid wall assumption. This difference is due to
increasing the inlet flow rate in the case of the elastic wall. Considering the wall elasticity
enlarges the flow area and decreases the flow resistance. Moreover, due to the arterial wall
deformation by using the FSI procedure, it was found that in the case of including the
wall compliance, all the flows are directed towards the outlet (1). However, for the rigid
wall, the flow was distributed between the two outlets. Furthermore, after the stenotic
throat, the blood behaves as a jet which affects velocity streamline distribution and the
eddies’ existence. Additionally, the WSS is a frictional force, and it is a function of the
velocity gradient exerted parallel to the arterial vessel wall that leads to alteration of the
endothelial cell leading to plaque development. Accordingly, the internal wall of the vessel
at the artery bifurcation faces a jet of flow that increases the WSS, which causes erosion
for the arterial wall, especially for stenoses near it, and causes plaques to rupture [49].
Moreover, eddies that exist after the throat area increase the chances of plaque formation
and development. Accordingly, these regions with eddies and low velocities affect the
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stenosis lesion progression, where the deposition of cholesterol and other lipids are beneath
the internal layer of the artery.
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On the other hand, Figure 8 shows the flow–field streamlines for the stenotic ICA—
model B. It was found that the peak value of the velocity at the stenotic throat which reached
2.24 m/s by considering the arterial wall elasticity compared to 2.25 m/s for the rigid wall
assumption. It is notable that the maximum velocity in the ICA branch did not change
for both the elastic and the rigid wall due to low arterial wall deformation, which will be
discussed later. Additionally, it is noticeable that the recirculation zone after the stenotic is
larger in case of considering the arterial wall compliance than the rigid wall assumption,
which decreases the WSS values, hence increasing the probability of plaque initiation.
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Furthermore, after the throat area, these regions with eddies and low velocities affect
the stenosis lesion progression, where the deposition of cholesterol and other lipids are
beneath the internal layer of the artery.

Moreover, due to the curvature in the ECA, it was found that the velocity is greater
than 2.5 m/s. The internal wall of the vessel at the artery ECA faces high values of flow
velocities that affected the WSS distribution.



Bioengineering 2022, 9, 708 13 of 21

Additionally, Figure 9 shows the flow–field streamlines for the stenotic CCA—model
C. It was found that the peak value of the velocity at the stenotic throat reached 1.89 m/s by
considering the arterial wall elasticity compared to 1.87 m/s for the rigid wall assumption.
Notably, the maximum velocity in the CCA did not change for both the elastic and the rigid
wall due to low arterial wall deformation which will be discussed later. Additionally, it is
noticeable that the recirculation zone after the stenotic region is more significant in the case
of considering the arterial wall compliance than the rigid wall assumption, which decreases
the WSS values, hence increasing the probability of plaque initiation. In addition, the peak
velocity at the stenotic throat is more prominent in the case of stenotic ICA compared to
stenotic CCA, which also appeared in WSS values, which were more remarkable in the case
of stenotic ICA than stenotic CCA. Furthermore, after the throat area, these regions with
eddies and low velocities affect the stenosis lesion progression, where the deposition of
cholesterol and other lipids are beneath the internal layer of the artery.
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Moreover, due to the curvature in the ECA, it was found that the velocity is greater
than 2.5 m/s. The internal wall of the vessel at the artery ECA faces high values of flow
velocities that affected the WSS distribution.

3.4. Mass Flow Rate Distribution

The stenotic throats in the vascular system affect the flow rate in the arteries. Hence,
the oxygenated blood flow to the heart or the head will change. Therefore, the patient is
exposed to high risk due to the reduction in the oxygenated blood flow. Furthermore, the
mass flow rate distribution changed significantly with the simulation procedure considering
the arterial wall elasticity or the rigid wall assumption.

Regarding the stenotic RCA—model A, it was found that the mass flow rate distribu-
tion varied with considering the wall elasticity, as shown in Table 4. At the late diastole of
the cardiac cycle, by using the FSI simulation procedure, the inlet mass flow rate is 2.1 g/s
compared to 1.94 g/s for the rigid wall assumption. The outlet mass flow is 2.095 g/s from
outlet (1) and 0 g/s from outlet (2). For rigid wall, the outlet mass flow rate is 1.727 g/s
from outlet (1) and 0.215 g/s from outlet (2). Additionally, at the peak systole of the cardiac
cycle, the inlet mass flow rate is 3.508 g/s compared to 3.168 g/s for the rigid wall assump-
tion. The outlet mass flow is 3.508 g/s from outlet (1) and 0 g/s from outlet (2). For rigid
wall, the outlet mass flow rate is 2.446 g/s from outlet (1) and 0.716 g/s from outlet (2).
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Table 4. RCA (model A) mass flow rate distribution at the late diastole and peak systole of the cardiac
cycle for elastic and rigid wall.

Flow Rate at Late Diastole (g/s)

Inlet Outlet (1) Outlet (2)

Elastic wall (FSI) 2.095 2.095 0
Rigid wall (CFD) 1.94 1.727 0.215

Flow Rate at Peak Systole (g/s)

Inlet Outlet (1) Outlet (2)

Elastic wall (FSI) 3.508 3.508 0
Rigid wall (CFD) 3.163 2.446 0.716

The deviation between the elastic and rigid wall assumption is due to the deformation
of the other side of the artery wall of the stenotic throat relative to the plaque’s formation
on the wall side. Additionally, it can be noticed that no flow goes out at outlet (2) of the
RCA; the resistance increased, which boosted the inlet mass flow rate and the flow velocity
directed to outlet (1).

Regarding the CA’s stenotic ICA—model B, Table 5 presents the mass flow rate
distribution using the simulation procedure. At the late diastole of the cardiac cycle, the
inlet mass flow rate is 19.75 g/s compared to 19.92 g/s for the rigid wall assumption.
The outlet mass flow is 9.67 g/s from ICA and 10.08 g/s from ECA. For the rigid wall
assumption, the outlet mass flow rate is 9.77 g/s from ICA and 10.14 g/s from ECA. At the
peak systole of the cardiac cycle, the inlet mass flow rate is 43.7 g/s compared to 43.63 g/s
for the rigid wall assumption. The outlet mass flow is 21.3 g/s from ICA and 22.4 g/s from
ECA. For the rigid wall assumption, the outlet mass flow rate is 21.3 g/s from ICA and
22.35 g/s from ECA. It can be noticed that the mass flow rate distribution in the case of
elastic to rigid wall assumption is almost insignificant.

Table 5. Stenotic ICA (model B) mass flow rate distribution at the late diastole and peak systole of
the cardiac cycle for elastic and rigid wall.

Flow Rate at Late Diastole (g/s)

Inlet ICA ECA

Elastic wall (FSI) 19.75 9.671 10.08
Rigid wall (CFD) 19.92 9.77 10.14

Flow Rate at Peak Systole (g/s)

Inlet ICA ECA

Elastic wall (FSI) 43.7 21.304 22.4
Rigid wall (CFD) 43.63 21.3 22.35

Table 6 presents the mass flow rate distribution using the simulation procedure for
the CA’s stenotic CCA—model C. At the late diastole of the cardiac cycle, the inlet mass
flow rate is 18.89 g/s compared to 19.62 g/s for the rigid wall assumption. The outlet
mass flow is 10.2 g/s from ICA and 8.7 g/s from ECA. For the rigid wall assumption, the
outlet mass flow rate is 10.6 g/s from ICA and 8.9 g/s from ECA. At the peak systole of the
cardiac cycle, the inlet mass flow rate is 40.73 g/s compared to 40.44 g/s for the rigid wall
assumption. The outlet mass flow is 21.8 g/s from ICA and 18.9 g/s from ECA. For the
rigid wall assumption, the outlet mass flow rate is 21.65 g/s from ICA and 18.8 g/s from
ECA. It can be noticed that the mass flow rate distribution in the case of elastic to rigid wall
assumption is almost insignificant.
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Table 6. Stenotic CCA (model C) mass flow rate distribution at the late diastole and peak systole of
the cardiac cycle for elastic and rigid wall.

Flow Rate at Late Diastole (g/s)

Inlet ICA ECA

Elastic wall (FSI) 18.89 10.2 8.7
Rigid wall (CFD) 19.62 10.6 8.9

Flow Rate at Peak Systole (g/s)

Inlet ICA ECA

Elastic wall (FSI) 40.73 21.8 18.9
Rigid wall (CFD) 40.44 21.65 18.8

It can be concluded that the numerical simulation considering the elastic wall is
necessary for the relatively small diameter vessels, such as the right coronary artery, and
can be neglected for the relatively large arteries, such as the carotid artery.

3.5. Arterial Wall Deformation

The displacement of the vessel walls significantly affects the flow pattern due to the
forces acting on its wall. Radial strain represents the cross-sectional area deformation in
terms of the relative radial deformation of the vessel wall to a reference diameter [50]. Fluid
flow and solid structure domains are coupled, and their interaction is obtained through the
arterial wall strains.

Figure 10 presents the RCA wall radial deformation contours for different times along
the cardiac cycle representing the early diastole, peak systole, and late diastole. It was found
that the maximum value for the arterial wall radial deformation at the early diastole (0.015 s)
reached 0.0717 mm and decreased to 0.00702 mm at 0.322 s, as shown in Figure 10a,b. At the
peak systole of the cardiac cycle at 0.38 s, the arterial wall radial deformation’s maximum
value was 0.0095 mm at nearly the mid-distance between the artery inlet and the stenotic
throat, as shown in Figure 10c. Afterward, Figure 10d,e shows the arterial wall radial
displacement at the late diastole of the cardiac cycle which the maximum value decreased
from 0.00399 mm at a time 0.5 s of the cardiac cycle to 0.00298 mm at a time 0.74 s of the
cardiac cycle.

Figure 11 presents the stenotic ICA—model B wall radial deformation contours for
different times along the cardiac cycle at the early diastole, peak systole, and late diastole,
defined in Figure 2. It was found that the maximum value for the arterial wall radial
displacement at the early diastole (0.02 s) reached 0.0345 mm after the stenotic region of the
ICA and increased to 0.0359 mm at a time 0.16 s of the cardiac cycle but located before the
artery turn of the ECA branch, as shown in Figure 11a,b. At the peak systole of the cardiac
cycle (0.385 s), the maximum value of the arterial wall radial deformation was 0.0219 mm,
located after the ICA’s stenotic throat, as shown in Figure 11c. Afterward, Figure 11d
shows the arterial wall displacement at the late diastole of the cardiac cycle, in which the
maximum value was 0.0108 mm at a time 0.74 s of the cardiac cycle.

Moreover, the stenotic CCA—model C wall radial deformation contours are presented
for different times along the cardiac cycle at the early diastole, peak systole, and late
diastole, defined in Figure 2. It was found that the maximum value for the arterial wall
radial displacement at the early diastole (0.02 s) reached 0.029 mm after the stenotic region
of the CCA at the ECA and increased to 0.084 mm at a time 0.16 s of the cardiac cycle
but located before the artery turn of the ECA branch as shown in Figure 12a,b. At the
peak systole of the cardiac cycle (0.385 s), the maximum value of the arterial wall radial
deformation was 0.0427 mm, located after the CCA’s stenotic throat at the ICA, as shown in
Figure 12c. Afterward, Figure 12d shows the arterial wall displacement at the late diastole
of the cardiac cycle, for which the maximum value was 0.0187 mm at a time 0.74 s of the
cardiac cycle.
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It can be concluded that the deformation output from the numerical results can be
validated with the theoretical wall expansion. The theoretical wall expansion assumption
follows Barlow’s formula.

H =
P× D

2t
(10)

where H is the hoop stress, P is the pressure, D is the diameter, and t is the wall thickness.
Additionally, the strain can be calculated using the following equation

ε = H/E (11)

where ε is the strain and E is the Young modulus of elasticity.



Bioengineering 2022, 9, 708 17 of 21

Bioengineering 2022, 9, x FOR PEER REVIEW 16 of 21 
 

 
Figure 10. RCA—model A deformation contours for different times of the cardiac cycle: (a) t = 0.015 
s, (b) t = 0.32 s, (c) t = 0.38 s, (d) t = 0.5 s, and (e) t = 0.74 s. 

Figure 11 presents the stenotic ICA—model B wall radial deformation contours for 
different times along the cardiac cycle at the early diastole, peak systole, and late diastole, 
defined in Figure 2. It was found that the maximum value for the arterial wall radial dis-
placement at the early diastole (0.02 s) reached 0.0345 mm after the stenotic region of the 
ICA and increased to 0.0359 mm at a time 0.16𝑠 of the cardiac cycle but located before 
the artery turn of the ECA branch, as shown in Figure 11a,b. At the peak systole of the 
cardiac cycle (0.385 s), the maximum value of the arterial wall radial deformation was 0.0219 mm, located after the ICA’s stenotic throat, as shown in Figure 11c. Afterward, 
Figure 11d shows the arterial wall displacement at the late diastole of the cardiac cycle, in 
which the maximum value was 0.0108 mm at a time 0.74 s of the cardiac cycle. 

 
Figure 11. CA—model B deformation contours for different times of the cardiac cycle: (a) t = 0.02 s,
(b) t = 0.16 s, (c) t = 0.385 s, and (d) t = 0.74 s.

For stenotic RCA—model A at the stenotic throat, with pressure = 5406 Pa, diam-
eter = 3.77 mm, thickness = 0.55 mm, and the Young modulus of elasticity = 1.08 MPa,
hence the strain = 0.0171 and in diameter = 0.064 mm which agrees with Figure 10. Ad-
ditionally, for stenotic ICA—model B at the stenotic throat, with pressure = 450 Pa, diam-
eter = 7.82 mm, thickness = 0.66 mm, and the Young modulus of elasticity = 1.08 MPa,
hence the strain = 0.00247 and in diameter = 0.0193 mm which agrees with Figure 11. In the
same context, for stenotic CCA—model C at the stenotic throat, with pressure = 5531 Pa,
diameter = 7.82 mm, thickness = 0.66 mm, and the Young modulus of elasticity = 1.08 MPa,
hence the strain = 0.0303 and in diameter = 0.237 mm which agrees with Figure 12. More-
over, it is well known that the deformation occurred due to the pressure forces near the
arterial wall. However, Figures 7–9 show the velocity streamlines inside the RCA and CA
geometries by using the wall compliance and rigidity assumption to compare the effect of
using the rigid wall assumption on the hemodynamics. Furthermore, Figures 10–12 show
the deformation that occurred in the elastic wall geometries due to the presence of pressure
forces on the arterial walls. Additionally, Figure 13 shows the pressure contours along the
studied geometries at the peak systole of the cardiac cycle.



Bioengineering 2022, 9, 708 18 of 21

Bioengineering 2022, 9, x FOR PEER REVIEW 17 of 21 
 

Figure 11. CA—model B deformation contours for different times of the cardiac cycle: (a) t = 0.02 s, 
(b) t = 0.16 s, (c) t = 0.385 s, and (d) t = 0.74 s. 

Moreover, the stenotic CCA—model C wall radial deformation contours are pre-
sented for different times along the cardiac cycle at the early diastole, peak systole, and 
late diastole, defined in Figure 2. It was found that the maximum value for the arterial 
wall radial displacement at the early diastole (0.02 s) reached 0.029 mm after the stenotic 
region of the CCA at the ECA and increased to 0.084 mm at a time 0.16 s of the cardiac 
cycle but located before the artery turn of the ECA branch as shown in Figure 12a,b. At 
the peak systole of the cardiac cycle (0.385 s), the maximum value of the arterial wall ra-
dial deformation was 0.0427 mm, located after the CCA’s stenotic throat at the ICA, as 
shown in Figure 12c. Afterward, Figure 12d shows the arterial wall displacement at the 
late diastole of the cardiac cycle, for which the maximum value was 0.0187 mm at a time 0.74 s of the cardiac cycle. 

 
Figure 12. CA—model C deformation contours for different times of the cardiac cycle: (a) t = 0.02 s,
(b) t = 0.16 s, (c) t = 0.385 s, and (d) t = 0.74 s.

Bioengineering 2022, 9, x FOR PEER REVIEW 18 of 21 
 

Figure 12. CA—model C deformation contours for different times of the cardiac cycle: (a) t = 0.02 s, 
(b) t = 0.16 s, (c) t = 0.385 s, and (d) t = 0.74 s. 

It can be concluded that the deformation output from the numerical results can be 
validated with the theoretical wall expansion. The theoretical wall expansion assumption 
follows Barlow’s formula. 𝐻 =  ௉ ×஽ଶ௧   (10)

where H is the hoop stress, P is the pressure, D is the diameter, and t is the wall thickness. 
Additionally, the strain can be calculated using the following equation 𝜖 = 𝐻/𝐸  (11)

where 𝜖 is the strain and E is the Young modulus of elasticity. 
For stenotic RCA—model A at the stenotic throat, with pressure = 5406 Pa, diameter 

= 3.77 mm, thickness = 0.55 mm, and the Young modulus of elasticity = 1.08 MPa, hence 
the strain = 0.0171 and in diameter = 0.064 mm which agrees with Figure 10. Additionally, 
for stenotic ICA—model B at the stenotic throat, with pressure = 450 Pa, diameter = 7.82 
mm, thickness = 0.66 mm, and the Young modulus of elasticity = 1.08 MPa, hence the strain 
= 0.00247 and in diameter = 0.0193 mm which agrees with Figure 11. In the same context, 
for stenotic CCA—model C at the stenotic throat, with pressure = 5531 Pa, diameter = 7.82 
mm, thickness = 0.66 mm, and the Young modulus of elasticity = 1.08 MPa, hence the strain 
= 0.0303 and in diameter = 0.237 mm which agrees with Figure 12. Moreover, it is well 
known that the deformation occurred due to the pressure forces near the arterial wall. 
However, Figures 7–9 show the velocity streamlines inside the RCA and CA geometries 
by using the wall compliance and rigidity assumption to compare the effect of using the 
rigid wall assumption on the hemodynamics. Furthermore, Figures 10–12 show the defor-
mation that occurred in the elastic wall geometries due to the presence of pressure forces 
on the arterial walls. Additionally, Figure 13 shows the pressure contours along the studied 
geometries at the peak systole of the cardiac cycle. 

 
Figure 13. Pressure distribution for the wall compliance models at the peak systole of the cardiac 
cycle. 

  

Figure 13. Pressure distribution for the wall compliance models at the peak systole of the cardiac cycle.



Bioengineering 2022, 9, 708 19 of 21

4. Conclusions

The occurrence of stenosis significantly affects the blood flow dynamic factors, such
as WSS, velocity distribution, and arterial wall deformation. Hence, hemodynamics can
be used as a threshold to explore the influence of using the rigid wall assumption along
the coronary and the carotid arteries. Therefore, comprehensive blood flow models were
developed and numerically simulated to predict the blood flow dynamic factors.

It can be concluded that considering the arterial wall elasticity is unnecessary in
simulating large arteries such as the carotid artery. It was found that the hemodynamics
for the stenotic carotid artery (CA) were almost the same when using the elastic and rigid
wall assumptions. The WSS at the stenosis throat reached 116.9 Pa, considering the wall
elasticity compared to 118.8 Pa for the rigid wall assumption. Additionally, at the artery
bifurcation, the value of WSS reached 16.3 Pa by considering the wall elasticity and 16.2 Pa
for the rigid wall assumption. Hence, assuming the elastic wall assumption for relatively
large arteries such as the CA can be neglected to save the computational cost.

However, for the stenotic right coronary artery (RCA), it was found that adopting the
rigid wall assumption underestimates the WSS values at the stenosis throat by 10.24% com-
pared to simulating the blood flow considering wall elasticity. Additionally, it was found
that rigid wall assumption underestimates the WSS values at the RCA bifurcation by 3.8%
compared to considering wall compliance.

• Accordingly, the blood flow dynamic factors were significantly influenced by using
the elastic wall assumption for relatively small diameters of the blood vessels, such
as RCA.

• Additionally, the rigid wall assumption is plausible in flow modeling for relatively
large diameters such as the carotid artery.
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