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Abstract: Walking speed is considered a reliable assessment tool for any movement-related functional
activities of an individual (i.e., patients and healthy controls) by caregivers and clinicians. Traditional
video surveillance gait monitoring in clinics and aged care homes may employ modern artificial
intelligence techniques to utilize walking speed as a screening indicator of various physical outcomes
or accidents in individuals. Specifically, ratio-based body measurements of walking individuals are
extracted from marker-free and two-dimensional video images to create a walk pattern suitable for
walking speed classification using deep learning based artificial intelligence techniques. However,
the development of successful and highly predictive deep learning architecture depends on the
optimal use of extracted data because redundant data may overburden the deep learning architecture
and hinder the classification performance. The aim of this study was to investigate the optimal
combination of ratio-based body measurements needed for presenting potential information to define
and predict a walk pattern in terms of speed with high classification accuracy using a deep learning-
based walking speed classification model. To this end, the performance of different combinations
of five ratio-based body measurements was evaluated through a correlation analysis and a deep
learning-based walking speed classification test. The results show that a combination of three ratio-
based body measurements can potentially define and predict a walk pattern in terms of speed
with classification accuracies greater than 92% using a bidirectional long short-term memory deep
learning method.

Keywords: two-dimensional (2D) image; marker-free video; walking speed; walking speed classification;
bi-LSTM; deep learning; redundant feature; ratio-based body measurement; optimal feature

1. Introduction

Human gait factors of both healthy individuals and patients, such as the stride length,
cadence, stance, swing periods, and hip, knee ankle and pelvic tilt joint kinematics, exhibit
significant alterations in response to changes in the walking speed [1,2]. For example,
healthy individuals exhibit decreases and increases in the amplitudes of cadence, step and
stride lengths, stance and swing periods at slower and faster speeds, respectively [3,4].
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In addition, changes in walking circumstances do not appear to alter the walking speed
of healthy individuals but may have an impact on the walking speed of an individual
with a physical impairment who is walking at the same speed. For instance, patients
with neurological disorders such as Alzheimer’s disease and neuromuscular problems,
including post-stroke and cerebral palsy, exhibit a slower walking speed than healthy
controls [5–7]. Additionally, in individuals older than 60 years, a slower walking speed is
predictive of increased morbidity and mortality [8]. For this reason, walking speed has
long been used by clinicians as a straightforward but efficient gait assessment tool for
determining demographic traits (such as gender and age) and physical functions including
spatiotemporal parameters as well as kinematic and kinetic patterns [5,6,9–11]. Most
importantly, by combining cutting-edge artificial intelligence techniques (such as deep
learning) and conventional video (i.e., two-dimensional [2D] videos or image sequences)
surveillance, the walking speed can be used as an independent screening tool for several
physical consequences or accidents (e.g., fall-related fear) among healthy individuals and
patients with conditions such as Parkinson’s disease and osteoarthritis during day-to-day
gait monitoring in healthcare centres and old-age homes. Specifically, body measurement
data of walking individuals (e.g., healthy or patients) extracted from 2D marker-free video
image sequences can be considered sequential gait data [12,13] for the creation of walk
pattern suitable for walking speed classification using artificial intelligence techniques, and
the method may be applied in healthcare settings and elderly care facilities [13].

Numerous studies have researched walking gait using body measurements from 2D
video or image sequence setups with a focus on speed-related factors and without the use of
artificial intelligence approaches [14,15]. The extracted body measurement data from these
studies include unilateral hip, knee, ankle and pelvic tilt joint kinematics [14] and body
measurement data (e.g., lower-body width) of individuals [15]. However, the clothing worn
(i.e., socks and undergarments) by the walking individuals has been employed as segmental
markers to monitor foot and pelvic parameters in the image, which results in a significant de-
pendence of the derived body measurement data on the clothing [14]. In addition, the body
measurement data from walking individuals, such as height, width, and area, in an image
exhibits inconsistent alterations based on the individual’s distance from the camera in vari-
ous circumstances (e.g., indoor and outdoor settings) [12,15,16]. One strategy to resolve this
constraint could be scaling or resizing the video image sequences in order to equalise the
walking individual’s body measurements in each image, but doing so may result in visual
distortion and reduced quality due to compression and stretching [16]. Another approach
for overcoming this limitation could be utilizing the walking individual-to-camera distance
independent body measurement data to establish steady walking speed patterns [12]. A
study conducted by Zeng and Wang presented body measurement data based on a ratio
(i.e., body height-width ratio data) that is steady regardless of the closeness of the individ-
ual to the camera while walking [12]. In addition, the study conducted by Zeng and Wang
utilized artificial intelligence techniques for classifying walk patterns in terms of speed
and established a walking pattern that could be used for classification through the use of
inconsistent body measurements (e.g., body area, mid-body and lower-body width) data
along with ratio-based (i.e., body height-width ratio) data [12]. Our previous published
study [13] provided the first suggestion of five ratio-based body measurements, namely,
(i) the ratio of the full-body height to the full-body width (HW1), (ii) the ratio of the full-
body height to the mid-body width (HW2), (iii) the ratio of the full-body height to the
lower-body width (HW3), (iv) the ratio of the apparent body area to the full-body area (A1),
and (v) the ratio of the area between two legs to the full-body area (A2) for the definition
and prediction of walk speed patterns. Our previous study [13] then proved the reliability
of these five ratio-based body measurements to define and classify an individual’s walking
patterns in terms of speed in indoor (treadmill trial) environments using a bidirectional
long short-term memory (biLSTM) deep learning-based model with a mean ± standard
deviation (SD) classification accuracy of 88.05(±8.85)% and a median accuracy of 89.58%.
However, the development of a successful and highly predictive deep learning architecture
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for walking speed classification depends on the dimension of the data extracted from
2D marker-free video images [17]. Although the use of high-dimensional input features
(i.e., several ratio-based body measurements) is thought to create a strong walk pattern,
the use of redundant data may overburden the deep learning architecture and hinder the
classification performance [18]. Therefore, the use of fewer but useful ratio-based body
measurements data from 2D marker-free video images is necessary to build a success-
ful deep learning-based model. Therefore, the current study aimed to construct walk
patterns with fewer but useful ratio-based body measurements for the successful develop-
ment of a deep learning architecture that would classify walking speed with the highest
classification accuracy.

One of the commonly used methods for selecting the most beneficial and ideal input
features (such as ratio-based body measurements) is assessing the correlations between
the features and selecting those with the lowest correlation strengths because only one of
two highly correlated input features is needed for a model, while the second feature does
not provide any new information for target prediction [19,20]. In other words, the selection
of input features with low correlations among them will provide valuable information to a
model to improve its predictive ability [20]. Other commonly used methods for optimal
input feature selection is fitting and assessing a deep learning-based model with several
potential subsets or combinations of input features and selecting the feature subset or
combination that yields the best performance [20,21]. The utilization of both methods is
crucial for the development of a successful and highly predictive deep learning architec-
ture because an analysis of the correlations among input features will yield theoretical
knowledge of the quality (e.g., strong or weak) of the combination of input features, and
the practical application of a deep learning-based model using different possible subsets or
combinations of input features will identify the feature subset or combination that yields
the best performance [19–22].

The objective of this study was to identify the optimal combination of ratio-based body
measurements needed for presenting potential information that can define and predict
a walk pattern in terms of speed with high classification accuracy using a deep learning-
based walking speed classification model. To this end, the study analysed the correlations
among five ratio-based body measurements to comprehend the relationships among ratio-
based body measurements in slow, normal and fast walking speed conditions. This study
also evaluated the performance (in terms of the mean ± SD classification accuracy and
mean ± SD training time) of a biLSTM deep learning-based walking speed classification
model using the walking speed patterns created by all possible combinations of one, two,
three and four ratio-based body measurements among five ratio-based body measurements
(HW1, HW2, HW3, A1, and A2). The walk pattern created by the combination of fewest
ratio-based body measurements (i.e., less than five ratio-based body measurements) was
defined as optimal in the study if it was able to classify the walking speed with a mean ± SD
classification accuracy higher than or within 2% less [23,24] of that obtained in our previous
study [13], and the ratio-based body measurements in the walk pattern showed low
correlations among them. This study hypothesized that walking speed patterns identified
from few ratio-based body measurements can be used to classify walking speed using
deep learning-based methods with high accuracy if the correlations among the body
measurements are low.

2. Methods

This study adopted lateral 2D marker-free motion image sequences from a publicly
available dataset, the Osaka University-Institute of Scientific and Industrial research (OU-
ISIR) dataset ‘A’ [25]. This is a benchmark dataset and has been used in various research
areas since it was publicly published in 2012. The dataset has been used in the area human
gait research focusing on speed, age, and gender [12,26], movement assessment and gait
monitoring [13,27], gait-based biometric and surveillance [28,29].
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2.1. Participants and Dataset

In this study, the walk speed patterns at three speeds—slow, normal, and fast—were
classified using lateral 2D marker-free motion image sequences from 34 participants. The
OU-ISIR dataset ‘A’ [25], which is available publicly, provided these image sequences
(obtained using an indoor treadmill) (Figure 1). Three walking speed categories were
considered: slow (2 to 3 km/h), normal (4 to 5 km/h) and fast (6 to 7 km/h) [30–32].
OU-ISIR dataset ‘A’ comprises of 2D image sequences recorded from 34 participants while
walking at a range of speed from 2 to 7 km/h on a 550 mm wide and 2000 mm long belt
area of treadmill (BIOMILL BM-2200). An increment of 1 km/h speed was maintained
consistently. All participants wore standard coloured long sleeve shirt and long pants
while walking. The lateral view image sequences of the participants were captured using
camera (Point Grey Research Inc. Flea2 models) with 3.5 mm lens focal length, 60 fps
frame rate and VGA resolution. The image sequence data were divided into the three
above-mentioned categories (i.e., slow, normal, and fast). Additionally, the dataset included
both male and female participants with age between 15 to 65 years who had reported no
recent fall injuries, neurology or orthopaedic and gait or locomotion related issues. For
each participant, 12 image sequences including two image sequences for each speed were
processed, that yielded a total of 408 sequences with a minimum length of 240 frames.
Three types of walk speed patterns for slow, normal and fast walking were created using
quasi-periodic patterns produced from five ratio-based body measurements extracted from
the minimum number of image sequences (i.e., 240 frames), which are comparable to the
lengths used in previous studies [13].
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Figure 1. Example of continuous image sequences from OUISIR dataset A for one participant walking
at a normal speed.

2.2. Feature Extraction

According to the procedure used in our prior study [13], which is depicted in Figure 2
and exemplified by Equations (1)–(5), data for five ratio-based body measurements (HW1,
HW2, HW3, A1 and A2) were extracted from image sequences available for slow walk,
normal walk, and fast walking. More specifically, among the five ratio-based body mea-
surements defined in our previous study [13], HW1, HW2 and HW3 were calculated using
the rectangular boundary box height and width. Bounding boxes were placed around the
whole body, mid body and lower body locations in each image, and HW1, HW2 and HW3
were then calculated using Equations (1)–(3). The terms in the equations are presented in
Figure 2a–c. A1 and A2 were measured by evaluating the white pixels in the image, bound-
ary box area and area between two legs in each image and then using Equations (4) and (5).
The terms in the equations are presented in Figure 2d,e.
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Figure 2. Detail of the terms used in Equations (1)–(5). Extraction of (a) full-body height (H) and
full body width (W1) (b) mid-body width (W2) (c) lower-body width (W3) (d) full body area and
apparent body area, and (e) area between two legs.
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Ratio of the full-body height to the full-body width,

HW1 =
Full − body height
Full − body width

(1)

Ratio of the full-body height to the mid-body width,

HW2 =
Full − body height
Mid − body width

(2)

Ratio of the full-body height to the lower-body width,

HW3 =
Full − body height

Lower − body width
(3)

Ratio of the apparent body area to the full-body area,

A1 =
Apparent − bodyarea

Full − bodyarea
(4)

Ratio of the area between two legs to the full-body area,

A2 =
Area between two legs

Full − bodyarea
(5)

After extracting data for five ratio-based body measurements from marker-free 2D im-
age sequences, our previous research [13] discovered that each of the five ratio-based body
measurements varied over time such that they created quasi-periodic patterns (Figure 3),
which is an established pattern of human gait cycle motion while walking [33].
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Figure 3. Quasi-periodic signals created by five ratio-based body measurements calculated from
image sequences of a single individual moving normally while walking. HW1, ratio of the full-body
height to the full-body width; HW2, ratio of the full-body height to the mid-body width; HW3, ratio
of the full-body height to the lower-body width; A1, ratio of the apparent body area to the full-body
area; and A2, ratio of the area between two legs to the full-body area.

2.3. Experiment Procedure

In the current study, for each walking speed condition, coefficient of determination
(R2) were calculated among the data of five ratio-based body measurements to determine
the ratio-based body measurements with low correlation. R-Square (R2) has been used as a
state-of-the-art tool for correlation analysis [34]. The results from the correlation analysis
are presented in terms of R2 in Section 3. The quasi-periodic patterns were then used to
establish three types of walk speed patterns for slow, normal and fast walking. Thirty
datasets were created using three types of walk speed patterns. Among these datasets,
the walk speed patterns in five, ten, ten and five datasets were established using quasi-
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periodic patterns from one, two, three and four of the five ratio-based body measurements,
respectively. The combinations of ratio-based body measurements in the walk patterns
obtained with the above-described datasets were established according to the combination
rule in Equation (6), and no combinations were repeated for different orders of ratio-based
body measurements. This process of creating a combination of features have been used by
the current studies [35,36].

Cn =
5!

n !(5 − n)!
, n = 1, 2, . . . , 4 (6)

In this equation, C(n) is the number of combinations generated by the included ratio-
based body measurements, 5 is the total number of ratio-based body measurements, n is
the number of included ratio-based body measurements in the combination, and (5 − n) is
the number of ratio-based body measurements excluded from the combination.

Each dataset contained 136 walk speed patterns for each of the three speeds (i.e., slow,
normal, and fast). Table 1 provides a description of the walk patterns in all the datasets.
After datasets’ construction, a biLSTM-based deep learning architecture along with k-fold
(where, k = 17) cross validation [13] was performed using all ratio-based body measure-
ments combinations (Table 1) for walking speed classification. A total of 272 cross validation
experiments were performed for each deep learning-based walking speed classification task.
According to the prior studies, this simple structure is adequate to produce non-overfitting
and highly accurate classification problems of the same types [37,38]. Figure 4 presents
workflow of the walking speed classification using different combination of ratio-based
body measurements. The results from the walking speed classification are presented in
terms of mean ± SD classification accuracies and mean ± SD training time in Section 3 and
in Supplementary Material (Tables S1–S5).

Table 1. Description of the walk patterns in all datasets used in biLSTM-based deep learning
architecture.

No. of
Datasets

No. of Ratio-Based Body
Measurement in Walk

Speed Pattern

Combinations of Ratio-Based
Body Measurement in Walk

Speed Pattern

Walking
Speed Pattern

Dimension

No. of Walk Speed Patterns/Dataset

Slow
Speed

Normal
Speed

Fast
Speed Total

05 01

HW1

1 × 240 136 136 136 408

HW2

HW3

A1

A2

10 02

HW1, HW2

2 × 240 136 136 136 408

HW1, HW3

HW2, HW3

HW1, A1

HW1, A2

HW2, A1

HW2, A2

HW3, A1

HW3, A2

A1, A2
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Table 1. Cont.

No. of
Datasets

No. of Ratio-Based Body
Measurement in Walk

Speed Pattern

Combinations of Ratio-Based
Body Measurement in Walk

Speed Pattern

Walking
Speed Pattern

Dimension

No. of Walk Speed Patterns/Dataset

Slow
Speed

Normal
Speed

Fast
Speed Total

10 03

HW1, HW2, HW3

3 × 240 136 136 136 408

HW1, HW2, A1

HW1, HW2, A2

HW1, HW3, A1

HW1, HW3, A2

HW2, HW3, A1

HW2, HW3, A2

A1, A2, HW1

A1, A2, HW2

A1, A2, HW3

05 04

HW1, HW2, HW3, A1

4 × 240 136 136 136 408

HW1, HW2, HW3, A2

HW2, HW3, A1, A2

HW1, HW3, A1, A2

HW1, HW2, A1, A2Bioengineering 2022, 9, x FOR PEER REVIEW 8 of 14 
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3. Results

Figure 5 presents the results from the correlation analysis (in terms of R2) using data
of five ratio-based body measurements for slow, normal and fast walk speeds. According
to the interpretations (i.e., weak correlation: 0.10–0.39 and moderate correlation: 0.40–0.69,
strong correlation: 0.70–0.89, very strong correlation: 0.90–1.00) [39], the R2 values between
HW1 vs. HW2, HW2 vs. HW3, HW2 vs. A1, HW1 vs. A2, HW2 vs. A2, HW3 vs. A2 and
A1 vs. A2 were generally found to be weak for slow and normal walk speeds, whereas for
fast walk speeds, weak and moderate R2 values were found between HW1 vs. A2, HW2
vs. A2, HW3 vs. A2 and A1 vs. A2 and between HW1 vs. HW2, HW2 vs. HW3, and HW2
vs. A1, respectively. In addition, moderate R2 values were found between HW1 vs. HW3,
HW1 vs. A1, and HW3 vs. A1 for slow walk speeds, but the corresponding values obtained
for normal and fast walk speeds were generally strong.
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Figure 6 presents the results from comparisons of the mean(±SD) classification accu-
racy and mean(±SD) training time for biLSTM-based walking speed classification using
walk speed patterns established using one, two, three four and five ratio-based body mea-
surements. Details of the mean(±SD) classification accuracy and mean(±SD) training time
are provided given in the Supplementary Material (Tables S1–S5). Walking speed classifi-
cation using walk speed patterns established using five ratio-based body measurements
achieved a mean(±SD) classification accuracy of 88.05(±8.85)% (Figure 6 and Table S1
(result from our previous study [13])) and the walk speed patterns established using three
ratio-based body measurements combinations such as (HW1, HW2, A2) and (HW2, HW3,
A2) achieved a mean classification accuracy that was greater than that achieved with
walk speed patterns established with five ratio-based body measurements (Figure 6 and
Table S3). More specifically, two combinations of three ratio-based body measurements,
namely, (HW1, HW2, A2) and (HW2, HW3, A2), achieved mean(±SD) classification accura-
cies of 92.7(±8.01)% and 92.79(±7.8)%, respectively (Figure 6 and Table S3). In addition,
the walk speed patterns established using other combinations of three ratio-based body
measurements, namely, (A1, A2, HW3), (A1, A2, HW2), (HW1, HW3, A2), (HW1, HW3, A1),
(HW1, HW2, A1) and (HW1, HW2, HW3), and three combinations of four ratio-based body
measurements, namely, (HW1, HW2, A1, A2), (HW1, HW2, HW3, A1) and (HW1, HW2,
HW3, A2), achieved mean classification accuracies that were very close (i.e., within 2% less)
to the mean classification accuracy achieved with the walk speed patterns established with
five ratio-based body measurements (Figure 6 and Tables S2 and S3). In contrast, the mean
accuracies achieved for walking speed classification using walk speed patterns established
with combinations of one and two ratio-based body measurements were less than 70% and
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74%, respectively (Figure 6 and Tables S4 and S5). These results clearly show that the walk
speed patterns established with combinations of three ratio-based body measurements
achieved better performance in terms of the mean(±SD) classification accuracy than the
walk speed patterns established with five ratio-based body measurements. Moreover, the
mean training time for walking speed classification using walk speed patterns established
with combinations of three ratio-based body measurements reduced to approximately
14 to 15 min (Figure 6 and Table S3) compared with the mean training time of 17.43 min for
walking speed classification using walk speed patterns established with the combination
of five ratio-based body measurements [Figure 6 and Table S1 (result from our previous
published study [13])].
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Figure 6. Mean ± SD classification accuracy and mean ± SD training time for biLSTM-based walking
speed classification using walk speed patterns based on by one, two, three, four and five ratio-based
body measurements. HW1, ratio of the full-body height to the full-body width; HW2, ratio of the
full-body height to the mid-body width; HW3, ratio of the full-body height to the lower-body width;
A1, ratio of the apparent body area to the full-body area; and A2, ratio of the area between the legs to
the full-body area.

4. Discussion

The primary objective of this study was to determine the optimal ratio-based body
measurement combination needed to present potential information that can define and
predict walk patterns in terms of speed with a high classification accuracy. To accomplish
the goal, this study adopted two commonly used methods of useful and optimal selection
of input features (e.g., ratio-based body measurements). First, this study analysed the
correlations among five ratio-based body measurements to comprehend relationships
among these body measurements in slow, normal and fast walking speed conditions.
Second, the performance (in terms of the mean ± SD classification accuracy and mean ± SD
training time) of a biLSTM deep learning-based walking speed classification model was
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evaluated using walking speed patterns created using all possible combination of one,
two, three and four out of five ratio-based body measurements. The combination with the
fewest ratio-based body measurements (i.e., less than five ratio-based body measurements)
for the establishment of walk patterns was deemed optimal if it yielded a mean ± SD
classification accuracy higher than or within 2% less [23,24] of the mean ± SD classification
accuracy obtained in our previous study [13], and the ratio-based body measurements used
for defining the walk pattern exhibited low correlations among them.

This study utilized data for five ratio-based body measurements for the correlation
analysis and biLSTM deep learning-based walking speed classification. Based on the corre-
lation analysis and biLSTM deep learning-based walking speed classification models, this
study discovered that combinations of three ratio-based body measurements with minimal
correlation among them yielded the highest accuracy in terms of the mean ± SD classifica-
tion accuracy for walking speed classification using the biLSTM deep learning-based model.
More specifically, HW1 exhibits low correlations with HW2 and A2, and thus, the combi-
nation of these three ratio-based body measurements achieved classification accuracy of
92.7(±8.01)% (Figures 5 and 6 and Table S3). HW2 has low correlations with HW3 and A2,
and the combination of these three ratio-based body measurements achieved a classification
accuracy of 92.79(±7.8)% (Figures 5 and 6 and Table S3). Furthermore, the mean ± SD
classification accuracies achieved with the combinations of one and two ratio-based body
measurements with low correlation among them are markedly lower than the mean ± SD
classification accuracy achieved in our previous study [13] (Figure 6 and Tables S4 and S5).
Moreover, the other combinations of ratio-based body measurements achieved classification
accuracies within 2% of the mean ± SD classification accuracy achieved in our previous
study [13], and the body measurements in these combinations generally exhibited moder-
ate to strong correlations between them (Figures 5 and 6 and Tables S1–S3). This finding
implies that walking speed patterns identified from few ratio-based body measurements
can produce the best performance for deep learning-based classification of walking speed
if the correlation between the ratio-based body measurements is low. Additionally, full
body image sequences are necessary for more accurate classification, since ratio-based
body measurements (i.e., HW1, HW2 and HW3) which resulted in excellent classification
accuracy required full-body height.

This study is significant in several contexts. First, video image sequences display
apparent body measurements rather than real physiological dimensions of the human
body [12,15,16]. It is thus crucial to examine different walking individual-to-camera dis-
tance independent body measurements (i.e., ratio-based body measurements) that can be
found from video image sequences and to investigate the interactions between ratio-based
body measurements in order to identify the optimal body measurements for defining and
predicting a walk pattern in terms of speed [12,13]. By performing a correlation analysis
and a rigorous deep learning-based assessment, the current study evaluated combinations
of three out of five potential ratio-based body measurements. Combinations of these three
ratio-based body measurements provided information to estimate walk patterns in terms
of speed with classification accuracy greater than 92%, which is better than the results
achieved in previous studies 88.57% [12], 88.05% [13]. In addition, the previous study [12]
trained the model with a multiclass setting (i.e., all three types of walking speed patterns)
and tested the models using a single-class setting (i.e., any one of the three walking speed
patterns) while the current study used a multiclass setting as well as multiple runs for the
training, validation and testing of the model, which is beneficial for achieving accurate
classification accuracy and building a successful model [40,41]. It is difficult to compare
our results with the previously published study [14], which used body-worn clothing for
body measurement extraction, as the study only proposed extraction methods and did
not experiment for classification related tasks. Additionally, the data collection proce-
dure, experimental design, and participants’ demographic characteristics of the previous
study [14] are completely different from the current study. Second, earlier studies [17,18],
which claim that using high-dimensional input features (such as several ratio-based body
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measurements) may hinder the performance of a deep learning-based architecture obtained
with redundant data, support the results from the current study. In addition, previous stud-
ies [17,18], which assert that the highest performance of a deep learning-based architecture
could be attained if the best data that provide information, are in agreement with the results
from the current study. Furthermore, in future clinicians may utilise this method for routine
gait monitoring in healthcare and old-age homes as it can be used to identify the walking
speed in an indoor environment with improved classification accuracy [42]. Current patient
monitoring systems include implanted devices and wearable sensors that might require
invasive procedures and body attachment which are difficult and often unpleasant for
patients. Therefore, remote patient monitoring using existing surveillance cameras could
be a more viable option to constant observation of patient mobility. In addition, human
resources and battery life of traditional sensors are critical for long term patient monitoring.
As such, camera-based patient mobility monitoring might be more cost effective while
alleviating the burden on resources in clinical settings [43].

Although the current study has a lot of potential for selecting the optimal ratio-based
body measurements for creating walk patterns that are useful for accomplishing walking
speed classification using a deep learning-based architecture with the highest classification
accuracy, the study only evaluated healthy individuals. Experiments that include a gait-
impaired population will be considered in the future. Additionally, this study recruited
participants with a wide range of ages (15 to 65). However, the walk patterns of the
participants might change according to their age [44,45]. Walk speed classification across
different aged participants could be another research topic of interest in future. Additionally,
this study solely used area-based and height-to-width ratio-based body measurements
for the classification of walking speeds. Future studies will involve estimating additional
spatiotemporal parameters, such as stride and step length, joint angles, velocity and
acceleration, to gain a deeper understanding of the health of individuals and to classify
typical and atypical gait patterns. Moreover, only the biLSTM approach was used in this
study for the classification task. Future research will utilise more cutting-edge classification
algorithms to reach the best classification accuracy.

5. Conclusions

In summary, this study found that combinations of three ratio-based body measure-
ments extracted from lateral-view 2D images of marker-free walking individuals can
potentially define and predict walk patterns in terms of speed with classification accuracies
greater than 92% using a biLSTM. The excellent findings of this study support the opti-
mal application of ratio-based body measurement data that change with variations in the
walking speeds, form periodic or quasi-periodic patterns, and, more importantly, can be
extracted from marker-free conventional camera images to classify walking speeds with
high classification accuracy using the contemporary deep learning method. Additionally,
the remarkable results obtained in this study confirm that the use of high-dimensional
input features, such as multiple ratio-based body measurements, hinders the performance
of deep learning-based architectures if the data are redundant. Furthermore, if the data
that yield the best information are employed, the deep learning-based architecture would
exhibit peak performance. This walking speed classification method using optimal data is
a simple yet effective technique with a lot of potential for use in clinical settings and elderly
care facilities.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/bioengineering9110715/s1, Table S1: classification accura-
cies for walking speed classification using walk pattern established with five RBBMs in our previous
study, Table S2: classification accuracies for walking speed classification using walk pattern estab-
lished with four RBBMs, Table S3: classification accuracies for walking speed classification using
walk pattern established with three RBBMs, Table S4 classification accuracies for walking speed
classification using walk pattern established with two RBBMs, Table S5 classification accuracies
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for walking speed classification using walk pattern established with one RBBMs. RBBMs refers to
ratio-based body measurements.

Author Contributions: Guarantor: T.S., M.F.R., D.I. and N.U.A. are responsible for the entirety of
the work and the final decision to submit the manuscript; study concept and design: all authors;
data acquisition, processing, and analysis: T.S. and M.F.R.; critical review and interpretation of data:
K.H.G., S.M.R., M.A.A., M.A.A.M., D.I., O.A. and M.A.; drafting of the manuscript: T.S. and M.F.R.;
critical revision of the manuscript: all authors; obtaining funding: O.A. and M.A. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data generated and/or analyses for the current study are available
from the following publicly available databases: Osaka University-Institute of Scientific and Industrial
research (OU-ISIR) Dataset ‘A’: (www.am.sanken.osaka-u.ac.jp/BiometricDB/GaitTM.html, access
on 23 September 2022).

Acknowledgments: The authors extend their appreciation to the College of Applied Medical Sci-
ences Research Centre and the Deanship of Scientific Research at King Saud University for funding
this research.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. McCrum, C.; Lucieer, F.; van de Berg, R.; Willems, P.; Pérez Fornos, A.; Guinand, N.; Karamanidis, K.; Kingma, H.; Meijer, K.

The walking speed-dependency of gait variability in bilateral vestibulopathy and its association with clinical tests of vestibular
function. Sci. Rep. 2019, 9, 18392. [CrossRef] [PubMed]

2. Kirtley, C.; Whittle, M.W.; Jefferson, R.J. Influence of walking speed on gait parameters. J. Biomed. Eng. 1985, 7, 282–288. [CrossRef]
3. Fukuchi, C.A.; Fukuchi, R.K.; Duarte, M. Effects of walking speed on gait biomechanics in healthy participants: A systematic

review and meta-analysis. Syst. Rev. 2019, 8, 153. [CrossRef] [PubMed]
4. Mannering, N.; Young, T.; Spelman, T.; Choong, P.F. Three-dimensional knee kinematic analysis during treadmill gait: Slow

imposed speed versus normal self-selected speed. Bone Joint Res. 2017, 6, 514–521. [CrossRef]
5. Carcreff, L.; Gerber, C.N.; Paraschiv-Ionescu, A.; De Coulon, G.; Aminian, K.; Newman, C.J.; Armand, S. Walking Speed of

Children and Adolescents with Cerebral Palsy: Laboratory Versus Daily Life. Front. Bioeng. Biotechnol. 2020, 8, 812. [CrossRef]
6. Jarvis, H.L.; Brown, S.J.; Price, M.; Butterworth, C.; Groenevelt, R.; Jackson, K.; Walker, L.; Rees, N.; Clayton, A.; Reeves, N.D.

Return to Employment After Stroke in Young Adults: How Important Is the Speed and Energy Cost of Walking? Stroke 2019, 50,
3198–3204. [CrossRef]

7. Nadkarni, N.K.; Mawji, E.; McIlroy, W.E.; Black, S.E. Spatial and temporal gait parameters in Alzheimer’s disease and aging. Gait
Posture 2009, 30, 452–454. [CrossRef] [PubMed]

8. Fiser, W.M.; Hays, N.P.; Rogers, S.C.; Kajkenova, O.; Williams, A.E.; Evans, C.M.; Evans, W.J. Energetics of walking in elderly
people: Factors related to gait speed. J. Gerontol. Ser. A Biomed. Sci. Med. Sci. 2010, 65, 1332–1337. [CrossRef]

9. Moissenet, F.; Leboeuf, F.; Armand, S. Lower limb sagittal gait kinematics can be predicted based on walking speed, gender, age
and BMI. Sci. Rep. 2019, 9, 9510. [CrossRef]

10. Xie, Y.J.; Liu, E.Y.; Anson, E.R.; Agrawal, Y. Age-related imbalance is associated with slower walking speed: Analysis from the
National Health and Nutrition Examination Survey. J. Geriatr. Phys. Ther. 2017, 40, 183. [CrossRef]

11. De Cock, A.-M.; Fransen, E.; Perkisas, S.; Verhoeven, V.; Beauchet, O.; Remmen, R.; Vandewoude, M. Gait characteristics under
different walking conditions: Association with the presence of cognitive impairment in community-dwelling older people. PLoS
ONE 2017, 12, e0178566. [CrossRef]

12. Zeng, W.; Wang, C. Gait recognition across different walking speeds via deterministic learning. Neurocomputing 2015, 152, 139–150.
[CrossRef]

13. Sikandar, T.; Rabbi, M.F.; Ghazali, K.H.; Altwijri, O.; Alqahtani, M.; Almijalli, M.; Altayyar, S.; Ahamed, N.U. Using a Deep
Learning Method and Data from Two-Dimensional (2D) Marker-Less Video-Based Images for Walking Speed Classification.
Sensors 2021, 21, 2836. [CrossRef] [PubMed]

14. Castelli, A.; Paolini, G.; Cereatti, A.; Della Croce, U. A 2D markerless gait analysis methodology: Validation on healthy subjects.
Comput. Math. Methods Med. 2015, 2015, 186780. [CrossRef] [PubMed]

15. Verlekar, T.T.; Soares, L.D.; Correia, P.L. Automatic classification of gait impairments using a markerless 2D video-based system.
Sensors 2018, 18, 2743. [CrossRef]

www.am.sanken.osaka-u.ac.jp/BiometricDB/GaitTM.html
http://doi.org/10.1038/s41598-019-54605-0
http://www.ncbi.nlm.nih.gov/pubmed/31804514
http://doi.org/10.1016/0141-5425(85)90055-X
http://doi.org/10.1186/s13643-019-1063-z
http://www.ncbi.nlm.nih.gov/pubmed/31248456
http://doi.org/10.1302/2046-3758.68.BJR-2016-0296.R1
http://doi.org/10.3389/fbioe.2020.00812
http://doi.org/10.1161/STROKEAHA.119.025614
http://doi.org/10.1016/j.gaitpost.2009.07.003
http://www.ncbi.nlm.nih.gov/pubmed/19740661
http://doi.org/10.1093/gerona/glq137
http://doi.org/10.1038/s41598-019-45397-4
http://doi.org/10.1519/JPT.0000000000000093
http://doi.org/10.1371/journal.pone.0178566
http://doi.org/10.1016/j.neucom.2014.10.079
http://doi.org/10.3390/s21082836
http://www.ncbi.nlm.nih.gov/pubmed/33920617
http://doi.org/10.1155/2015/186780
http://www.ncbi.nlm.nih.gov/pubmed/26064181
http://doi.org/10.3390/s18092743


Bioengineering 2022, 9, 715 13 of 13

16. Zhang, Y.; Fang, Y.; Lin, W.; Zhang, X.; Li, L. Backward registration-based aspect ratio similarity for image retargeting quality
assessment. IEEE Trans. Image Process. 2016, 25, 4286–4297. [CrossRef] [PubMed]

17. Venkatesh, B.; Anuradha, J. A review of feature selection and its methods. Cybern. Inf. Technol. 2019, 19, 3–26. [CrossRef]
18. Liew, C.S.; Abbas, A.; Jayaraman, P.P.; Wah, T.Y.; Khan, S.U. Big data reduction methods: A survey. Data Sci. Eng. 2016, 1, 265–284.
19. Ferreira, A.J.; Figueiredo, M.A.T. Efficient feature selection filters for high-dimensional data. Pattern Recognit. Lett. 2012, 33,

1794–1804. [CrossRef]
20. Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer: New York, NY, USA, 2013; Volume 26.
21. Murphy, K.P. Machine Learning: A Probabilistic Perspective; MIT press: Cambridge, MA, USA, 2012; ISBN 0262304325.
22. Sikandar, T.; Rabbi, M.F.; Ghazali, K.H.; Altwijri, O.; Almijalli, M.; Ahamed, N.U. Evaluating the difference in walk patterns

among normal-weight and overweight/obese individuals in real-world surfaces using statistical analysis and deep learning
methods with inertial measurement unit data. Phys. Eng. Sci. Med. 2022; Online ahead of print. [CrossRef]

23. Davoudi, A.; Mardini, M.T.; Nelson, D.; Albinali, F.; Ranka, S.; Rashidi, P.; Manini, T.M. The effect of sensor placement and
number on physical activity recognition and energy expenditure estimation in older adults: Validation study. JMIR mHealth
uHealth 2021, 9, e23681. [CrossRef]

24. O’Day, J.; Lee, M.; Seagers, K.; Hoffman, S.; Jih-Schiff, A.; Kidziński, Ł.; Delp, S.; Bronte-Stewart, H. Assessing inertial measurement
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