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Abstract: Automatic surgical workflow analysis (SWA) plays an important role in the modelling
of surgical processes. Current automatic approaches for SWA use videos (with accuracies varying
from 0.8 and 0.9), but they do not incorporate speech (inherently linked to the ongoing cognitive
process). The approach followed in this study uses both video and speech to classify the phases
of laparoscopic cholecystectomy, based on neural networks and machine learning. The automatic
application implemented in this study uses this information to calculate the total time spent in surgery,
the time spent in each phase, the number of occurrences, the minimal, maximal and average time
whenever there is more than one occurrence, the timeline of the surgery and the transition probability
between phases. This information can be used as an assessment method for surgical procedural skills.

Keywords: procedural skills; surgical training; skills’ assessment; artificial intelligence

1. Introduction

Minimally invasive surgery (MIS) has evolved as the gold standard for highly accurate,
sensitive and less invasive surgical procedures [1]. These procedures have gained clinical
acceptance because of their advantages compared to open surgery, such as less pain, less
scarring, less damage to healthy tissue and a faster recovery [1]. However, the rapidly
progressing initial implementations of MIS techniques has led to an alarming number of
complications because of inadequately trained and skilled surgeons [2]. As a result, surgical
education shifted to provide learners with the necessary MIS skills, so that the effectiveness
and efficiency of surgical training could be optimised without patients being at risk [3].

Advanced performance in MIS depends on the combination of various skill sets [4,5],
for which any objective training and assessment must be tailor-made [6] and rigorously
validated [7]. These skills range from technical (e.g., dexterity, depth perception, efficiency,
autonomy, etc.) to nontechnical (e.g., stress management, decision-making, etc.), the latter
including advanced cognitive skills (e.g., conceptual and procedural knowledge) [3].

Residents and educators alike have been particularly concerned about advanced
cognitive skills’ acquisition and have been looking at strategies to combat this lack of
experience [8]. Advanced cognitive skills are defined as the “core principles that guide the
thoughts, judgements, decisions, and actions during surgical performance” [4].

One of the most extended strategies for the training and assessment of advanced
cognitive skills (and specifically procedural skills) is the analysis of surgical processes
targeted at the automatic recognition of surgical phases.

Surgical processes are defined as “a set of one or more linked procedures or activ-
ities that collectively realise a surgical objective within the context of an organisational
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structure” [9]. The key aspect of the analysis of surgical processing is surgical process
modelling (SPM), which has been defined as a “simplified pattern of surgical processes
that reflect a predefined subset of interest of the surgical process in a formal or semi-formal
representation” [9].

Surgical processes can be modelled at any level (i.e., modelling the whole procedure
or modelling a specific task within it). These levels are known as granularity levels. A
granularity level is defined as the level of abstraction at which the surgical procedure
is described [10]. MacKenzie et al. [11] proposed a hierarchical model of the surgical
procedure that consists of different levels of granularity.

The highest level is the procedure itself, which is composed by a list of phases (defined
as the major types of events occurring during surgery). Each phase is composed of several
steps or tasks (considered to be a sequence of activities used to achieve a surgical objective).
An activity is a physical task and is composed by a list of motions (considered to be a
surgical task involving only one hand trajectory with no meaning by itself, in the sense
that it can be a task performed in any arbitrary procedure, and only acquire meaning
when linked to a specific activity). Each granularity level is assumed to describe the
surgical procedure as a sequential list of events, except for the surgical procedure itself and
lower levels of granularity (e.g., image, video, presence, etc.) where information may be
continuous [10].

For instance, Uemura et al. [3] employed an SPM software to manually tag each
task performed during the surgery. Then, they extracted metrics (e.g., number of ocur-
rences, average duration, occupancy percentage . . . ) to develop an assessment method for
procedural and decision-making skills necessary when facing complications in the OR.

On the other hand, Loukas et al. [12] used a different annotation tool to analyze the
order of surgical tasks through performance metrics (i.e., surgeme counts, duration of each
surgeme, counts of penalty-events and counts of surgeme transitions). They were able to
recognize trainees’ skill level with 0.71 accuracy.

SPM was first introduced for supporting whole surgical interventions, but soon their
applications in surgical training gained popularity amongst the surgical educational com-
munity [10]. Firstly, it could be used to constitute a universal model of surgical procedures
which could unify their training in all medical institutions. Secondly, it could facilitate the
training and assessment of advanced cognitive skills for said procedures. All of this has a
direct impact on patient safety, since patient’s positioning could be anticipated, operating
time optimised or technical requirements for the procedure analysed before the interven-
tion [10]. In addition to this, the model of the surgical process could be useful for designers
of procedural surgical simulators, replicating not only the process itself but also potential
complications and solutions to overcome them.

One of the steps involved in surgical process modelling (SPM) is surgical workflow
analysis (SWA), which is the deconstructing process by which a surgical process is divided
into a list of different phases, activities or tasks [13].

Currently, SWA focuses on analysing the laparoscopic video to recognize surgical
phases and activities using artificial intelligence. Probabilistic methods have proven to be
of great interest in video-based SWA [14,15]. However, they are usually trained with simple
features based on low-level visual cues, typically obtained through a manual annotation
process. This manual (human-based) annotation is virtually impossible to perform for
real-time applications [16]. Thus, recent video-based SWA studies have shifted towards
the recognition of surgical phases using a combination of deep learning techniques and
probabilistic methods (mostly with Hidden Markov Models –HMMs–) [16–19]. The best
results obtain accuracies varying from 0.8 to 0.9, approximately [16,18,20,21].

A limitation of video-based analysis is that it is based on outcomes (the surgical
action) rather than on the mental process that triggers it. Thus, our current line of research
considers monitoring audio cues during surgical procedures from the attending surgical
staff, motivated by the Think Aloud theory by which verbalization of tasks are inherently
linked to the ongoing cognitive processes [22]. To our knowledge, the only study in this
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field was reported by Suzuki et al., which attempted to use audio information to find
patterns of conversation (i.e., correlating the amount of conversation to the probability of
transitioning from one phase of the procedure to another) [23]. However, their recognition
algorithm reached only a 51.6% accuracy.

We explored this avenue in a previous study [24], where we used the surgeon-in-
training’s speech to classify surgical phases using natural language processing (NLP) and
machine learning, reaching a 80.7% accuracy. In order to increase the robustness of the
algorithm, our current research is focused on combining visual information and speech
during a surgical procedure [25].

The main goal of this study is to implement an intelligent system to train and as-
sess surgeons’ procedural skills by means of SWA. The system will integrate a surgical
phase classifier (i.e., an algorithm capable of classifying surgical phases combining visual
information and speech from a surgical procedure). To do this, we propose to create a
desktop application to open videos and obtain and display metrics using the results from
the surgical phase classifier. This system could also serve as a training tool to guide surgical
residents in the procedure.

In this study, we present both the application for procedural skills’ assessment and the
algorithm for surgical phase classification based on speech and video, including preliminary
results obtained from a test video.

2. Materials and Methods
2.1. Data

Laparoscopic cholecystectomy (LC) was selected as the main procedure for both
studies to analyze since it is a widespread and convenient procedure for SWA (due to the
unique characteristics of each of its phases), as well as one of the interventions with the
highest training rate [16,26].

To train the endoscopic video model, the dataset from the “Surgical Workflow and
Skill Analysis” sub-challenge of the Endoscopic Vision Challenge [27] was used. This
dataset consists of 24 endoscopic videos obtained during LC procedures at the University
Hospital of Heidelberg and its affiliate hospitals. Surgical phases for all interventions were
annotated frame-wise by at least two surgical experts. The phases of the procedure are
defined in Figure 1.
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Figure 1. Phases of LC.

Additionally, to account for those audio signals including sentences that are not related
to any of these phases (i.e., normal conversation occurring in the OR, questions posed by
teachers and/or students, etc.), we included a pseudo-phase in the audio-based model.

To train the speech model, a database was created using 15 surgical educational videos
found online and taken in different hospitals, in which the steps of the LC were verbally
disclosed in Spanish by a single trainer surgeon equipped with a clip-on microphone [24].
The audio from these videos was extracted and fragmented into smaller pieces according to
the silences in the recording, using Python’s speech_recognition module [28]. This allowed
for having smaller audio sequences which could be easily associated with a specific LC
phase or with the pseudo-phase.
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To evaluate the performance of the application, two educational videos were used.
These videos, similar to the ones in which the speech dataset is based, consisted of high-
quality endoscopic video feeds found online on top of which the surgeon verbally discloses
the ongoing procedure. One of them contains a total of 51 audio samples and 367 video
samples (frames), whereas the other contains 28 audio samples and 269 frames. All
samples were then manually tagged independently following the same guidelines as for
the individual datasets.

2.2. Algorithm for Surgical Phase Classification Based on Speech and Video

The implemented algorithm for the recognition of surgical phases uses two different
classification models: one for the endoscopic video feed, and one for the surgeon-in-
training’s voice (obtained through of a clip-on microphone).

The audio and image channels are separated using FFmpeg (FFmpeg, Sofia, Bucharest).
The speech signals are preprocessed to be divided into fragments and automatically tran-
scribed into text using Google transcriber (Figure 2). Next, text data is transformed into
feature vectors using Word2Vec. Word2Vec is a neural network which predicts the context
of the word, and returns a feature vector representing said context [29,30]. Finally, the
obtained features are passed through a model which combines the semantic information
obtained from Support Vector Machines (SVM) with the temporal information obtained
from Hidden Markov Models (HMM). In a previous study, the model obtained an average
accuracy of 80.7%. Further information on the architecture and training approach of the
speech-based model can be found in [24].
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The endoscopic video is classified by means of a Convolutional Neural Network
(CNN) with a Long Short-Term Memory (LSTM) unit (Figure 3). Specifically, the CNN is
trained using a two-stage approach based on VGG-16 pretrained on ImageNet [31]. The
hyperparameters were selected through a 21-fold cross-validation study in which a whole
video from the training subset was left out for validation in each fold.

The first training stage learns the spatial information using transfer learning method-
ologies. This first stage takes frames as input and outputs the predicted class. The model
resulting from this stage is used as a feature extractor, followed by an LSTM unit, such that
the temporal information is learnt. LSTM units require sequences instead of individual
frames to properly analyze the temporal dependencies. To accomplish this, sequences of
nine frames in length, including the frame of interest and their four previous and four
following frames, were extracted. The features from the individual frames included in
these sequences were extracted from the model resulting from the first training stage and
used to train the LSTM unit.
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Predictions from speech- and video-based models are synchronized in time. Specifi-
cally, the video samples are continuously processed until there is an audio sample obtained
at the same moment. At this point, the predictions from both models are averaged until the
audio signal ends. For instance, if an audio fragment took place between seconds 1–5, the
phase predictions of the frames corresponding to these seconds were combined with the
phase predictions of said audio fragment.

Predictions from both audio and video models are given equal weight (i.e., 50% audio,
50% video). Thus, whenever there is more than one frame for a single audio fragment, the
weight for the frames is equally divided to add up to 50%, and the other 50% is reserved
for the audio fragment. These weights were selected to ensure the prediction power was
the highest possible.

In addition, whenever the predictions of the audio-based model correspond to the
pseudo-phase used to contain sentences not related to the procedure itself, they are elim-
inated from the analysis. Lastly, if no speech signal is captured (i.e., the surgeon is not
speaking), only the video prediction is used as the final prediction.

2.3. Application for the Assessment of Advanced Cognitive Skills

The implemented intelligent system consists of a desktop application capable of
obtaining audiovisual information, processing it accordingly, predicting the corresponding
phase of the procedure, and obtaining a set of metrics related to procedural skills. Figure 4
depicts the flowchart of the application.
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The application was implemented using Python and tkinter. It first allows the user to
select the source from which to obtain the assessment metrics. The source can be the URL
of an online video, a video in the PC or a webcam connected to the PC to perform real-time
predictions. The video and URL options are included in case recorded interventions want
to be assessed retroactively using this application.

If the URL is selected, the video will be downloaded and processed in the same manner
as a local video. The local video (or the downloaded video from the URL) is read and the
channels (audio and image) are separated. Then, images are cropped and saved locally to
be processed by the image model, while audio is transcribed into text to be processed by
the speech model. Images and text samples are classified according to their corresponding
phase and averaged to obtain the final prediction. This prediction is printed on the screen
together with the image corresponding to the video frame (Figure 5).
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In the case of real time predictions, the camera is opened, and images are fed to
the video classification model, while the application uses the microphone to capture live
conversation in the operating room (OR).

Once the video or streaming is over, the metrics are calculated. Specifically, the total
time spent in surgery, the time spent in each phase, the number of occurrence of phases and
the average time whenever there is more than one occurrence are calculated in an attempt
to characterize the surgical process in a timewise way. These metrics have already been
validated for the assessment of procedural skills in the study by Uemura et al. [3]. Metrics
are coded into a timeline of phases where the x-axis represents the time in seconds and the
colours correspond to the different phases. This allows for seeing the amount of time spent
in each phase, the number of occurrences of phases and the percentage of time spent in
each phase.

Lastly, to evaluate the assessment capability of the application, we have modeled
an average workflow of the process using the samples in the video database [16], since
it has been validated by clinicians. Specifically, the workflow was modeled based on
the probabilities of transitioning from one phase to another, without taking into account
the probability of remaining in a phase (i.e., the probability of going from a phase to the
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same phase). This is especially relevant in the video case, where consecutive frames are
most likely to belong to the same phase. The probabilities of transitioning were obtained
through the calculation of the transition probability matrix of the Markov chain generated
by the workflow. The probabilities of transitioning from one phase to another were also
calculated for the video or streaming of interest. The Wesserstein distance [32] between the
probability distributions of the average workflow and the student’s workflow is calculated
as a measure of the difference between the distributions.

All metrics and the workflow of phases are processed and printed in a PDF file. This
can be used as a report of the performance of the student, both for the student to reflect on
and for the teacher to follow their progress.

2.4. Evaluation

In order to assess the algorithm for phase recognition, performance was analyzed
based on the F1 score, which is the harmonic mean of precision and recall. The F1 score of
the complete algorithm was compared with that obtained by the video-based model and
the speech-based model alone.

We analysed the processing time of different modules of the application (including the
algorithm), which is essential for real-time feedback, by carrying out the process in the test
video 10 times and averaging the processing times. Additionally, as a proof of concept, the
overall workflow of the procedure (as obtained from the video database [16]) was compared
with the workflow of the procedure followed by the surgeon-in-training. This will illustrate
how the workflow can be of assistance for the assessment of procedural skills.

3. Results and discussion
3.1. Algorithm for Surgical Phase Classification Based on Audio and Video

Table 1 represents the F1 scores and errors obtained for the test video when using the
video-based model, the speech-based model and the complete algorithm.

Table 1. F1-scores obtained for the video to test the algorithm of combination of signals, of the
video-based model and the speech-based model.

F1-Score Precision Recall Accuracy Jaccard Avg. Error/Phase Avg. Error

Video-based model 0.775 ± 0.04 0.79 ± 0.042 0.785 ± 0.04 0.788 ± 0.089 0.682 ± 0.124 35.09% 37.24%

Speech-based model 0.785 ± 0.134 0.8 ± 0.099 0.78 ± 0.155 0.778 ± 0.157 0.68 ± 0.195 33.08% 23.71%

Complete algorithm 0.875 ± 0.049 0.875 ± 0.021 0.865 ± 0.021 0.819 ± 0.042 0.76 ± 0.028 11.86% 17.89%

The combination of audio and video models resulted in a higher F1-score than for
both individually (0.875). In addition, the average error per phase was found to be 11.86%
and the average error, 17.89%, improving with respect to the individual models and the
state of the art. This suggests that the algorithm we created to combine the two models was
effective in its purpose and yields a more accurate prediction of surgical phases. This can
be indicative of the ability of visual information to reinforce speech predictions (and vice
versa), reducing the possibility of errors introduced by one of the models alone.

With respect to the video analysis alone, in the challenge in which the database we
use was presented (HeiChole-19) [33], the resulting F1-scores ranged from 0.239 to 0.688,
whereas in 2021 (HeiSurf-21), F1-scores varied from 0.529 to 0.703 [34]. The main results of
these challenges can be found in Table 2.

As seen in Table 2, two of the top performing methods use an encoder–decoder
pretained on Cholec or ImageNet, reaching an F1-score of 0.703 and 0.661, respectively. The
combination of CNN and LSTM seems to be a pattern for this specific problem, being used
in six different algorithms. However, none of the methods reach an F1-score higher than
0.75, as is our case.
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Table 2. Comparison of methods and results of the main teams participating in the challenges trained
using the same database we used in this study.

Year Team Basic Architecture Temporal Component Pretrained F1-Score

2021 Digital Surgery Encoder (ResNet50)-TCN Decoder None ResNet pretrained on CholecSeg8k 0.703

2021 2AI Multi-task RCNN None Unknown 0.696

2021 UCL Encoder (ResNet50)- MSTCN Decoder None ResNet50 pretrained with ImageNet, MSTCN
pretrained on Cholec80 0.661

2019 HIKVision ResNet50 LSTM ResNet pretrained on ImageNet 0.6538

2019 CUHK ResNet50 LSTM ResNet pretrained on ImageNet, all pretrained
with Cholec80 0.6498

2021 SIAT-CAMI MCLNet LSTM Unknown 0.597

2021 Muroran-IT ResNet18 None Unknown 0.572

2019 MEVIS ResNet50 LSTM ResNet pretrained on ImageNet and Cholec80 0.543

2021 Wintegral Resnet50 LSTM Unknown 0.529

2019 NCT ResNet50 LSTM ResNet pretrained on ImageNet, all pretrained
with Cholec80 0.49

2019 Wintegral ResNet50 None ResNet pretrained on ImageNet 0.4247

2019 CAMI-SIAT Pseudo-3D Residual Network None Unknown 0.3865

2019 VIE-PKU Parallelel ResNet10 None ResNet and I3D pretrained on ImageNet, I3D
pretrained on Kinetics 0.3329

2019 IGITech ResNet50 None Unknown 0.2393

Figure 6 represents the timeline of phases for the videos in the test subset. It can be
seen that, by combining the speech and video signal, the model achieves smoother results
in both videos of the test subset as compared with the endoscopic video alone. However, in
the second video, there are still some noisy patterns when going from the preparation to
the Calot triangle dissection, confusing the latter with the clipping and cutting of the cystic
artery and conduct. Despite the similarity between the field of view of these phases, we
acknowledge a difference in the instrument used. In the future, we aim to create a model
capable of distinguishing instruments to keep improving this combined model.
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first video using the video model alone, (b) results of the first video using the combined model,
(c) ground truth for first video, (d) second video using the video model alone, (e) second video using
the combined model, (f) ground truth for second video.
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3.2. Application for the Assessment of Advanced Cognitive Skills

The time processing analysis resulted in an average 0.007 s to calculate the audio
prediction (per speech sample), 0.057 s to calculate the video prediction (per frame) and
0.094 s to calculate the average predictions (per speech sample and frame). The PDF is
generated within an average 2.164 s.

The time analysis shows that the video samples take more time to be classified than
the speech samples. This may be due to the preprocessing associated to the video sample,
which is necessarily longer than in the video case (i.e., predicting the features and creating
the sequences). Nevertheless, the total time can be considered low for real time predictions,
even more so taking into account that the variations between frames are usually small.

In addition, the PDF greatly increases the processing time when embedding the plots
into the document, although it does not affect the actual prediction and processing time.
This could be solved by optimizing the plot creation, especially in the case of the workflow,
which uses graphs to connect one phase to another. Moreover, the desktop application
could be converted to a web application in which an HTML displays the graphs and the
user decides whether or not to save it as a PDF.

The timeline of phases is especially useful to check whether the procedure was suc-
cessfully followed. For instance, in the case studied in this work (Figure 6c), we observe
that the phases were followed consecutively, except for the packaging phase, where extra
cleaning and coagulation was necessary, forcing the surgeon to stop packaging to clean,
finish the packaging and clean again to avoid post-surgical complications. The timeline
provides a sense of the most time-consuming processes. This could be used, for example,
to suggest to the surgeon-in-training the cut off time from a specific phase that could be
considered too long.

The time and occurrences’ analysis allows for having a better idea of the time spent in
each occurrence of phases. The time is represented as hours, minutes and seconds (Figure 7).
This completes the information in the previous graph.
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Figure 8 introduces the workflow of the laparoscopic cholecystectomy obtained ac-
cording to the video database [16].

Figure 9 represents the workflow followed by the surgeon of the test video for the
integrated system. It is amongst the possible workflows as defined in the previously
disclosed one. Analyzing the Wesserstein distance, we obtain that the highest differences
are present in phases 3 (0.125) and 5 (0.116). Overall, the average Wesserstein distance is
0.078, which suggest that the students’ workflow is well within the model’s possibilities.
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According to the resulting workflow from the integrated system, the surgeon in
training successively goes from preparation, Calot’s triangle dissection, cystic duct and
artery clipping and cutting and gallbladder dissection. This dissection was interrupted by
the clipping (possibly because improved visibility was necessary). However, we know from
the actual footage this was not the case and in fact, it is a misclassification of the integrated
system. This stresses the need to improve the performance of the integrated system. The
gallbladder dissection was followed by the gallbladder packaging, which in turn was
followed by cleaning and coagulating. However, as pointed out before, while packaging,
it may have been necessary to clean the anatomical surface and then continue packaging,
which is why the surgeon in the test video went back to packaging from cleaning. The last
phase is the gallbladder extraction (directly after cleaning and coagulating).

3.3. Limitations and Future Work

The main limitation of this study corresponds to the high computing times that it
currently conveys. This makes the possibility for real-time applications (both for training
and assessment) difficult. Thus, the first goal short-term is to optimize the algorithms to
ensure the processing time is shortened and real-time applications are indeed possible.
This can be done by introducing more threads to the application while respecting the main
thread of the front-end.

On the other hand, although the model yields fairly accurate results, it fails to recognize
phases, especially when first transitioning from one phase to another or whenever the field
of view is too similar (e.g., dissection and clipping). In these cases, we aim at incorporating a
model capable of recognizing instruments to incorporate additional information to help the
model differentiate accurately between phases. We also plan to study a lower granularity
of the procedure. Specifically, we will analyze the main actions in LC and annotate the
speech samples accordingly. These new annotations will be used to train new models to
classify the individual actions within the procedure (instead of the phases), so that we are
able to explore the usefulness of this granularity level with respect to the assessment of
declarative knowledge and advanced cognitive skills.

Another limitation to our study was the lack of databases combining speech and video,
which resulted in few videos available to test our models. To tackle this problem, we aim
to create a database of speech and endoscopic video in surgical educational environments,
which will likely be published to allow other researchers to work on this issue. This database
will be used not only to adjust the weights of our models, if necessary, but also to test the
validity of the proposed assessment system with surgical residents in the near future.

Furthermore, as mentioned in the introduction, we aim for this system to have training
functionalities as well, such as alerting students in real time of missed steps and suggesting
different pathways. Such a system may even be upgraded with a dictionary of possible
solutions to complications encountered.

Lastly, we could convert the desktop application to a web application, including a
login system which allows for a database of different procedures performed by a student,
such that not only they can have access to it, but will also allow for their teachers to easily
track their progress.

4. Conclusions

In this study, we developed a pipeline to assess surgical procedural skills by means of
a desktop application which uses a surgical phase classification algorithm to gather metrics
from the procedure and present them visually to surgical trainers and trainees.

The feasibility of the algorithm and application were demonstrated as part of a prelim-
inary analysis of the functionalities of the application. In the near future, we aim to test the
validity of the proposed application as part of the assessment process of procedural skills
(i.e., to find disruptions within the natural workflow of the procedure), as well as to test the
feasibility to conduct real-time phase recognition to explore the potential of the application,
and to provide residents with hints whenever disruptions from the normal workflow occur.
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We believe the application could have a major impact on the surgical educational
community, since the human resources employed for the assessment of procedural skills
will be reduced by much. In addition, the integrated SWA system could be used to provide
formative feedback in real time and prevent mistakes in the overall procedure. Moreover,
designers of procedural surgical simulators could benefit from the automatic workflows
calculated in order to replicate different complications in the OR.
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