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Abstract: In this research, a one-dimensional (1D) photonic structure was employed to study the
nature of both enamel and dentine teeth at the signal of 1.8 THz. A simple three layer one-dimensional
crystal is chosen to avoid fabrication intricacy. The materials and methods for sample preparations are
discussed. The principle of investigation of caries in the teeth relies on the amount of reflected signal
from the structure. Similarly, reflectance is a function of refractive indices and thickness of each layer,
the nature of both substrate and infiltrated materials, and the configuration of the structure. Apart
from this, the fabrication process of one-dimensional structure and experimental set-up was proposed
in this article. The numerical treatment is explained here to obtain reflectance, and subsequently,
the output potential. Comparison studies on output potential between enamel and dentine are also
shown through graphical representation. The output result in terms of milli-Volt (mV) were obtained
at the output end and collected at the photodiode. Interesting results were also observed at the
photodetector. For example; the output potential of the reflected signal is around 0.18 mV for both
enamel and dentine teeth whereas the potential is more than 0.26 mV and 0.31 mV for caries in
dentine and enamel, respectively. Finally, it was inferred that the nature of teeth pertaining to the
caries in the enamel and dentine teeth can be investigated by identifying the amount of potential at
the output end.

Keywords: enamel; dentine; 1D photonic structure; reflectance

1. Introduction

Dental enamel is the strongest and most mineralized dead tissue. Current vertebrate
species provides maximal flexibility and allow teeth to act as tools, food processors and
weapons. Enamel formation and mineralization is a complex process that is strictly con-
trolled by ameloblasts, including cells of the enamel organ. The highly polarised cells form
a monolayer around the growing enamel tissue and travel in predetermined paths as a
unitary emerging face to establish a proteinaceous matrix that serves as a template for
crystal formation [1]. In this one-of-a-kind case, ameloblasts manage crystal development
in this specific environment by influencing mineral and ion transport, proteolysis, pH
control and endocytosis, among other things. The bulk of the enamel tissue is created
and then solidified by these same cells and retransformation of dimension and proper-
ties occurs in different vertebrates [2]. Under certain pH conditions, ameloblasts retain
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intercellular connections and form a semi-permeable barrier that takes nutrients and ions
from blood vessels at one end (proximal/basal) and form extracellular crystals at the other
end (distal/secretory/apical) [3]. The advancement in caries detection has the potential to
significantly enhance oral health issues. Present caries finding rates indicate the develop-
ment of enamel. This report provided an initial investigation of terahertz pulse imaging
(TPI) applications for caries detection. TPI was used to detect initial time periods of caries
through enamel layers of cross-section areas of human teeth [4].

Hypomineralised enamel displays distinct absorption spectrum as well as a gap of
carious enamel in TPI pictures. Both early diagnosis and safety are critical for applying
TPI, which has significant implications for the applications of medical imaging. There are
currently no extremely sensitive and precise clinical methods for diagnosing early-stage
caries [5]. Early identification of caries in enamel could be of major clinical value. To
avoid operational intervention, reverse of the decay process is applied. Terahertz pulse
imaging (TPI) is a comparatively recent imaging technology with applications in both
nonbiological [6] and biological subjects [7]. The coherent detection system employs just
microwatts of non-ionizing light. Because our system’s exposure levels are orders of
magnitude lower than those seen in nature, our method will be safer than the employment
of X-rays [8]. In addition, as a distinct radiography, TPI provides a range of distinct
wavelengths for each measured pixel. This opens up the prospect of employing the
spectrum for diagnostic purposes other than merely monitoring mineralization level. Many
materials exhibit terahertz resonant absorptions, which can be utilised to recognize the
material. There is a link of noticeable and recognisable absorption with optical transitions
between distinct quantized states of molecular rotational motion in mixture analysis. At
these frequencies, vibration and irrational modes linked with molecular nuclei in proteins.
Furthermore, with the existence DNA, the conformational state of the molecules are allowed
for evaluation [9]. When terahertz spectroscopic characteristics are exploited in a scanning
system, it is feasible to create compositionally insightful pictures of a variety of materials.
It allows the internal structure of multi-layered dielectrics for the investigation of teeth [10].
The TPI method is employed in terahertz detection technologies [11] and is enabled directly
for the measurement of the terahertz pulse. This allows the observed terahertz pulse’s form
to be precisely calculated in time. It enables the development of spectra, the measurement
of essential material characteristics and result shows the determination of key diagnostic
qualities. This study of the imaging modalities underwent terahertz, transmission and
reflection modes to conduct tests and identify fundamental material characteristics [12].

1.1. Teeth

The study of teeth used a shared model, which was obtained across Scotland with the
informed permission of all in compliance with relevant national and local Ethics Committee
criteria. The vertical portions of the teeth examined were approximately 200 nm thick and
included healthy enamel and dentine tissue areas as well as problematic regions. Two
forms of defective enamel were imaged: fissure caries and hypomineralisation [13]. In
the beginning, imaging of early stage caries was taken vertically through molar teeth
and hemisections of premolars as well as molars; this allowed for correct recognition and
optimization of the different gap mechanisms in TPI.

1.2. TPI System

The TPI system utilised an amplified ultrafast Ti:Sapphire system is to be generated
250× 10–15 s pulses with a wavelength centering on 800 nanometre. The pulse speed
was 250 KHz with a power output of 750 milliWatts on average. The output of the laser
was divided into two beams. One was for terahertz creation and the other for terahertz
detection after the terahertz beam passed through the sample. Terahertz was generated by
passing the generating beam through a ZnTe crystal [14]. This terahertz radiation was sent
to the sample and captured before being focussed on. The detecting beam was collinearly
routed through this crystal with terahertz [15]. The system’s practical terahertz bandwidth
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ranged from 0.5 to 2.7 THz. In transmission, attenuation of the spectrum was created by
taking a reference power range without a present sample. Power spectrum was acquired
by dividing the sample present in the rescaling of units [16].

1.3. Transmission

Transmission may be used to estimate the refractive index(ri) as well as absorption
coefficients of enamel, dentine and cavities. The moist sample was enclosed in two polymer
thin films to preserve hydration levels. Coatings modify and/or increase the functionality
of bulk surface or substrate. The width of the coatings was far smaller than the wavelength
of the terahertz and hence it would have a minor influence on the data, which were
experimentally proved to be terahertz transparent. As far as similar types of investigations
are concerned; the status of coronavirus can be realised using two dimensional photonic
crystal structure using plane wave expansion method and FDTD method, respectively. It
was also shown that the outcomes pertaining to PWE [17] and FDTD [18] found similar
results. However, the proposed structures in these references are hard to design because of
their complexity. To avoid the same issues, we, in this research, (aim of the work) considered
a one-dimensional photonic structure to investigate the caries in the teeth. Amelogenesis is
the process through which enamel is formed. Ameloblasts produce enamel proteins into
the enamel space, which are then destroyed and proteolytically eliminated by ameloblasts.
Ameloblasts govern the creation of a de novo hydroxyapatite inorganic material with great
accuracy of enamel region [19].

The creation of enamel is made of rods formed by a single ameloblast and stretching.
The dentino-enamel junction (DEJ) is the enamel surface and interrod enamel contiguous to
the enamel rods. EMP peptide traces are formed from enamel, and are thought to contribute
to the final structure: fully formed (mature) enamel with distinctive morphological and
biomechanical qualities. Mature enamel is 1–2 percent organic material and it is composed
of 95 percent mineral and 2–4 percent water [20–25]. The current research work is arranged
as follows. Section 1 gives a summary of dental and other issues with respect to the
caries. Section 2 gives the materials and methods including the proposed structure and the
principle of an operational mechanism. Numerical expression for reflectance and output
potential is discussed in Section 3. Results are shown in Section 4, and discussions are
presented in Section 5. Conclusions are drawn in Section 6.

2. Materials & Methods and Structure & Mechanism

The variety of teeth considered in this research came from Scotland. These teeth are
the members of enamel and dentine tissues, such that they are normal and abnormal.

Here, the normal teeth (Figure 1a) of enamel and dentine indicates that it does not
have any caries whereas abnormal (Figure 1b) enamels and dentine refers to the caries of in
the teeth, For example the strength of caries can be realised as the amount of caries in the
respective teeth. The refractive indices of these teeth were calculated with the help of an
experimental set up and transmission system. The refractive index for different enamels
and dentine are indicated in the Table 1.
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Figure 1. (a) Picture of normal teeth (no caries); (b) picture of abnormal teeth (caries); (c) one-
dimensional photonic crystal structure to measure the specimen; and (d) the experimental setup to
measure the deformation.
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Table 1. Refractive indices of cell with respect to the deformation.

Specimen Deformation Size (µm) Refractive Indices

Normal Enamels Normal 2.2

Abnormal Enamels

A 3.2
B 3.0
C 3.4
D 2.9

Normal Dentine Normal 1.9

Abnormal Dentine

A 2.6
B 2.5
C 2.8
D 2.65

Table 1 indicates the deviation of refractive indices for enamels and dentine teeth
with respect to their caries. In this table (Table 1), the first column indicates the type of
teeth and second column indicates the different types of enamels and dentine pertaining
to the loads. Finally, column 3 specifies the refractive indices of the specimens. Moreover,
it is also realised that the refractive indices are varied in a nonlinear manner. Again,
it is clearly informed that A, B, C and D are nothing but the strength of caries in their
respective teeth. Here the strength of caries is more for D and less in the case of A, where
caries (D) > caries (C) > caries (B) > caries (A). Apart from this, the structure of the one-
dimensional photonic structure and working principle plays a vital role in investigating
the status of enamel and dentine teeth. Even though one-dimensional (1D) photonic crystal
construction has consistently made an important contribution to the photonic society, the
Figure 1c,d represent a one-dimensional photonic structure that is experimentally feasible to
investigate the caries of teeth. As far as the layers of the structure are concerned, it consists
of three layers, such that layers 1 and 3 are made up of glass materials, and the second layer
consists of specimens of teeth. In this figure, todd and teven represent the widths of the
odd and even layers, respectively, with thicknesses of 5 µm, 3 µm, and 5 µm for the first,
second, and third layers, respectively. In terms of fabrication, references [26–29] detail the
various studies conducted in relation to the experimental work. For example; Dou et al.
provide an idea of the fabrication of a titanium metal oxide based one-dimensional photonic
structure for a calorimetric sensor that measures volatile organic compounds and relative
humidity [26]. Similarly, Shen et al. fabricated one-dimensional periodic nanostructures to
examine the different chemical components [27]. One-dimensional photonic crystal was
used to create erbium chloride silicate with nanowire [28]. Ilinykh et al. characterised a
one-dimensional multilayer structure through visible–near IR spectroscopy, atomic force
microscopy, and ellipsometry [29]. Aside from these, the reference (Gutierrez et al. 2019)
shows a method to fabricate porous silicon (pSi)-based one-dimensional photonic crystals
by photo acoustics for radiometry applications [30]. Again, Garca et al. use the physical
vapour oblique angle deposition method to propose a TiO2/SiO2 based structure of a
one-dimensional photonic crystal, and near infrared reflection (NIRR) images at 850 nm
were employed for caries detection using 3D range data of teeth [31,32]. Because the current
structure of a photonic crystal is similar to the reference discussed above, a glass-based,
one-dimensional model for computing the amount of caries in a tooth could be created.

Aside from these studies, two research articles have recently been published in the
references [33,34] relating to a one-dimensional photonic structure for biological sensors that
measure alcohol concentration and salinity in water. Even though the authors considered
a one-dimensional photonic structure, the defectiveness (in reference [33]) and clumsy
structure led to complicated fabrication. Further focusing on the application of the present
research, the proposed works could be used for biosensing applications through which the
status of the teeth could be realised instantly. For example, whether the teeth are normal
(no caries) or not (caries).
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3. Numerical Expression for Reflectance and Output Potential

The output powers emerging from the photonic structure depend on the efficiency of
the transmitted signal or the transmittance of the signal through the structure. Furthermore,
the transmitted signal is a function of the reflection and absorption loss.

The reflectance of the 1D layer was analysed during the wave equation and was
derived from Maxwell’s equation and subsequently through the Helmholtz equation. The
wave equation, in terms of the second-order differential equation [15], can be written as:

∂2Ez(x)
∂x2 + n2(x)

ω2

c2 Ez(x) = 0 (1)

where E, ω, n, and c are the electric field, frequency, refractive index and velocity of light
respectively

Ej(x) = Aje
i.njk.xj + Bje

−i.njk.xj (2)

where A and B represent as the amplitudes of forward as well as backward waves.
But xj is the coordinate of jth interfaces, k can be represented the propagation constant

(‘ω/c’). A (forward) and B (backward) of the signal is in the projected structure.
To determine A and B, the suitable condition at interfaces between the consecutive

layers is applied and it is written as (electric field of function of ‘x’)

Ej = Ej+1 (3a)

∂Ej

∂x
=

∂Ej+1

∂x
(3b)

Adding Equation (2) as well as (3), we find that

Aje
i.njk.xj + Bje

−i.njk.xj = Aj+1ei.nj+1k.xj + Bj+1e−i.nj+1k.xj (4a)

i.nj.k.Aje
i.njk.xj − i.nj.k.Bje

−i.njk.xj = i.nj+1.k.Aj+1ei.nj+1k.xj − i.nj+1.k.Bj+1e−i.njk.xj (4b)

The above equations can be written in form of matrix as(
A0 B0

ikn0 A0 −ikn0B0

)(
eikn0x0

e−ikn0x0

)
=

(
A1 B1

ikn1 A1 −ikn1B1

)(
eikn1x0

e−ikn1x0

)
(

A1 B1
ikn1 A1 −ikn1B1

)(
eikn1x1

e−ikn1x1

)
=

(
A2 B2

ikn2 A2 −ikn2B2

)(
eikn2x1

e−ikn2x1

)
(

A2 B2
ikn2 A2 −ikn2B2

)(
eikn2x2

e−ikn2x2

)
=

(
A3 B3

ikn3 A3 −ikn3B3

)(
eikn3x2

e−ikn3x3

)
(

A3 B3
ikn3 A3 −ikn3B3

)(
eikn3x3

e−ikn3x3

)
=

(
A4 B4

ikn4 A4 −ikn4B4

)(
eikn4x3

1

)
(5)

We solve the linear system equation by means of Crammer’s method. After obtaining
the constants of A and B, putting these values in the Equations (2) and (3), the electric field
at the output end is obtained. As far as the reflected signal is concerned, the reflectance of
the signal (reflection loss) can be computed using the following expression:

R =
(
1 − Ej

)2 (6)

Further the reflected energy can be written as

Energy(Reflected) = R × Energy(incident) (7)

The output potential appeared at the photodiode is

V =
Energy(Reflected)

Electronic charge(e)
(8)
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4. Results

From Section 3, it is understood that Figure 1c computes the amount of caries in the
teeth at the signal of 1.8 THz. In this figure, when an incident signal falls in the three-
layer structure having the specimen of teeth and subsequently some amount of the signal
would be reflected. Furthermore, the reflected signal incidents on the detector converts
its potential counterpart. The amount of reflected signal plays a significant role because it
determines the amount of potential reflected at the photodiode that leads to estimation of
caries in the teeth with respect to the enamel and dentine. Furthermore, with the help of
Equations (1)–(6), the reflectance can be obtained by plane wave expansion. The results for
the same are indicated in the Figures 2 and 3 for enamel and dentine, respectively.
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Figure 2. (a). Reflectance of enamel normal teeth at the signal 1.8 THz (frequency); (b) reflectance
of enamel abnormal teeth (A) at the signal 1.8 THz (frequency); (c) reflectance of enamel abnormal
teeth (B) at the signal 1.8 THz (frequency); (d) reflectance of enamel abnormal teeth (C) at the signal
1.8 THz (frequency); and (e) reflectance of enamel abnormal teeth (D) at the signal 1.8 THz (frequency).
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Figure 3. (a) Reflectance of dentine normal teeth at the signal 1.8 THz (frequency); (b) reflectance
of dentine abnormal teeth (A) at the signal 1.8 THz (frequency); (c) reflectance of dentine abnormal
teeth (B) at the signal 1.8 THz (frequency); (d) reflectance of enamel abnormal teeth (C) at the signal
1.8 THz (frequency); and (e) reflectance of enamel abnormal teeth (D) at the signal 1.8 THz (frequency).

5. Discussion

Figures 2 and 3 provide the information of the reflectance of different teeth with
respect to their caries. For example, Figure 2a represents the reflectance pertaining to the no
caries for enamel, whereas the reflectance curve for the Figure 2b–e indicates the specimen
contains caries of different strengths.

Similarly, Figure 3a represents the reflectance pertaining to the no caries for dentine
and reflectance curve for the Figure 3b–e indicates the specimen contains caries of different
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strengths. For example, in the abnormal teeth, A contains less caries as compared to the
teeth B, C and D. Here Caries D > Caries C > Caries B > Caries A. After analysing the
figure (Figures 2 and 3), the reflectance for each specimen was computed and the same is
indicated in each figure.

In Table 2, Column 3 and 4 represents the reflectance of signal with respect to the
different caries of teeth (Normal, Abnormal (A, B, C, D)). In this case, two important points
were observed: (i) the reflectance varies in a random manner with respect to the caries;
and (ii) the reflectance of the signal pertaining to the dentine is higher than that of the
enamel. The probable reason for these results is that enamel (which comprises rows of
hydroxyapatite) is harder than dentine (which is made up mineralized connective tissues).

Table 2. Reflectance of signal with respect to the deformation.

Specimen Deformation Size
(µm) ReflectanceEnamel ReflectanceDentine

Normal Normal 0.02438 0.0235

Abnormal

A 0.04911 0.03682
B 0.04456 0.03515
C 0.05417 0.03597
D 0.04246 0.03514

After obtaining the reflectance, the potential appearing at the photodiode was found
using Equation (8), which is indicated in Figure 4.
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In Figure 4, the nature of enamel and dentine teeth is chosen along the horizontal
axis whereas potential appearing at the photodiode is taken along the vertical axis. From
the above Figure 4, interesting results are found. For example the output potential for
normal teeth (enamel and dentine that does not have any caries) is around 1.8 mV for both
cases. However potentials corresponding to the caries are more than 2.6 mV in the case of
dentine and more than 3.1 mV in the case of enamel. Apart from this, it is also seen that
the output potential for caries in enamel is always more than dentine. So, it is inferred
that the nature of the teeth can be investigated by knowing the output voltage collected at
the photodetector.

6. Conclusions

A one-dimensional photonic structure was employed in the current research to obtain
the statistics of the teeth pertaining to the caries at the signal of 1.8 THz frequency. The
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detailed fabrication feasibility of the glass-based one-dimensional structure and methods
of sample collection were also discussed. The reflectance of the signal from the proposed
structure played a key role in envisaging the status of the teeth. Moreover the packing
of the suggested device comprises the source, the specimen containing one-dimensional
structure, and the photodetector. Interesting results were found using the photodetector.
For example; the output potential of the reflected signal was 0.175 mV for normal dentine
and 0.18 mV for normal enamel teeth. However potentials were 0.332 mV, 0.403 mV
and 0.316 mV for enamel caries A, B, C and D respectively. Similarly, potentials were
0.262 mV, 0.268 mV and 0.316 mV for enamel caries A, B, C and D, respectively. Finally,
it was inferred that the nature of teeth pertaining to the caries in the enamel and dentine
teeth can be investigated by understanding the amount of potential at the output side.

As far as shortcomings of the present work is concerned, the packing system of the
source, structure and photodiode is a limitation. A proper packing system with the help of
a suitable packing technology could be a future research aim.
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