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Abstract: Even though non-steroidal anti-inflammatory drugs are the most effective treatment for
inflammatory conditions, they have been linked to negative side effects. A promising approach to
mitigating potential risks, is the development of new compounds able to combine anti-inflammatory
with antioxidant activity to enhance activity and reduce toxicity. The implication of reactive oxygen
species in inflammatory conditions has been extensively studied, based on the pro-inflammatory
properties of generated free radicals. Drugs with dual activity (i.e., inhibiting inflammation related
enzymes, e.g., LOX-3 and scavenging free radicals, e.g., DPPH) could find various therapeutic
applications, such as in cardiovascular or neurodegenerating disorders. The challenge we embarked
on using deep learning was the creation of appropriate classification and regression models to
discriminate pharmacological activity and selectivity as well as to discover future compounds with
dual activity prior to synthesis. An accurate filter algorithm was established, based on knowledge
from compounds already evaluated in vitro, that can separate compounds with low, moderate or high
activity. In this study, we constructed a customized highly effective one dimensional convolutional
neural network (CONV1D), with accuracy scores up to 95.2%, that was able to identify dual active
compounds, being LOX-3 inhibitors and DPPH scavengers, as an indication of simultaneous anti-
inflammatory and antioxidant activity. Additionally, we created a highly accurate regression model
that predicted the exact value of effectiveness of a set of recently synthesized compounds with
anti-inflammatory activity, scoring a root mean square error value of 0.8. Eventually, we succeeded in
observing the manner in which those newly synthesized compounds differentiate from each other,
regarding a specific pharmacological target, using deep learning algorithms.

Keywords: anti-inflammatory; antioxidant; deep learning; classification; regression; LOX-3; DPPH

1. Introduction

The continuous need for better, more effective and safer drugs, creates new challenges
for scientists. Laboratory experiments, needed to be conducted for this purpose i.e., the
development of new drugs, are not only time consuming but also costly. Computer science
is called upon to provide potential solutions utilizing pharmacological/pharmacochemical
data analysis together with machine and deep learning to minimize efforts and costs [1,2].
The advancement of deep learning has given the opportunity to apply models to real world
data and to aquire quite accurate predictions whether being stock predictions, natural
language classification, time series predictions or other. These models are suited for
classification problems as well as regression problems. This means that the models can
be trained to the point that they can categorize different types of behavior given a set
of pharmacological/pharmacochemical input or predict the exact value of effectiveness
and selectivity.
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Previous work showed that there is a possibility to predict the activity of newly syn-
thesized compounds when using simple machine learning models in a simulated environ-
ment. The compounds selected are conjugates of commonly used NSAIDs (Non-steroidal
anti-inflammatory drugs) (see earlier paper Tzara et al. [3]) fused with the antioxidant
moieties 3,5-di-tert-butyl-4-hydroxybenzoic acid (BHB), its reduced alcohol 3,5-di-tert-butyl-
4-hydroxybenzyl alcohol (BHBA), or 6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic
acid (Trolox), a hydrophilic analogue of α-tocopherol. The acidic character of the NSAID
was reduced in order to ensure a safer profile for their use, especially regarding their
gastrointestinal toxicity. The fusion of the used NSAIDs and their corresponding alcohols
with the antioxidants BHB, BHBA and Trolox not only leaves their antioxidant profile intact,
but further improves it.

In this study we utilized deep learning models, tuned for classification as well as for
regression problems, to investigate whether we can create and train a neural network to
the point that it can separate and recognize different types of pharmacological activity, anti-
inflammatory and/or antioxidant, regarding newly synthesized compounds. We analyzed
the performance and the behavior of our models using two sets of data and we made pre-
dictions on a set of test compounds that were cross-validated with experimentally derived
results to evaluate the robustness of our classification and regression protocols for future
compounds. We tried to create models capable of predicting the specific activities prior
to synthesis. To achieve our goals we used a wide range of machine learning algorithms,
utilizing both linear and non-linear models, and two different architectures regarding the
deep learning models. The architecture of the models is simple enough to be run on any
home office computer.

We conducted an extensive analysis of the compounds of interest from the scope of
computer science and obtained results that would be otherwise difficult to obtain in the
lab. Specifically, we trained advanced fine-tuned deep learning models that were not only
able to classify compounds between two possible classes but also to predict the exact value
of effectiveness given a single compound for a specific target. Additionally, the models
were able to point out compounds that could possibly have dual biological activity, be-
ing simultaneously lipoxygenase-3 (LOX-3) inhibitors and 2-diphenyl-1-picrylhydrazyl
(DPPH) scavengers.

The interest for this study was the opportunity to investigate and analyze real world
pharmacological data, from the scope of bioinformatics, for potentially reliable results
for the scientific community. Another goal was to study the behavior of compounds in a
simulated environment in order to eliminate possible errors that could occur in the lab.
The rising discipline of systems pharmacology and polypharmacology is based on such
studies for more effective but less toxic therapeutic agents [4–6]. Additionally, with the use
of deep learning, we can run a large number of tests without considering the costs for the
experiments that would otherwise need to be performed in a physical lab. Furthermore,
the lack of similar studies in the field of biomedical data made this work even more
interesting, foreseeing very promising results and creating new paths and opportunities for
future research.

2. Materials and Methods
2.1. Data

In this study we used two sets of data consisting of synthesized compounds with
anti-inflammatory (LOX-3 inhibitors) and/or antioxidant activity (DPPH scavenging). We
focused on those specific targets among several others, because in our laboratory we have
established reliable in vitro tests for those specific targets and our test set compounds
have been validated on LOX-3 and DPPH, respectively. The molecular descriptors of
all compounds are calculated using the Molecular Descriptors module, as implemented
on Schrodinger Suite of Software 2021, and stored as numerical features that represent
different chemical properties for each and every compound. Some of the properties are
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Atom Count, Bond Count, Centralization, Eccentricity etc. The database from which the
sets were extracted is the ChEMBL database [7].

Regarding the first data set, which is presented in Table 1, we have 2 classes that
concern two different types of activity. Compounds that belong in the first category have
LOX-3 inhibitory activity (as indication of anti-inflammatory activity) and compounds that
belong in the second category have DPPH inhibitory activity (as an indicator of antioxidant
activity). The numerical features of the compounds are 277 molecular descriptors, as
resulted from our study [3]. Additionally, we used a given set of 24 compounds that
were synthesized and evaluated in the lab, to predict their activity using our classification
models. The annotation of the 24 test compounds is referred in a our work [3].

Table 1. Presentation of the first data set.

Activity No. of Compounds Features Class Code

LOX-3 Inhibitors 4383 277 1
DPPH Scavenging 469 2

The second data set, which is presented in Table 2, contains compounds that are
only LOX-3 inhibitors, i.e., there is no data related to their antioxidant activity. Their
activity is measured from a scale of 1 to 10, with measurements being real values. In later
tables, we will be calling this activity measurement pChEMBL. Compounds that have an
activity value between 1 and 3 have low effectiveness, between 4 and 7 have moderate
effectiveness and between 8 and 10 have high effectiveness. This value allows a number of
roughly comparable measures of half-maximal response concentration/potency/affinity
to be compared on a negative logarithmic scale. For example, an IC50 measurement of
1nM would have a pChEMBL value of 9. A histogram presenting the manner by which
the compounds are distributed in the data set, depending on their value of activity, can be
seen in Figure 1. The numerical features of the compounds are 277 molecular descriptors.
Additionally, the annotation of the 24 test compounds is also referred to in the our work [3].

Table 2. Presentation of the second data set.

Activity No. of Compounds Features pChEMBL

LOX-3 Inhibitors 8182 277 1–10

Figure 1. Distribution of pChEMBL values along the second data set.

2.2. Data Preprocessing

In order to achieve the highest accuracy and the lowest loss for our models, we need to
do the necessary preprocessing of our data. We split our data into training and validation
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sets in order to create an accurate classification and regression protocol that is reliable
enough for our new compounds. The preparation of the first and the second data set can
be seen in Table 3.

Table 3. Data preparation.

Protocol Target Training Data Validation Data Test Data

Classification LOX-3 3741 642 24DPPH 383 86

Regression LOX-3 6545 1637 24

We scale the features of our compounds using the MinMaxScaler normalization
method. Some machine learning models do not perform well without data normalization,
so the MinMaxScaler is highly recommended with these specific data sets where we have
big fluctuation in values between our features. The method can be expressed as a formula
of the form :

x̂i =
xi − xmin

xmax − xmin
(1)

Additionally, we had to transform the classes of the first data set, in order for each class
to be a probabilistic representation of the class that a compound belongs to. The technique
that was used to transform the classes is called One-Hot Encoding and it is commonly used
on multi class problems. For example, if a compound belongs to category 1, the class will be
transformed into a one dimensional matrix with values (1, 0). Respectively, if a compound
belongs to category 2 the class will be transformed into a one dimensional matrix with
values (0, 1).

2.3. Regression Models

For this study, we used a wide variety of Machine Learning models, both linear
and non-linear, suited for Regression problems. We selected the top 5 most-used models
regarding general data. The models used are Linear Regressor [8], Gradient Boosting
Regressor [9], Decision Tree Regressor [10], Random Forest Regressor [11] and Support
Vector Regressor [12].

We tried to use the same parameters for all of our models, whenever possible, to have
a general approach to the problems we are called to face. Regarding this approach, most
of the machine learning models are trained for 100 epochs, using mini-batches of size 32,
where the mean squared error is the considered loss. We tested many different parameters
for each model to find the best ones that made the training of the models more efficient
when using our two data sets.

2.4. Deep Learning Models

Furthermore, we wanted to analyse our data using the latest deep learning models
and, specifically, artificial neural networks (ANN) as well as a convolutional neural network
(CNN), as proposed in [13]. This models can be tuned for both classification and regression
problems, changing the parameters of the networks. Firstly, we will discuss in depth the
parameters that have been used for training and evaluating our ANN and CNN models.
We created two ANN and two CNN models tuned for multi class classification problems as
well as for regression problems.

For our ANN regression model, we opted with the use of root mean square error
(RMSE) as the loss function as it is the most commonly used loss function in similar types
of tasks. The loss metric can be expressed as a formula of the form :

RMSE =

√
n

∑
i=1

(ŷi − yi)
2

n
(2)
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The architecture of the model consists of 1 input layer, 3 hidden layers and 1 output
layer. The input layer has 256 nodes and it takes as an input the features of a single
compound in a form of a one dimensional matrix with a of size 283 as the number of the
molecular descriptors. The activation function of the input layer is the tanh activation
function [14] and can be expressed as a formula of the form:

f (x) = tanh(x) =
2

1 + e−2x − 1 (3)

The next 3 hidden layers have 128, 64 and 32 nodes respectively and use the tanh as
the activation function. Lastly, the output layer has only 1 node due to the fact that we
want our model to be able to predict a decimal real value. The activation function for the
output layer is the linear one, also known as the identity function.

Regarding the ANN classification model, we wanted to predict any possible dual
activity that the test compounds may have. For this reason we used the categorical cross-
entropy as the loss metric instead of the binary cross-entropy because we do not want
deterministic results. The loss metric can be expressed as a formula of the form :

Lcross−entropy(ŷ, y) = −∑
i

yilog(ŷi) (4)

The architecture of the model consists of 1 input layer, 3 hidden layers and 1 output
layer. The input layer has 128 nodes and it takes as an input the features of a single
compound in the form of a one dimensional matrix with size 277, as the number of the
molecular descriptors. The activation function of the input layer is the tanh activation
function. The next 3 hidden layers have 128, 64 and 32 nodes, respectively, and each layer
is followed by a dropout layer with a value of 0.2. The activation function for the hidden
layers is the tanh activation function. Lastly, the output layer has 2 nodes due to the fact
that we want our model to be able to predict the probability of a compound belonging to
category 1 and/or 2. The activation function for the output layer is the softmax activation
function [15].

Then we created and trained a one dimensional convolutional neural network
(CONV1D) classification model, again using the categorical crossentropy, as was used
in the ANN classification model. A CONV1D model is much more complicated than an
ANN because the main idea behind this model is that it uses convolutional layers instead
of dense layers.The architecture of the model consists of 1 input layer, 3 hidden layers
and 1 output layer. The input layer has 32 nodes and it takes as an input the features of a
single compound in a form of a one dimensional matrix with size 277, as the number of
the molecular descriptors. The activation function of the input layer is the ReLU activation
function [16] and can be expressed as a formula of the form:

f (x) = ReLU(x) = max(0, x) (5)

The next 2 convolutional hidden layers have 64 and 128 nodes, respectively, with a
kernel size of 3 and each layer being followed by a MaxPooling filter, with a pool size of
3. The activation function for the hidden layer is the ReLU activation function. After the
final convolution layer we used the GlobalMaxPooling and Flatten methods to make the
sub-data of the model suitable for the upcoming dense layers. The next dense hidden layer
has 256 nodes and uses the Relu as the activation function. Lastly, as was used in the ANN
classification model, the output layer has 2 nodes due to the fact that we want our model
to be able to to predict the probability of a compound belonging to category 1 and/or 2.
The activation function for the output layer is the softmax activation function.

Regarding the regression model, we used the same architecture as with the CONV1D
classification model using 32, 64, and 128 nodes for the convolutional hidden layers,
50 nodes on the dense hidden layer and 1 node in the output layer because we want a real
decimal value to be given as the output. For the convolutional layers as well as the fully
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connected layer, we used the tanh activation function and the loss metric of the model was
the RMSE.

Table 4 explains some concepts that are used when creating a deep feed forward
neural network. In this study, all deep learning models are trained for 100 epochs, using
mini-batches of size 16 for the regression models and 64 for the classification models.
Optimization is done with the use of the stochastic gradient descent [17] and a learning
rate [18] of 0.001.

Table 4. Methodologies used for the creation of a deep neural network with details.

Function Details

Convolution-1D Sliding window convolution to 1-dimensional input information.

ReLU Performs linear rectification activation of the input vector of neural
network layer and outputs nonlinear results.

MaxPooling Selects the highest value on the spatial domain signal given an
input window.

GlobalMaxPooling Ordinary max pooling layer with the pool size being equal to the size of
the input.

Flatten Used to transform the multidimensional output of a convolutional layer
to a one-dimensional array.

Dropout Regularization layer to prevent any possible overfitting.

Dense Most commonly used layer in machine learning. It consists of nodes that
are directly connected to their preceding layer.

3. Results

We conducted our experiments using the two data sets that have been provided to us
in a machine running an AMD Ryzen-5 six core processor with 16 GB of ram and an RX
580 graphics unit.

For the regression problem, we created 5 machine learning models. The metric to
measure the performance of the models was the RMSE and the results on the validation
set as well as the external 24 compound test set are presented in Table 5. We can see that,
despite the fact that 3 out the 5 regressors have a lower RMSE value on the validation data
than the support vector regressor (SVR), it still managed to outperform the other models
having the best prediction on our test data set with a value of 0.93.

Table 5. RMSE results using the second data set.

Compound ID Validation Set Test Set

Support Vector 0.64 0.93
Gradient Boosting 0.59 1.06

Random Forest 0.40 1.56
Decision Tree 0.57 1.72

Linear 0.70 371.16

Regarding the deep learning models, we used the ANN as well as the CONV1D regres-
sion models that were discussed in a previous section. We managed to score a loss metric
of 0.28 when using the ANN and a loss metric of 0.22 when using the CONV1D, on the
validation set, respectively. Both metrics for the deep models can be seen in Figures 2 and 3.
From the graphs we can clearly see that both models converge after 100 epochs eliminating
any overfitting scenario.
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Figure 2. The proposed CONV1D regression protocol’s root mean square error curves.

Figure 3. The proposed CONV1D regression protocol’s root mean square error curves.

Then, we predicted the activity of the test compounds using the deep regression
models as well as the best scoring model from the machine learning regressors. When
comparing the results to that of the pChEMBL values, the CONV1D model managed to
score a RMSE value of 0.94 and a mean absolute error (MAE) value of 0.87. On the other
hand, the ANN model managed to score the best results and closest to the pChEMBL values
scoring an RMSE value of 0.80 and an MAE value of 0.68. The results of our predictions for
the deep learning models as well as the SVR model can be seen in Table 6.

We can see that the activity range of the pChEMBL values is between 4.5 and 6.
Despite not having an even distribution in our data set (Figure 1) and not having enough
compounds in the range of 4 to 5 to effectively train our models, we still managed to create
a strong regression protocol to predict the activity of the test compounds.

Subsequently, we wanted to predict the activity of our new compounds using prob-
abilities. With this approach we can predict any possible dual activity for a compound.
We no longer treat the problem as a binary classification but rather as a categorical classifi-
cation. Thus, we measured the biological activity of the newly synthesized compounds
as 2 probabilities. We used the first data set to train our CONV1D classification model,
achieving accuracy scores of 95.2% on the training data and 92.9% on the validation data,
with the loss metric being 0.14 and 0.19, respectively. We did the same work with our ANN
classification model scoring 99.8% on the training data and 99% on the validation data,
with the loss metric being 0.005 and 0.049, respectively. The accuracy and loss metrics for
both architectures can be seen in Figure 4.



Bioengineering 2022, 9, 800 8 of 13

Table 6. Comparison between activity predictions and pChEMBL.

Compound ID CONV1D SVR ANN pChEMBL

1 5.46 6.00 6.70 6
3 5.73 5.98 5.92 5.52
4 5.59 6.04 6.18 5.4
5 6.06 6.05 6.38 5.3
6 5.88 5.40 4.06 5.22
9 5.97 5.94 5.18 5.05
10 6.23 6.16 6.15 5
11 6.09 6.16 6.26 4.96
12 5.80 6.48 5.91 4.92
13 6.14 6.45 5.88 4.89
14 6.14 6.04 5.92 4.85
15 6.14 6.11 5.94 4.82
16 5.92 6.02 6.13 4.8
17 5.93 5.69 4.56 4.77
18 5.22 5.01 4.46 4.74
19 5.26 4.81 4.50 4.72
20 5.53 3.94 5.23 4.7
22 5.38 4.31 4.26 4.66
23 5.14 4.55 4.44 4.64
25 5.66 5.46 4.27 4.6
26 5.58 5.92 5.76 4.59
27 5.70 5.20 4.13 4.57
28 5.23 5.84 4.44 4.55
29 5.50 5.32 4.81 4.55

RMSE 0.94 0.93 0.80
MAE 0.87 0.81 0.68

From Figure 4 we can conclude that both models converge after 100 epochs, having
almost perfect accuracy results with the loss metric brought down to a minimum. Once
again, we can see that the models avoid the overfitting effect after being fine-tuned.

Further, we utilized our models to predict the activity of the test compounds and
compare it with the experimental values. Previous work [3] showed that compounds 1–17
were mostly LOX-3 inhibitors (anti-inflammatory) with low dual activity. However, it is
mentioned that compounds with id 9,10 and 14–17 had an indication of antioxidant activity.
The indication of antioxidant activity for compounds 14–17 arises from the fact that they
had DPPH scavenging IC50 values of 34, 147, 47, and 76 µM, respectively. Additionally,
compounds with ids 9 and 10 showed mild hyperlipidemic activity, which could be derived
from anti-inflammatory or/and antioxidant activity. Compounds with ids 18, 20, 22, 26, 28
and 29 are the parent NSAIDs and 19, 23, 25, 27 are some reduced analogues (alcohols),
utilized to synthesize compounds 1–17. Thus, our model correctly predicted, theoretically,
dual activity for known anti-inflammatory drugs 18 (Ibuprofen), 20 (Naproxen), 22 (Tolfe-
namic acid), 26 (Mefenamic acids) 28 (Diclofenac) and 29 (Indomethacin) and moderate for
their alcohol analogues.

We can tell from our predictions that, the CONV1D model manages to successfully
predict the slight indications of DPPH activity, suggesting the existence of dual activity, as
can be seen in Table 7.

In order to create a general protocol, we went ahead to retrain our classification
models using the compounds from our first data set with the inclusion of compounds
selected for two new targets, COX-2 and Nrf-2, as further indicators of anti-inflammatory
and antioxidant activity, respectively. We added to the initial data set 85% of the extra
compounds for testing the models and 15% of the rest for validating them.
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Figure 4. Accuracy and loss curves of the ANN as well as the CNN classification models.

The additional compounds are presented in Table 8. We used the same architectures
that are discussed in the deep learning models subsection, for both the CONV1D and the ANN.
The results that have been produced suggest that the insertion of the extra compounds
even created more accurate protocols, able to better predict a more general activity (anti-
inflammatory/antioxidant), regardless of the specific target involved. In particular, for the
CONV1D architecture, the training accuracy improved from 95.2% to 99% and the loss
metric dropped from 0.14 to 0.007. Additionally, the validation accuracy improved from
92.9% to 97.9% and the loss metric dropped from 0.19 to 0.08. The results for the accuracy
and loss metrics can be seen in Figure 5. From the graphs, we can see that any overfitting
scenario is eliminated when analyzing the curves of the validation sets with respect to the
training curves.
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Table 7. Probabilistic classification results.

Compound ID CONV1D ANN

1 [0.95, 0.05] [0.99, 0.01]
3 [0.93, 0.07] [0.98, 0.02]
4 [0.93, 0.07] [0.98, 0.02]
5 [0.93, 0.07] [0.98, 0.02]
6 [0.95, 0.05] [0.98, 0.02]
9 [0.86, 0.14] [0.98, 0.02]
10 [0.65, 0.35] [0.97, 0.03]
11 [0.89, 0.11] [0.97, 0.03]
12 [0.90, 0.10] [0.98, 0.02]
13 [0.95, 0.05] [0.98, 0.02]
14 [0.85, 0.15] [0.98, 0.02]
15 [0.86, 0.14] [0.98, 0.02]
16 [0.84, 0.16] [0.98, 0.02]
17 [0.84, 0.16] [0.98, 0.02]
18 [0.88, 0.12] [0.98, 0.02]
19 [0.20, 0.80] [0.98, 0.02]
20 [0.53, 0.47] [0.98, 0.02]
22 [0.60, 0.40] [0.98, 0.02]
23 [0.73, 0.27] [0.98, 0.02]
25 [0.91, 0.09] [0.10, 0.90]
26 [0.48, 0.52] [0.50, 0.50]
27 [0.92, 0.08] [0.02, 0.98]
28 [0.51, 0.49] [0.01, 0.99]
29 [0.54, 0.46] [0.70, 0.80]

Table 8. Presentation of the extra compounds added to the training procedure of the deep classifica-
tion models.

Activity Target No. of Compounds Training Set Validation Set

Anti-inflammatory COX-2 1000 850 150
Antioxidant Nrf-2 344 292 52

Figure 5. Cont.
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Figure 5. Accuracy and loss curves of the ANN as well as the CNN classification models, after the
insertion of the COX-2 and Nrf-2.

4. Discussion

The advancement of Deep Learning over the years has opened new paths for medical
research. Applications of deep learning for biomedical and pharmacological data are known
to offer solutions to various problems, such as the ones that we have tackled in this study.
Review papers in the field summarize research activities and trends. Some of them focus
on machine learning [19,20] while others emphasize deep learning [21,22]. Categorizing
and analyzing different types of compounds active on an enzyme (lipoxygenase-3) requires
precise calculations and experiments to be able to produce reliable data and results when
developing new compounds. In the current literature, those kinds of problems are being
tackled using machine learning models such as SVR, KNN etc.

In our study, we determined the significance of utilizing a custom CONV1D model
on non-image data using the categorical cross-entropy instead of the binary cross-entropy
when trying to categorize newly synthesized compounds. A major finding of this study
was the ability of the deep learning models, both the classification and regression models,
to be able to predict whether a compound had a single or dual activity with a precise
measurement outperforming the conventional machine learning models that have been
used so far in the literature. The parameters as well as the architecture of our deep models
showed that we can train more effective and reliable models when we wish to predict
a real value regarding a regression problem. In particular, our deep regression models
were able to predict the exact value of LOX-3 inhibitory activity given to new compounds
and outperformed by far the conventional regression protocols, showing the power of a
deep model.

The main advantage of using a CONV1D model over an ANN model or other machine
learning models, when used for pharmacological activity, is that it enables us to build a
hierarchy of local and sparse features derived from spectral and temporal profiles while
the other models build a global transformation of features.

The deep learning protocols could be much more reliable if we have data sets with
more compounds for testing as well as an even distribution of the categories in our data
sets. However, we still managed to create accurate neural networks that are able to predict
the test compounds after cross-validating them with the lab results. Our models can filter
designed molecules prior to synthesis, regarding their potency against the targets studied.
However, it is difficult to retrieve the features responsible for potency and project them to
our designed molecules.
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In future work, we plan on using both regression and classification protocols in
designing more potent compounds prior to synthesis on the basis of a rational drug design
project. Especially the latter generalized model containing two protein targets for each
activity will facilitate our efforts and we intend to include even more protein targets. Finally,
we shall use them for unsupervised learning purposes in a wide variety of biomedical data.

5. Conclusions

In this study, we proposed the application of both machine learning and deep learning
models on pharmacological data and showed the superiority of deep neural networks when
tackling issues related to the development of new potentially active compounds. We tested
5 different machine learning models, both linear and non-linear on our data, and showed
both the ability to be trained effectively and to predict new designed compounds. We
implemented two deep learning architectures and effectively trained them on our data
scoring, with results quite close to the experimental ones.

We evaluated and fine-tuned the parameters of the models and created two accurate
deep classification and six regression models. The models are able to categorize compounds
based on their biological activity and also predict the exact value of effectiveness for
specific compounds. Our experimental results suggested that deeper features always lead
to more accurate classification protocols despite not having evenly distributed data sets.
In conclusion, the use of a custom CONV1D model allowed us to predict the existence of
dual activity compounds in a simulated environment, without utilizing lab resources, thus
creating a reliable protocol for further operational use on pharmacological data prediction.
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Nrf-2 Nuclear Factor Erythroid 2–Related Factor 2
SVR Support Vector Regressor
ANN Artificial Neural Network
CNN Convolutional Neural Network
CONV1D One Dimensional Convolutional Neural Network
ReLU Rectified Linear Unit
RMSE Root Mean Square Error
MAE Mean Absolute Error



Bioengineering 2022, 9, 800 13 of 13

References
1. Bhardwaj, R.; Nambiar, A.R.; Dutta, D. A Study of Machine Learning in Healthcare. In Proceedings of the 2017 IEEE 41st Annual

Computer Software and Applications Conference (COMPSAC), Torino, Italy, 4–8 July 2017; Volume 2, pp. 236–241. [CrossRef]
2. Ferdous, M.; Debnath, J.; Chakraborty, N.R. Machine Learning Algorithms in Healthcare: A Literature Survey. In Proceedings of

the 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kharagpur,
India, 1–3 July 2020; pp. 1–6. [CrossRef]

3. Tzara, A.; Lambrinidis, G.; Kourounakis, A. Design of Multifaceted Antioxidants: Shifting towards Anti-Inflammatory and
Antihyperlipidemic Activity. Molecules 2021, 26, 4928. [CrossRef] [PubMed]

4. Reddy, A.S.; Zhang, S. Polypharmacology: Drug Discovery for the Future; Taylor & Francis: Oxfordshire, UK, 2013; Volume 6,
pp. 41–47. [CrossRef]

5. Kourounakis, A.P.; Galanakis, D.; Tsiakitzis, K.; Rekka, E.A.; Kourounakis, P.N. Synthesis and Pharmacological Evaluation of Novel
Derivatives of Anti-Inflammatory Drugs with Increased Antioxidant and Anti-inflammatory Activities; Wiley Online Library: Hoboken,
NJ, USA, 1999; Volume 47, pp. 9–16. [CrossRef]

6. Kourounakis, P.N.; Tsiakitzis, K.; Kourounakis, A.P.; Galanakis, D. Reduction of Gastrointestinal Toxicity of NSAIDs via Molecular
Modifications Leading to Antioxidant Anti-Anflammatory Drugs; Science Direct: Amsterdam, The Netherlands, 2000; Volume 144,
pp. 205–210. [CrossRef]

7. Gaulton, A.; Hersey, A.; Nowotka, M.; Bento, A.P.; Chambers, J.; Mendez, D.; Mutowo, P.; Atkinson, F.; Bellis, L.J.; Cibrian-Uhalte,
E.; et al. The ChEMBL Database in 2017; Oxford Academic: Oxford, UK, 2016; Volume 45, p. D945. [CrossRef]

8. Aalen, O.O. A Linear Regression Model for the Analysis of Life Times; Wiley Online Library: New York, NY, USA, 1989; Volume 8,
pp. 907–925. [CrossRef]

9. Keprate, A.; Ratnayake, R.M.C. Using gradient boosting regressor to predict stress intensity factor of a crack propagating in small
bore piping. In Proceedings of the 2017 IEEE International Conference on Industrial Engineering and Engineering Management
(IEEM), Singapore, 10–13 December 2017; pp. 1331–1336. [CrossRef]

10. Decision tree regression for soft classification of remote sensing data. Remote. Sens. Environ. 2005, 97, 322–336. [CrossRef]
11. Cootes, T.F.; Ionita, M.C.; Lindner, C.; Sauer, P. Robust and Accurate Shape Model Fitting Using Random Forest Regression

Voting. In Proceedings of the Computer Vision—ECCV 2012; Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C., Eds.;
Springer: Berlin/Heidelberg, Germany, 2012; pp. 278–291. [CrossRef]

12. Awad, M.; Khanna, R. Support Vector Regression. In Efficient Learning Machines: Theories, Concepts, and Applications for Engineers
and System Designers; Apress: Berkeley, CA, USA, 2015; pp. 67–80. [CrossRef]

13. Pastur-Romay, L.A.; Cedrón, F.; Pazos, A.; Porto-Pazos, A.B. Deep Artificial Neural Networks and Neuromorphic Chips for Big
Data Analysis: Pharmaceutical and Bioinformatics Applications. Int. J. Mol. Sci. 2016, 17, 1313. [CrossRef] [PubMed]

14. Kalman, B.; Kwasny, S. Why tanh: Choosing a sigmoidal function. In Proceedings of the [Proceedings 1992] IJCNN International
Joint Conference on Neural Networks, Baltimore, MD, USA, 7–11 June 1992; Volume 4, pp. 578–581. [CrossRef]

15. Liu, W.; Wen, Y.; Yu, Z.; Yang, M. Large-margin softmax loss for convolutional neural networks. arXiv 2016, arXiv:1612.02295.
[CrossRef]

16. Agarap, A.F. Deep learning using rectified linear units (relu). arXiv 2018, arXiv:1803.08375. [CrossRef]
17. Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2016, arXiv:1609.04747. [CrossRef]
18. Jacobs, R.A. Increased rates of convergence through learning rate adaptation. Neural Netw. 1988, 1, 295–307. [CrossRef]
19. Dara, S.; Dhamercherla, S.; Jadav, S.S.; Babu, C.; Ahsan, M.J. Machine Learning in Drug Discovery: A Review; Springer:

Berlin/Heidelberg, Germany, 2021; pp. 1–53. [CrossRef]
20. Vamathevan, J.; Clark, D.; Czodrowski, P.; Dunham, I.; Ferran, E.; Lee, G.; Li, B.; Madabhushi, A.; Shah, P.; Spitzer, M.; et al.

Applications of machine learning in drug discovery and development. Nat. Rev. Drug Discov. 2019, 18, 463–477. [CrossRef]
[PubMed]

21. Kim, J.; Park, S.; Min, D.; Kim, W. Comprehensive survey of recent drug discovery using deep learning. Int. J. Mol. Sci. 2021, 22,
9983. [CrossRef] [PubMed]

22. Chen, H.; Engkvist, O.; Wang, Y.; Olivecrona, M.; Blaschke, T. The rise of deep learning in drug discovery. Drug Discov. Today
2018, 23, 1241–1250. [CrossRef] [PubMed]

http://doi.org/10.1109/COMPSAC.2017.164
http://dx.doi.org/10.1109/ICCCNT49239.2020.9225642
http://dx.doi.org/10.3390/molecules26164928
http://www.ncbi.nlm.nih.gov/pubmed/34443516
http://dx.doi.org/10.1586/ecp.12.74
http://dx.doi.org/10.1002/(SICI)1098-2299(199905)47:13.0.CO;2-9
http://dx.doi.org/10.1016/S0300-483X(99)00208-5
http://dx.doi.org/10.1093/nar/gkw1074
http://dx.doi.org/10.1002/sim.4780080803
http://dx.doi.org/10.1109/IEEM.2017.8290109
http://dx.doi.org/10.1016/j.rse.2005.05.008
http://dx.doi.org/10.1007/978-3-642-33786-4_21
http://dx.doi.org/10.1007/978-1-4302-5990-9_4
http://dx.doi.org/10.3390/ijms17081313
http://www.ncbi.nlm.nih.gov/pubmed/27529225
http://dx.doi.org/10.1109/IJCNN.1992.227257
https://doi.org/10.48550/arXiv.1612.02295
https://doi.org/10.48550/arXiv.1803.08375
https://doi.org/10.48550/arXiv.1609.04747
http://dx.doi.org/10.1016/0893-6080(88)90003-2
http://dx.doi.org/10.1007/s10462-021-10058-4
http://dx.doi.org/10.1038/s41573-019-0024-5
http://www.ncbi.nlm.nih.gov/pubmed/30976107
http://dx.doi.org/10.3390/ijms22189983
http://www.ncbi.nlm.nih.gov/pubmed/34576146
http://dx.doi.org/10.1016/j.drudis.2018.01.039
http://www.ncbi.nlm.nih.gov/pubmed/29366762

	Introduction
	Materials and Methods
	Data
	Data Preprocessing
	Regression Models
	Deep Learning Models

	Results
	Discussion
	Conclusions
	References

