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Physiological systems are characterized by complex dynamics and nonlinear behav-
iors due to their intricate structural organization and regulatory mechanisms. Moreover,
the optimization of physiological states and functions involves the continuous dynamic
interaction of feedback mechanisms across different spatio-temporal scales. For this reason,
advanced multivariate and multiscale approaches to biomedical signal analysis could
strongly increase the information detectable from physiological signal monitoring, consti-
tuting a promising avenue to improve the knowledge of biological regulation in healthy
and pathological states [1-6]. Moreover, thanks to the latest advances in technology that
have provided miniaturized and high-performance acquisition systems, a synchronized
multichannel recording of multiple signals—even in wearable and wireless mode—is cur-
rently possible. This Special Issue, therefore, focuses on original research papers dealing
with computational methodologies for processing multivariate signals and the study of
information across multiple time scales to characterize specific physiological states through
linear and nonlinear interactions between components of the system. Research studies
proposing novel multivariate or multiscale quantifiers and applying pattern-recognition
algorithms to heterogeneous physiological data are presented in this sense.
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diseases [8-11], and in the monitoring of emotions and mood disorders, which are strongly
linked to changes in autonomic dynamics [12-14].

In the current Special Issue, multiscale partition-based Kolmogorov—Sinai (MKSE)
entropy was presented [15]. The MKSE algorithm was used for the discrimination of
elderly and young subjects in a resting state (by using the Fantasia dataset [16,17]) and
the recognition of pathological dynamics due to congestive heart failure (CHF) and atrial
?uPliShed maps and institutional affil- g1, 1) ation (AT) from a healthy condition (NS) (by using the MIT-BIH and Congestive Heart
fations. Failure RR datasets [17,18]). Statistical results showed that the MSKE method allowed for

significantly discerning different conditions by cardiac dynamics, reporting a decrease
in complexity in aging and cardiovascular diseases. These findings were consistent with
previous studies; however, the proposed approach had the advantage of not requiring the
tuning of embedding dimension value or other tolerances.
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One of the most effective treatments for supraventricular arrhythmia is radiofrequency
catheter ablation (RFA). This technique involves ablating abnormal electrical pathways in
atrial tissues after analyzing intracardiac electrograms (EGMs). In [23], a new approach was
proposed for a reliable estimation of electrical sources, accounting for the data uncertainty
while analyzing EGMs. Starting from multivariate signals given by multiple catheter loca-
tions, the position of the electrical source was estimated through a multinomial distribution
to model the activation probability of each sensor, recognizing the most probable path
through a robust maximum-likelihood estimation.

In the early diagnosis of stenosis, a comprehensive study of acoustic pressure, flow
fluctuations, and sound features related to stenosis progression was reported in [24]. The
authors highlighted a relevant relationship between the severity level of stenosis progres-
sion and the frequency content of high-turbulence pressure fluctuations. Furthermore, their
findings demonstrated that acoustic spatial-frequency maps could be used to assess the
distance of the stenosis with respect to the measurement point.

Dresp-Langley et al. presented a multivariate analysis to investigate signals derived
from multiple sensors located in a wireless wearable system to perform a non-invasive
tracking of hand movements over time [25]. After a step-by-step statistical analysis, skill-
specific differences were revealed in the functional organization of grip forces during
the performance of complex precision tasks by individuals with varying expertise levels.
Distinct co-variation patterns were identified in locally produced grip force signals acquired
from sensors located in the middle, ring, and small fingers and the palm of the dominant
hand. The results obtained were consistent with previous neuroimaging studies about grip
force representations in the human brain.

Looking at the previous scientific literature, multivariate analysis of physiological
signs is commonly linked to the application of pattern recognition algorithms in order
to discern different conditions and predict the onset of pathological states or possible
exacerbations.

In this Special Issue, two articles reported on machine learning models applied to
multivariate datasets. The first study presented a machine learning approach for estimating
mechanical ventilation parameters in treating various respiratory health concerns [26]. The
proposed model was based on inverse mapping of artificial neural networks and used
the Graded Particle Swarm Optimizer, a novel variant of the particle swarm optimization.
Data from canine and feline patients at the University of Georgia College of Veterinary
Medicine were used to train and test the machine learning approach. The findings showed
that the proposed model could predict the mechanical ventilation parameters for several
respiratory conditions.

Finally, Bizzego et al. used a multivariate dataset of six different physiological sig-
nals (electrocardiogram, electromyogram, electrodermal activity, photoplethysmogram,
respiration, and acceleration) to test the performance of Deep Neural Networks (DNN) to
recognize the signal type [27]. The signals in the dataset were collected from 232 subjects
using four different acquisition devices. The signal types were optimally classified by
the DNN (the performance was worse only for the respiratory signal, possibly due to
the low number of samples), and the DNN features were used to train a support vector
machine (SVM) model for the device recognition. Overall values of 0.638 and 0.609 were
obtained for the multi-class Matthew Correlation Coefficient on the training and testing
partitions, respectively.

In conclusion, the contributions to this Special Issue allowed a journey into various
interesting scientific fields of application, where multivariate and multiscale approaches to
data analysis can unveil features and dynamics inaccessible by using standard approaches
based on single-channel or single-scale analyses. A common concept is evident from the
studies: the multiplicity of information with different natures and observation scales can
create a holistic vision of the problem to be described. These two approaches could be
considered either as separate or as a whole. Each of these, taken separately, offers an
enhancement of the level of the problem description and a deeper investigation of the
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phenomenon behind the measurements themselves. When they are considered together,
the research space becomes more complex, requiring a structured strategy of analysis that
has to be supported by a dedicated mathematical fashion and a clear vision of the implicit
consequences that it will bring, not only in terms of the correctness of the formal results
but also in the meanings assigned to the physiological processes that are the true sources of
the information analyzed.

Conflicts of Interest: The authors declare no conflict of interest.
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