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Abstract: Conventional patterning methods for producing liquid metal (LM) electronic circuits,
such as the template method, use chemical etching, which requires long cycle times, high costs,
and multiple-step operations. In this study, a novel and reliable laser engraving micro-fabrication
technology was introduced, which was used to fabricate personalized patterns of LM electronic
circuits. First, by digitizing the pattern, a laser printing technology was used to burn a polyethylene
(PE) film, where a polydimethylsiloxane (PDMS) or paper substrate was used to produce grooves.
Then, the grooves were filled with LM and the PE film was removed; finally, the metal was packaged
with PDMS film. The experimental results showed that the prepared LM could fabricate precise
patterned electronic circuits, such as golden serpentine curves and Peano curves. The minimum
width and height of the LM circuit were 253 µm and 200 µm, respectively, whereas the printed LM
circuit on paper reached a minimum height of 26 µm. This LM flexible circuit could also be adapted
to various sensor devices and was successfully applied to heart rate detection. Laser engraving micro-
processing technologies could be used to customize various high-resolution LM circuit patterns in a
short time, and have broad prospects in the manufacture of flexible electronic equipment.

Keywords: liquid metal; laser engraving; flexible electronics; wearable electronics

1. Introduction

Research on flexible wearable technologies and wearable electronic systems has been
developing for a long time. Flexible electronic devices are characterized by their softness,
stretchability, and wear resistance, and have been widely used in biomedical testing, elec-
tronic skin sensors, smart skins, photoelectricity, energy storage, and other fields [1–6].
Wearable electronic skin generally has sensors, such as stress, temperature, light, and elec-
trochemical sensors, to measure the skin epidermis or superficial tissues.

Electronic skin is made of conductive and stretchable materials, which provide compli-
ance for the manufacture of flexible wearable devices. Flexible circuits have been generally
based on metal nanoparticles, nanowires, and graphene [7]. Compared with common
organic or inorganic conductive materials, such as silver nanoparticles, liquid metal (LM)
has a similar conductivity and adhesion to nano silver, and possesses the functions of
stretching, bending, and torsion [8].

LM (i.e., EGaIn) is a liquid at room temperature (20 ◦C) and normal pressure (101.325 kPa),
and has great potential in flexible electronics, catalysts, and robots [9–11]. Unlike mer-
cury, which is toxic, gallium-based liquid metals are non-toxic and bio-compatible [12,13].
As a conductive material, LM is characterized by its high stability, high surface tension [14],
high density, high conductivity, flexibility, viscosity, and non-toxicity [15,16]. Due to
its good mobility and conductivity, GaIn alloy is regarded as a flexible conductor [17].
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LM alloys based on gallium are promising flexible wearable materials with excellent mobil-
ity, strong compliance, environmental friendliness, and easy recovery. LM technology has
been comprehensively developed and applied for printing electronics [18,19], sensors [20],
flexible machinery [21], and 3D printing [22,23].

Flexible wearable devices made by combining LM with sensors can be used for a
long time without bringing discomfort to users and can be manufactured on a large scale
in practical applications. LM has been combined with different sensing fibers or sensors
for real-time health monitoring; these combinations could be used as promising wearable
belt platforms.

With the progress of studies and applications of LM skin in recent years, a general
LM circuit manufacturing method has been developed to solve the problems of circuit
manufacturing and printing. Various LM pattern techniques have been developed in
the past few years based on desktop 3D printing [9,24], liquid phase 3D printing [25],
compatible hybrid 3D printing [26], suspension 3D printing [27], stencil lithography [28,29],
inkjet printing [30], fused deposition printing [31], micro-contact printing [32], dual-trans
printing [33], micro-fluidic injection [34,35], and selective liquid-metal plating (SLMP) [36].

However, these reported techniques have involved multiple-step operations (such as
3D printing), additional pre-treatment of the substrate (such as stencil lithography), post
sintering (such as fused deposition printing), delicate molds and masks (such as inkjet
printing), tedious microfabrication processes (such as microfluidic injection), alongside
sophisticated equipment. These studies have not only complicated the fabrication process
but also increased the cost.

In the past, the circuit pattern manufactured by the template method had a certain
precision, but the variability was low and the manufacturing process was complicated. Poly-
dimethylsiloxane (PDMS) grooves filled with LM have previously been reported [37,38].
Hand-drawn patterning could solve the problem of individualization, but could not meet
the requirements for preparing circuits. The resulting pattern was not uniform and could
not be used for industrial production.

These problems have restricted the further development and application of LM-based
materials; thus, it is particularly urgent and necessary to solve the problem of fine printing.
Traditional LM circuit preparation has been challenging to develop further. Laser technol-
ogy has been widely used in various fields, for example: textile electronic [39], composite
materials [40], biomedical science [41–43], and so on. To the best of our knowledge, there
have been few reports on the fabrication of ultra-micro LM electronic devices by laser
engraving [44,45]. For example, Pan et al. used laser printing to prepare a transparent
conductive film, but they used a laser to print directly onto the plane of the LM, which
caused the burning and deterioration of the LM [46].

In this study, we proposed and demonstrated a new printing and manufacturing
strategy for LM electronic circuits, denoted as laser printing-based LM electronic circuit
printing. Laser engraving on a PDMS substrate and paper templates were used to pro-
duce LM flexible electronic circuits and electronic products. For illustration, flexible LM
electronic products were applied on PDMS and paper-based materials. The accuracy of
the circuit could be easily adjusted by the laser parameters, and the method was also
compatible with a variety of substrates. Finally, the application of the patterned LM circuit
as a heart rate sensor was demonstrated.

2. Experimental Section
2.1. Materials Fabrication

First, the indium metal (25.5 g) was cut into small pieces and weighed. A straw was
used to extract liquid gallium (84.5 g), which was then mixed with the indium metals. After
that, the mixture was gently put into a magnetic stirrer with a heating function, and the
temperature was set at 68 ◦C for 30 min. Care was taken not to heat the liquid alloy for 5 h
to avoid failure.
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The preparation of the PDMS substrate involved the following steps: First, in the
mold, the base and curing agent were evenly applied in a uniform rotary coating at the
mass ratio of 10:1. Next, the coating was held at room temperature under irradiation with
ultraviolet light for approximately 12 h, to obtain a stretchable transparent PDMS substrate.
To ensure the cleanliness of the PDMS substrate and facilitate the printing of LM circuits,
an ultra-thin viscous polyethylene (PE) film was placed on the surface of the PDMS substrate.

2.2. Laser Engraving Process

As a processing medium, laser engraving is based on laser numerical control technology.
The instant melting and gasification physical denaturation of the processing materials under
laser irradiation achieves the purpose of processing.

The manufacturing process of the laser engraved LM circuit was as follows. The laser
engraving machine (DOBOT MOOZ, product model: DT-MZ-2ZFU-00E, working range
X130*Y130 mm, laser power 0.5 W) was purchased from Chongqing Expansion Electronics
Co., Ltd. (Chongqing, China). The laser type was solid YAG, and the wavelength was 355 nm.

Some clear, well-defined pattern pictures were imported into the computer software
MoozStudio, which were then configured by the laser engraving machine. Then, the soft-
ware generated a GCODE file that was recognizable to the laser engraving machine. Then,
the file was output to a portable mobile device with a USB interface, which was connected
to the laser engraver. The x, y, and z-axis coordinates were adjusted so that the laser could
engrave to the horizontal plane of the substrate. On the vertical axis, objects could be
removed by laser printing. However, it was difficult to measure the laser machining rate
along the vertical axis with the available equipment.

The laser engraving machine engraved the set circuit according to the set pattern.
The maximum engraving rate was 5 mm/s, the maximum laser movement rate was
8.333 mm/s, and the laser power was 0~100%. Typically, after the laser printing started,
3–4 s was required to reach the set engraving speed. For instance, if the carving speed
was 5 mm/s, then the acceleration rate of the stages for engraving was 1.667 mm/s2.
We generally did not engrave PE-PDMS or paper during the acceleration stage. When the
speed of laser printing became a stable, we began to print PE-PDMS and paper.

The printing process of the LM circuit was as follows. After printing the circuit onto
the PE-PDMS substrate, a thin tip with a diameter of only 1 mm was used to take LM
(5 mg), and evenly apply it along the circuit to fill the engraved line. Then, the PE film
attached to the PDMS was gently peeled off to obtain a continuous, complete LM circuit.
Finally, the prepared PDMS was coated onto the LM and PDMS substrate.

For paper-based printing, the laser-engraved pattern template was placed on a piece
of paper as a base. Using a fine nib (1 mm in diameter), 5 mg of LM was extracted. For the
paper-based LM circuits, instead of using PE as a template, we used a piece of paper as
a template. The LM was passed through the groove of the paper template line and was
printed onto the next layer of paper, resulting in a fine LM line. After filling the paper
substrate with LM, the paper-based LM circuit was bared.

2.3. Electrical/Morphological Characterization

Characterization of the laser-engraved LM circuit was performed as follows. The size
and shape of the LM circuits that were printed on the paper and PDMS substrates were
obtained using a scanning electron microscope (SEM; ZEISS, SIGMA 300) with a working
distance (WD) of 4.1–5.8 mm, an EHT acceleration voltage of 1–3 kV, a magnification of
28–440×, and a ln-Lens detector. The cross-sectional morphology of the laser-engraved
groove could be also obtained using SEM.

To measure the electrical properties during mechanical deformation, a high-precision
digital multimeter (Victory VC9808, Sheng-Sheng Sheng-Li Technology Co., Ltd., Shenzhen,
China) was used to measure the resistance characteristics of the circuit under bending,
stretching, and torsion.
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For demonstrating an application based on a laser-engraved LM circuit sensor, a pulse
heart rate measurement photoelectric reflection type analog sensor (i.e., a Pulse sensor)
was connected to the Arduino development board (Uno R3) through the laser printing LM
circuit. The pulse sensor was marked with an S signal output line and the Arduino Analog
input A0 was connected as follows: + was connected to 5 V, and − was connected to GND.
The Arduino was connected to the USB interface on the computer through the square port
data cable. The process of displaying the pulse image was programmed by the Arduino.

3. Results and Discussion

The manufacturing steps of the laser-engraved LM circuit are shown in Figure 1a.
First, a thin PE film was used to wrap the PDMS substrate, (Figure 1a). Then, the laser
engraving machine started engraving according to the set circuit pattern. The pattern of
the laser engraving circuit was set using the computer software MoozStudio. The obtained
output GCODE file was copied to a portable mobile device and connected to the laser
engraving machine.
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Figure 1. (a) Steps for the laser engraving of an LM circuit onto a PDMS substrate and the steps for
the laser engraving of an LM circuit onto a paper substrate. (b) Photograph of the laser engraving
of the PDMS substrate. (c) Display screen of the laser engraving equipment. (d) Photographs of the
laser engraving of the paper substrate.
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Both the PE film and PDMS were able to absorb the laser energy. The laser could break
through the PE film with a thickness of 0.5 mm. However, for PDMS with a thickness of
3–5 mm, the laser only left a groove in the surface. After the engraving was completed,
the burning PE and PDMS materials in the groove were gently wiped off with a metal
needle, and a circuit pattern with a set circuit path was obtained.

Then, a fine brush was used to pick up the configured LM, which was then slowly
applied to the laser-engraved groove. This fine brush had a tip with a diameter of only
1 mm. Moreover, spraying was also used to fill the groove with LM.

The function of the PE film was to adhere to the PDMS substrate such that it would
not fall off during printing; the PE film could also effectively prevent external dust from
polluting the PDMS substrate. More importantly, the laser penetrated the PE film and part
of the PDMS substrate in the process of printing the circuit. Therefore, in the process of
filling the groove with LM, the LM entered the groove in the PDMS substrate through the
ablated PE film to prepare a complete LM circuit. The non-punctured PE film (i.e., the part
that did not require printing) effectively prevented the PDMS substrate from contacting the
LM, by preventing the LM from moving outside of the groove carved by the laser.

Finally, the PE film attached to the PDMS was gently peeled off to obtain a continuous,
complete LM metal circuit. After completion of the LM filling, the PE film was easily torn
off to obtain a complete LM circuit on PDMS. Thereafter, the prepared PDMS film was
coated on the LM and PDMS substrate.

This packaging process did not affect the integrity and resolution of the laser-engraved
pattern. After sealing the device, the resulting laser-engraved LM flexible circuit could be
used in a variety of applications, such as flexible electronic skin.

Laser processing has some excellent features, such as: no contact with the material
surface, no dependency on mechanical movement, and generally no need to be fixed.
Simultaneously, laser engraving also has the beneficial characteristics of high machining
accuracy, high speed, and wide application prospects [47]. Laser engraving is not affected
by the material elasticity and flexibility; therefore, it is also convenient for processing soft
materials. The direct laser engraving system mainly consisted of three parts: a high-energy
laser, a laser delivery system, and an optical system (Figure 1b–d).

To better demonstrate the surface patterning capabilities of the laser-engraved cir-
cuits on PDMS, we subsequently used laser engraving to create more complex patterns,
which also verified the feasibility of laser engraving for the fabrication of flexible electrons.
A variety of complex electronic patterns were successfully produced, as shown in Figure 2a–d.
These patterns had sharp features with high precision and resolution.

Gold serpentine and Peano curve patterns were obtained by laser engraving, as shown
in Figure 2c,d. A magnification pattern with a high quality of patterning of the Peano-based
wire is shown in Figure 2e, which emphasized the feasibility of the laser engraving method.
No defects of corners and turns were observed.

Reducing the thickness of the PDMS-based electronic devices is also important for
achieving highly flexible electronic devices. These highly flexible, mechanically durable
patterns were easy to manufacture, which was a step towards flexible circuits. Thus, we also
studied the microscopic characteristics of the laser-engraved LM wires and patterns on
PDMS and paper substrates. Figure 3a–d shows the micrographs of the laser engraved LM
circuits on PDMS and paper bases.
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Figure 2. (a) Laser Engraving of Golden Serpentine Patterns. (b) Peano curve in laser engraving.
(c) Peano-based wire before and after filling liquid metal. (d) Vicsek fracta on PDMS. (e) Gold serpen-
tine patterns carved on paper bases and PDMS. (In (c–e), the scale is 1 cm).

The cross-sectional SEM image of the PDMS-based LM is shown in Figure 3a. The width
of the groove printed by laser was approximately 440 µm, and the depth was approximately
200 µm. The LM was filled into the laser-engraved trench. The laser-engraved trench had
no obvious defects on the micron level. Since the groove was formed by burning PDMS
with laser, it had a certain roughness. However, the width of the grooves remained uniform
at a uniform laser rate. The wettability of LM on PDMS has been reported in a previous
article [48]. LM forms a thin oxide layer on its surface in the presence of oxygen. This oxide
shell easily adheres to the surface of almost any material, including PDMS substrates.

Figure 3b shows an SEM image of an LM line that was filled on a laser-engraved PDMS
substrate. The LM covered and filled the trench. The edges of the LM and laser-engraved
trenches were snugly fit and maintained a stable surface topography.

However, a small hole existed in the edge, similar to a pore, as seen in Figure 3b, which
was due to the surface tension and oxidation of LM. In fact, the existence of the small hole
was due to the oxidized LM not adhering to the edge of the groove. When the mixture of
Ga-In alloys was oxidized, the fluidity of the LM was poor. To prevent such small holes,
the experiments should be performed as soon as possible to prevent the oxidation of large
areas of LM.
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Figure 3. (a) Laser engraving of the groove pattern filled with LM on the PDMS substrate. (b) SEM im-
age of the LM line filled on the PDMS substrate after laser engraving. (c) Cross-sectional SEM image
of the LM line printed on the paper. (d) SEM image of the LM lines printed on the paper base
at different magnifications. (e) Effect of carving speed and laser travel speed on the carving time.
(f) Influence of the change in engraving speed on the width of engraving. (g) Influence of the change
in travel speed on the width of engraving. In (f,g), the scalebar is 50 µm.

The width of the LM was approximately the same as the width of the laser-engraved
groove, which indicated that the LM had good adhesion in the groove. The LM was ob-
served to be tightly connected. There was no visible fracture, which ensured the connection
of the circuit. This proved the feasibility and accuracy of laser engraving for manufacturing
flexible circuits.

As seen from Figure 3c,d, the LM circuit printed on the paper base had a cross-sectional
height of approximately 26 µm and a width of approximately 253 µm. The surface of this
LM circuit was smooth and flat, and uniformly covered the paper base without breakage.
The laser-engraved printed LM circuit could be applied to an ultra-thin flexible circuit.
Figure 3e shows an SEM image of an LM line at different magnifications printed on a
paper base. The LM circuits printed by laser engraving appeared as a smooth continuous
straight line on the paper base. Through the high-magnification observation of the LM and
paper interface, the interface between the printed LM circuit and paper was clear with a
favorable resolution.

To achieve a certain carving effect on a specific material, it was required to absorb a
certain amount of laser energy, regarded as the laser energy absorbed. By adjusting the
focal length, the laser energy per unit area could also be adjusted. A high-speed laser head
resulted in high productivity. From the above conditions, the laser energy absorbed by the
material = laser power (W)/engraving speed (mm/s). The energy absorbed by the material
is given by:

Emateria =
J
s

(1)
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where J is the laser energy, s is the engraving time, and Ematerial is the laser energy absorbed
by the material (per unit length). The engraving speed refers to the speed at which the laser
head moves, usually expressed in inches per second (IPS).

To improve the material absorption and transmission of laser energy, the laser power
should be increased, and the speed of carving should be reduced, as for the final carving
effect. In the experiment, the only conditions that could be changed were the laser power
and the carving speed; the laser wavelength was maintained constant at 355 nm. Therefore,
dot matrix engraving could be used to scan graphics, text, and vectorized text. Dot-matrix
engraving resembles high-definition dot-matrix printing. The laser head swings from side
to side, carving out a line composed of a series of points in time. Then, the laser head
moves up and down simultaneously to carve out multiple lines, finally forming a whole
page of an image or text.

The laser head speed was also used to control the depth of the cut. For a particular laser
intensity, the slower the speed, the greater the depth of cutting and engraving. To validate
the effect of the laser carving speed and travel speed on the width and time of engraving
on the paper base (Figure 3e–g), we changed the parameters in Moozstudio.

In Moozstudio, the default carving speed was 8.333 mm/s and the travel speed was
5 mm/s. The carving speed was changed from 1.6 to 8.333 mm/s (with a set travel speed
at 5 mm/s). After obtaining this set of data, the travel speed was changed from 5 to
11.667 mm/s (with a set carving speed at 8.333 mm/s).

As shown in Figure 3f,g, when the engraving speed increased from 1.667 mm/s to
8.334 mm/s, the engraving width decreased from 650 to 253 µm. When the moving speed
increased from 5 mm/s to 11.667 mm/s, the width of the engraving decreased from 300 to
200 µm. The relationship between carving speed, travel speed, carving time and engraving
width in the sample was also shown in Table S1 in Supplementary Materials.

As shown in Figure 3e, after measurement, we also found that changing the laser
travel speed had little or no effect on the carving time. This was because the travel speed
was the horizontal velocity of the laser emitter in the non-working state. When engraving
continuous patterns, the laser transmitter was always working, so the carving time was
not affected. At this time, the travel speed was set at 5 mm/s, so the total carving time
did not change.

However, the carving speed had a certain influence on the carving time. The carving
speed referred to the speed at which the laser spot moved, and its speed could control
the cutting depth. When the material was hard, a slower carving speed could be chosen.
When changing the carving speed, in this case, the laser focused on a point for a long time,
causing the materials to absorb more energy. Therefore, the laser carving speed determined
the time and width of the carving.

To evaluate the electrical properties of the laser-engraved LM circuits under mechanical
stress conditions, the bending and tensile resistance changes were characterized. The PDMS
film was filled with LM to evaluate the electrical properties of the laser-engraved circuit
during mechanical deformation, where all resistance measurements were performed at least
3 times. The LM had a conductivity of 34,000 S/cm, the sheet resistance of 0.01 Ohm/sq.,
and stretching ability of more than 1000 [28].

First, we evaluated the resistance change of the LM wire of the Peano curve during
bending. In the bending experiment, the laser-engraved LM circuit was bent at −180◦,
−120◦, −60◦, 0◦, 60◦, 120◦, and 180◦, and its resistance was measured. For each experiment,
at least three sets of data were measured. As shown in Figure 4a, the resistance of the
original LM wire was approximately 2.6 Ω. Similarly, there was a slight change in the
relative resistance during the bending process. However, the electrical properties of the
LM circuit printed by laser engraving were very stable, and the bending of the circuit was
always constant at approximately zero.

In addition to the bending test, the circuit was subjected to a torsion test with twist
angles of 90◦, 180◦, 270◦, and 360◦. The laser-engraved LM circuit was fixed at both ends
and, for each angle, at least three sets of data were measured. As shown in Figure 4b,
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the influence of the torsion angle on the electrical conductivity of the circuit was extremely
small. Furthermore, the relative resistance change was approximately constant close to zero.
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After that, the laser-engraved LM circuit under a tensile state was evaluated, as shown
in Figure 4c. The resistance value of the circuit increased slightly with the length of
stretching in the range of 83%. A laser-engraved LM circuit with a length of 3 cm was
stretched to 4 cm, 5 cm, and 5.5 cm, and the corresponding resistance was measured. After
the measurement, the resistance change was less than 50%.

For clarity in the ongoing discussion, we will now discuss the terms used to describe
the electrical properties of materials. Conductivity is an inherent material property that
describes how easily a current can flow through a material when a voltage is applied.
Resistivity (ρ) is the inverse of conductivity and is a physical quantity that is used to
indicate the electrical resistance and characteristics of various materials. In the case of a
certain temperature, the resistance of a conductor can be expressed as:

R =
ρL
S

(2)

where ρ is the resistivity, L is the length of the material, and S is the area. The resistance
of the material was proportional to the length of the material. That is, when the material
and the cross-sectional area were constant, the longer the length, the greater the resistance
of the material. The resistance of the material was inversely proportional to the cross-
sectional area of the material. When the material and length were constant, the larger the
cross-sectional area, and the smaller the resistance.

The extraordinary stability of the electrical properties during mechanical deformation
was due to the fluidic nature of the LM conductor [20], and the flexibility of the laser-
engraved circuit. The pattern of the laser-engraved LM circuit could be easily deformed into
various shapes. After relaxation, the electrical conductivity could be restored. Therefore,
it was envisaged that the laser-engraved LM circuit could be flexible wearable skin electron-
ics. The thin laser-engraved LM had very high flexibility and mechanical stability (Figure 4)
in various mechanical deformations, such as stretching, torsion, and bending.

To further demonstrate the wide application prospects of laser-engraved circuits,
we designed a simple LM circuit pattern that consisted of three LM curved lines that
connected the sensor to the Arduino development board.

Using a flexible circuit, multiple functional modules could be combined, such as a
sensing system, actuator, and other functional modules, which could be applied in the
fields of electronic security, flexible display, and biological diagnosis.

As shown in Figure 5a, a thin LM electronic circuit with a depth approximately 200 µm
was fabricated. The circuit of the conductor and the entire working environment are shown
in Figure 5b. The laser-engraved LM circuit was connected to the Arduino development
board on the PDMS substrate. The pulse heart rate measurement photoelectric reflection
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type analog sensor (Pulse sensor) was connected to the Arduino development board
(Uno R3) through a laser-printed LM circuit. The heart rate was successfully measured by
the related software on the computer (Figure 5c).
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The sensor consisted of a light source and a photoelectric transducer, which were
attached to the patient’s finger or earlobe by straps and clips. The photoelectric reflection
method measured the pulse that was produced by different blood vessels beating in human
tissue. The light source generally used a light-emitting diode, selected with a certain
wavelength (from 500 nm to 700 nm), for oxygen and hemoglobin in the arterial blood.

When the light beam passed through the peripheral blood vessels of the human
body, the volume of the arterial pulsation changed, which also caused changes in the light
transmittance. At this time, the light reflected by the human tissue was received by the
photoelectric transducer, converted into an electrical signal, and turned into an amplified
output. Since the pulse was a signal that periodically changed with the beat of the heart,
the volume of the arterial vessel also changed periodically; therefore, the change period of
the electrical signal of the photoelectric transducer was the pulse rate.

The heart rate referred to the number of heartbeats in a minute (BPM). The clumsiest
way to obtain a heart rate was to count the number of pulses in a minute. However,
in this way, every heart rate measurement required a minute to obtain results, which was
extremely inefficient.



Bioengineering 2022, 9, 59 11 of 13

Another method was to measure the interval between two adjacent pulses (IBI),
and then divide the interval one minute to obtain the heart rate. The heart rate sensor
calculated the time interval between the two pulses using the change in the micro volt-
age. The advantage of this method was that the pulse could be calculated in real-time,
and the efficiency was high. This led to the correlation between IBI and BPM, which can be
expressed by the following formula:

BPM =
60
IBI

(3)

where IBI is the time interval between two adjacent pulses (ms) and BPM is the heart rate,
i.e., the number of heartbeats in a minute. Based on the above analysis, we concluded that
our goal was to obtain the value of IBI, and then calculate the real-time heart rate (BPM)
via the IBI.

Figure 5c,d were produced by the Serial Plotter tool which was provided by Arduino
programming. The red curve of the pulse was the pulse wave data from the Signal variable.
IBI was the time between each beat, whereas the BPM was the beats per minute. As shown
in the figure, electronic skin was made by laser carving of the LM, and could measure the
heartbeat in real-time. The real-time value of IBI was 806 ms and the BPM value was 78.

To determine the usability and accuracy of the LM circuit by laser engraving, we also
measured the pulse under the calm and motion states, where the curves are shown in
Figure 5e,f. Figure 5e shows the image of the pulse sensor at rest, whereas Figure 5f shows
the post-exercise pulse sensor image. The pulse wave data were obtained by the serial
port. The experimental results demonstrated the successful integration of laser-engraved
LM circuits, sensors, and electronic components, such as the Arduino development board,
which enabled their practical applications.

4. Conclusions

This paper introduced a simple, convenient, and reliable method for the preparation
of laser engraving microfabrication technology. Using LM as a conductor, and PDMS
as a substrate, a flexible circuit that had a complicated pattern with anti-deformation
was manufactured. Under optimal conditions, the accuracy of the laser engraving could
be used to manufacture a flexible circuit with a width of 253 µm on a PDMS substrate.
These circuits were successfully applied to flexible electronic sensors, such as sensors for
detecting heart rate. We envision that this laser-engraved LM flexible circuit could be
combined with other state-of-the-art skin electronics, which will have a major impact on
the design and construction of future devices. These findings indicated that laser engraving
microfabrication technology has great potential for applications.
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